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Analyzing random walks on graph.

Start at vertex, go to random neighbor.

For d-regular graph: eventually uniform.
if not bipartite. Odd /even step!

How to analyse?

Random Walk Matrix: M.
M - normalized adjacency matrix.
Symmetric, ∑j M[i , j] = 1.
M[i , j]- probability of going to j from i .

Probability distribution at time t : vt .
vt+1 = Mvt Each node is average over neighbors.

Evolution? Random walk starts at 1, distribution e1 = [1,0, . . . ,0].
M tv1 = 1

N v1 +∑i>1 λ t
i αivi .

v1 = [ 1
N , . . . , 1

N ]→Uniform distribution.

Doh! What if bipartite?
Negative eigenvalues of value -1: (+1,−1) on two sides.

Side question: Why the same size? Assumed regular graph.
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Fix-it-up chappie!
“Lazy” random walk:

With probability 1/2 stay at current vertex.

Evolution Matrix: I+M
2

Eigenvalues: 1+λi
2

1
2 (I +M)vi =

1
2 (vi +λivi) =

1+λi
2 vi

Eigenvalues in interval [0,1].

Spectral gap: 1−λ2
2 = µ

2 .

Uniform distribution: π = [ 1
N , . . . , 1

N ]
Distance to uniform: d1(vt ,π) = ∑i |(vt)i −πi |

“Rapidly mixing”: d1(vt ,π)≤ ε in poly(logN, log 1
ε
) time.

When is chain rapidly mixing?

Another measure: d2(vt ,π) = ∑i((vt)i −πi)
2.

Note: d1(vt ,π)≤
√

Nd2(vt ,π)
n – “size” of vertex, µ ≥ 1

p(n) for poly p(n), t = O(p(n) logN).

d2(vt ,π) = |Ate1−π|2 ≤
(

(1+λ2)
2

)2t
≤ (1− 1

2p(n) )
2t ≤ 1

poly(N)

Rapidly mixing with big (≥ 1
p(n) ) spectral gap.
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Rapid mixing, volume, and surface area..

Recall volume of convex body.

Grid graph on grid points inside convex body.

Recall Cheeger: µ

2 ≤ h(G)≤
√

2µ.

Lower bound expansion→ lower bounds on spectral gap µ

→ Upper bound mixing time.
h(G)≈ Surface Area

Volume
Isoperimetric inequality.

Voln−1(S,S)≥ min(Vol(S),Vol(S))
diam(P)

Edges ∝ surface area, Assume Diam(P)≤ p′(n)
→ h(G)≥ 1/p′(n)
→ µ > 1/2p′(n)2

→ O(p′(n)2 logN) convergence for Markov chain on BIG GRAPH.
→ Rapidly mixing chain:
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Khachiyan’s algorithm for counting partial orders.
Given partial order on x1, . . . ,xn.

Sample from uniform distribution over total orders.

Start at an ordering.
Swap random pair and go if consistent with partial order.

Rapidly mixing chain?

Map into d-dimensional unit cube.

xi < xj corresponds to halfspace (one side of hyperplane) of cube.
“dimension i = dimension j”

total order is intersection of n halfspaces.
each of volume: 1

n! .
since each total order is disjoint
and together cover cube.

(0,0)

x1 > x2

x1 > x2 x1 > x3
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Each order takes 1
n! volume.

Number of orders ≡ volume of intersection of partial order relations.

Diameter: O(
√

n)

Isoperimetry:
Voln−1(S,S) = E(S,S)

(n−1)! ≥
|S|

n!
√

n
Edge Expansion: the degree d is O(n2),
h(S) = |E(S,S)|

d |S| ≥
1

n7/2 Mixes in time O(n7 logN) = O(n8 logn).
Do the polynomial dance!!!
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Cheeger Hard Part.

Now let’s get to the hard part of Cheeger h(G)≤
√

2(1−λ2).

