Today.

Continue markov chain mixing analysis.

Prove "hard side" of Cheeger.

Rapid mixing, volume, and surface area...

Recall volume of convex body.

Grid graph on grid points inside convex body.

Recall Cheeger: $\frac{\mu}{2} \le h(G) \le \sqrt{2\mu}$.

Lower bound expansion \rightarrow lower bounds on spectral gap μ

 \rightarrow Upper bound mixing time.

 $h(G) \approx \frac{\text{Surface Area}}{\text{Volume}}$

Isoperimetric inequality.

 $Vol_{n-1}(S, \overline{S}) \ge \frac{\min(Vol(S), Vol(\overline{S}))}{diam(P)}$

Edges \propto surface area, Assume $Diam(P) \leq p'(n)$

- $\rightarrow h(G) \geq 1/p'(n)$
- $\rightarrow \mu > 1/2p'(n)^2$
- $\rightarrow O(p'(n)^2 \log N)$ convergence for Markov chain on BIG GRAPH.
- → Rapidly mixing chain:

Analyzing random walks on graph.

Start at vertex, go to random neighbor.

For *d*-regular graph: eventually uniform.

if not bipartite. Odd /even step!

How to analyse?

Random Walk Matrix: M.

M - normalized adjacency matrix.

Symmetric, $\sum_{i} M[i, j] = 1$.

M[i,j]- probability of going to j from i.

Probability distribution at time t: v_t .

 $v_{t+1} = Mv_t$ Each node is average over neighbors.

Evolution? Random walk starts at 1, distribution $e_1 = [1, 0, ..., 0]$.

 $M^t v_1 = \frac{1}{N} v_1 + \sum_{i>1} \lambda_i^t \alpha_i v_i.$

 $v_1 = \left[\frac{1}{N}, \dots, \frac{1}{N}\right] \rightarrow \text{Uniform distribution.}$

Doh! What if bipartite?

Negative eigenvalues of value -1: (+1, -1) on two sides.

Side question: Why the same size? Assumed regular graph.

Khachiyan's algorithm for counting partial orders.

Given partial order on x_1, \ldots, x_n .

Sample from uniform distribution over total orders.

Start at an ordering.

Swap random pair and go if consistent with partial order.

Rapidly mixing chain?

Map into d-dimensional unit cube.

 $x_i < x_i$ corresponds to halfspace (one side of hyperplane) of cube.

"dimension i = dimension j"

total order is intersection of *n* halfspaces.

each of volume: $\frac{1}{n!}$.

since each total order is disjoint

and together cover cube.

Fix-it-up chappie!

"Lazy" random walk: With probability 1/2 stay at current vertex.

Evolution Matrix: 1+M

Eigenvalues: $\frac{1+\lambda_i}{2}$

 $\frac{1}{2}(I+M)v_i = \frac{1}{2}(v_i + \lambda_i v_i) = \frac{1+\lambda_i}{2}v_i$ Eigenvalues in interval [0, 1].

Spectral gap: $\frac{1-\lambda_2}{2} = \frac{\mu}{2}$

Uniform distribution: $\pi = [\frac{1}{N}, \dots, \frac{1}{N}]$ Distance to uniform: $d_1(v_t, \pi) = \sum_i |(v_t)_i - \pi_i|$

"Rapidly mixing": $d_1(v_t, \pi) \le \varepsilon$ in **poly**(log N, log $\frac{1}{\varepsilon}$) time.

When is chain rapidly mixing?

Another measure: $d_2(v_t, \pi) = \sum_i ((v_t)_i - \pi_i)^2$.

Note: $d_1(v_t,\pi) \le \sqrt{N} d_2(v_t,\pi)$ n – "size" of vertex, $\mu \ge \frac{1}{p(n)}$ for poly p(n), $t = O(p(n) \log N)$.

$$d_2(v_t,\pi) = |A^t e_1 - \pi|^2 \le \left(\frac{(1+\lambda_2)}{2}\right)^{2t} \le (1 - \frac{1}{2p(n)})^{2t} \le \frac{1}{\text{poly}(N)}$$

Rapidly mixing with big $(\geq \frac{1}{\rho(n)})$ spectral gap.

Each order takes $\frac{1}{a!}$ volume.

Number of orders \equiv volume of intersection of partial order relations.

Diameter: $O(\sqrt{n})$

Isoperimetry:

$$Vol_{n-1}(S,\overline{S}) = \frac{E(S,\overline{S})}{(n-1)!} \ge \frac{|S|}{n!\sqrt{n}}$$

Edge Expansion: the degree d is $O(n^2)$,

 $h(S) = \frac{|E(S.\overline{S})|}{d|S|} \ge \frac{1}{n^{7/2}}$ Mixes in time $O(n^7 \log N) = O(n^8 \log n)$. Do the polynomial dance!!!