Idea: We have 1−λ2 as a continuous relaxation of φ(G)

Take the 2nd eigenvector x = argminx∈RV−Span{1}
∑i ,j Mij (xi−xj )

2

1
n ∑i ,j (xi−xj )

2

Consider x as an embedding of the vertices to the real line.

Round x to get a x ∈ {0,1}V

Rounding: Take a threshold t ,{
xi ≥ t → xi = 1
xi < t → xi = 0

What will be a good t?

We don’t know. Try all possible thresholds (n−1 possibilities), and
hope there is a t leading to a good cut!
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Sweep Cut Algorithm

Input: G = (V ,E), x ∈ RV ,x ⊥ 1

Sort the vertices in non-decreasing order in terms of their values in x
WLOG V = {1, . . . ,n} x1 ≤ x2 ≤ . . .≤ xn

Let Si = {1, . . . , i} i = 1, . . . ,n−1

Return S = argminSi
h(Si)

Main Lemma: G = (V ,E), d-regular

x ∈ RV ,x ⊥ 1,µ =
∑i ,j Mij (xi−xj )

2

1
n ∑i ,j (xi−xj )

2

If S is the ouput of the sweep cut algorithm, then h(S)≤
√

2µ

Note: Applying the Main Lemma with the 2nd eigenvector v2, we have
µ = 1−λ2, and h(G)≤ h(S)≤

√
2(1−λ2). Done!
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Proof of Main Lemma

WLOG V = {1, . . . ,n} x1 ≤ x2 ≤ . . .≤ xn

Want to show

∃i s.t. h(Si) =
1
d |E(Si ,V −Si)|

min(|Si |, |V −Si |)
≤
√

2µ

Probabilistic Argument: Construct a distribution D over {S1, . . . ,Sn−1}
such that

ES∼D[
1
d |E(S,V −S)|]

ES∼D[min(|S|, |V −S|)]
≤
√

2µ

→ ES∼D[
1
d |E(S,V −S)|−

√
2µmin(|S|, |V −S|)]≤ 0

∃S 1
d |E(S,V −S)|−

√
2µmin(|S|, |V −S|)≤ 0
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The distribution D

WLOG, shift and scale so that xb n
2 c

= 0, and x2
1 +x2

n = 1

Take t from the range [x1,xn] with density function f (t) = 2|t |.

Check:
∫ xn

x1
f (t)dt =

∫ 0
x1
−2tdt +

∫ xn
0 2tdt = x2

1 +x2
n = 1

S = {i : xi ≤ t}

Take D as the distribution over S1, . . . ,Sn−1 from the above
procedure.



The distribution D

WLOG, shift and scale so that xb n
2 c

= 0, and x2
1 +x2

n = 1

Take t from the range [x1,xn] with density function f (t) = 2|t |.

Check:
∫ xn

x1
f (t)dt =

∫ 0
x1
−2tdt +

∫ xn
0 2tdt = x2

1 +x2
n = 1

S = {i : xi ≤ t}

Take D as the distribution over S1, . . . ,Sn−1 from the above
procedure.



The distribution D

WLOG, shift and scale so that xb n
2 c

= 0, and x2
1 +x2

n = 1

Take t from the range [x1,xn] with density function f (t) = 2|t |.

Check:
∫ xn

x1
f (t)dt =

∫ 0
x1
−2tdt +

∫ xn
0 2tdt = x2

1 +x2
n = 1

S = {i : xi ≤ t}

Take D as the distribution over S1, . . . ,Sn−1 from the above
procedure.



The distribution D

WLOG, shift and scale so that xb n
2 c

= 0, and x2
1 +x2

n = 1

Take t from the range [x1,xn] with density function f (t) = 2|t |.

Check:
∫ xn

x1
f (t)dt =

∫ 0
x1
−2tdt +

∫ xn
0 2tdt = x2

1 +x2
n = 1

S = {i : xi ≤ t}

Take D as the distribution over S1, . . . ,Sn−1 from the above
procedure.



The distribution D

WLOG, shift and scale so that xb n
2 c

= 0, and x2
1 +x2

n = 1

Take t from the range [x1,xn] with density function f (t) = 2|t |.

Check:
∫ xn

x1
f (t)dt =

∫ 0
x1
−2tdt +

∫ xn
0 2tdt = x2

1 +x2
n = 1

S = {i : xi ≤ t}

Take D as the distribution over S1, . . . ,Sn−1 from the above
procedure.



Goal: ES∼D [ 1
d |E(S,V−S)|]

ES∼D [min(|S|,|V−S|)] ≤
√

2µ

Denominator:

Let Ti = indicator for “i is in the smaller set of S,V −S”

Can check
ES∼D[Ti ] = Pr [Ti = 1] = x2

i

ES∼D[min(|S|, |V −S|)] = ES∼D[∑
i

Ti ]

= ∑
i
ES∼D[Ti ]

= ∑
i

x2
i
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Goal: ES∼D [ 1
d |E(S,V−S)|]

ES∼D [min(|S|,|V−S|)] ≤
√

2µ

Numerator:

Let Ti ,j = indicator for i , j is cut by (S,V −S){
xi ,xj same sign: Pr [Ti ,j = 1] = |x2

i −x2
j |

xi ,xj different sign: Pr [Ti ,j = 1] = x2
i +x2

j

A common upper bound: E[Ti ,j ] = Pr [Ti ,j = 1]≤ |xi −xj |(|xi |+ |xj |)

ES∼D[
1
d
|E(S,V −S)|] = 1

2 ∑
i ,j

MijE[Ti ,j ]

≤ 1
2 ∑

i ,j
Mij |xi −xj |(|xi |+ |xj |)
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Cauchy-Schwarz Inequality

|a ·b| ≤ ‖a‖‖b‖, as a ·b = ‖a‖‖b‖cos(a,b)

Applying with a,b ∈ Rn2
with aij =

√
Mij |xi −xj |,bij =

√
Mij |xi |+ |xj |

Numerator:

ES∼D[
1
d
|E(S,V −S)|] = 1

2 ∑
i ,j

MijE[Ti ,j ]

≤ 1
2 ∑

i ,j
Mij |xi −xj |(|xi |+ |xj |)

=
1
2

a ·b

≤ 1
2
‖a‖‖b‖
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Recall µ =
∑i ,j Mij (xi−xj )

2

1
n ∑i ,j (xi−xj )

2 ,aij =
√

Mij |xi −xj |,bij =
√

Mij |xi |+ |xj |

‖a‖2 = ∑
i ,j

Mij(xi −xj)
2 =

µ

n ∑
i ,j
(xi −xj)

2

=
µ

n ∑
i ,j
(x2

i +x2
j )−∑

i ,j
2xixj

=
µ

n ∑
i ,j
(x2

i +x2
j )−2(∑

i
xi)

2

≤ µ

n ∑
i ,j
(x2

i +x2
j ) = 2µ ∑

i
x2

i

‖b‖2 = ∑
i ,j

Mij(|xi |+ |xj |)2

≤∑
i ,j

Mij(2x2
i +2x2

j )

= 4∑
i

x2
i
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Goal: ES∼D [ 1
d |E(S,V−S)|]
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Thus ∃Si such that h(Si)≤
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2µ, which gives h(G)≤
√

2(1−λ )
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Summary

Second largest eigenvlaue of matrix: λ2.

Bounds mixing time.

Connected to “sparse” cuts.

Cheeger: µ

2 ≤ h(G)≤
√

2µ.

Left hand tight: Hypercube.

Right hand tight: Cycle.

Left side proof: produce good Rayleigh quotient vector from
sparse cut.

Right hand proof: produce sparse cut from good Rayleigh
quotient.

Connect to bounding mixing time on Markov Chain.
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