Summary.

Eigenvectors for hypercubes.

Tight example for LHI of Cheeger. Eigenvectors for cycle.

Tight example for RHI of Cheeger.

Random Walks and Sampling.

Eigenvectors, Isoperimetry of Volume, Mixing.

Partial Order Application.

Proof of Main Lemma

WLOG
$$V = \{1, ..., n\}$$
 $x_1 \le x_2 \le ... \le x_n$

Want to show

$$\exists i \text{ s.t. } h(S_i) = \frac{\frac{1}{d}|E(S_i, V - S_i)|}{\min(|S_i|, |V - S_i|)} \le \sqrt{2\mu}$$

Probabilistic Argument: Construct a distribution D over $\{S_1,\ldots,S_{n-1}\}$ such that

$$\frac{\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S, V - S)|]}{\mathbb{E}_{S \sim D}[\min(|S|, |V - S|)]} \leq \sqrt{2\mu}$$

$$\rightarrow \mathbb{E}_{\mathcal{S} \sim \mathcal{D}}[\frac{1}{d}|E(\mathcal{S},V-\mathcal{S})| - \sqrt{2\mu} \textit{min}(|\mathcal{S}|,|V-\mathcal{S}|)] \leq 0$$

$$\exists S \qquad \tfrac{1}{\sigma} |E(S,V-S)| - \sqrt{2\mu} \textit{min}(|S|,|V-S|) \leq 0$$

Cheeger Hard Part.

Now let's get to the hard part of Cheeger $h(G) \leq \sqrt{2(1-\lambda_2)}$.

Idea: We have $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$

Take the 2nd eigenvector $x = argmin_{x \in \mathbb{R}^V - \operatorname{Span}\{1\}} \frac{\sum_{i,j} M_{ij}(x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_j - x_j)^2}$

Consider *x* as an embedding of the vertices to the real line.

Round x to get a $x \in \{0, 1\}^V$

Rounding: Take a threshold t,

$$\begin{cases} x_i \ge t & \to x_i = 1 \\ x_i < t & \to x_i = 0 \end{cases}$$

What will be a good t?

We don't know. Try all possible thresholds (n-1) possibilities), and hope there is a t leading to a good cut!

The distribution D

WLOG, shift and scale so that $x_{\lfloor \frac{n}{2} \rfloor} = 0$, and $x_1^2 + x_n^2 = 1$

Take t from the range $[x_1, x_n]$ with density function f(t) = 2|t|.

Check:
$$\int_{x_1}^{x_n} f(t) dt = \int_{x_1}^{0} -2t dt + \int_{0}^{x_n} 2t dt = x_1^2 + x_n^2 = 1$$

 $S = \{i : x_i \le t\}$

Take D as the distribution over S_1, \dots, S_{n-1} from the above procedure.

Sweep Cut Algorithm

Input:
$$G = (V, E), x \in \mathbb{R}^V, x \perp 1$$

Sort the vertices in non-decreasing order in terms of their values in \boldsymbol{x}

WLOG
$$V = \{1,...,n\}$$
 $x_1 \le x_2 \le ... \le x_n$
Let $S_i = \{1,...,i\}$ $i = 1,...,n-1$

Return $S = argmin_{S_i} h(S_i)$

Main Lemma: G = (V, E), d-regular

$$x \in \mathbb{R}^V, x \perp \mathbf{1}, \mu = \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2}$$

If S is the outure of the sweep cut algorithm, then $h(S) \le \sqrt{2\mu}$

Note: Applying the Main Lemma with the 2^{nd} eigenvector v_2 , we have $\mu = 1 - \lambda_2$, and $h(G) \le h(S) \le \sqrt{2(1 - \lambda_2)}$. Done!

 $\text{Goal: } \frac{\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S,V-S)|]}{\mathbb{E}_{S \sim D}[\min(|S|,|V-S|)]} \leq \sqrt{2\mu}$

Denominator:

Let T_i = indicator for "i is in the smaller set of S, V - S"

Can check

$$\mathbb{E}_{S\sim D}[T_i] = Pr[T_i = 1] = x_i^2$$

$$\mathbb{E}_{S \sim D}[min(|S|, |V - S|)] = \mathbb{E}_{S \sim D}[\sum_{i} T_{i}]$$

$$= \sum_{i} \mathbb{E}_{S \sim D}[T_{i}]$$

$$= \sum_{i} x_{i}^{2}$$

 $\text{Goal: } \tfrac{\mathbb{E}_{S\sim D}[\frac{1}{d}|E(S,V-S)|]}{\mathbb{E}_{S\sim D}[\min(|S|,|V-S|)]} \leq \sqrt{2\mu}$

Numerator

Let $T_{i,j} = \text{indicator for } i, j \text{ is cut by } (S, V - S)$

$$\begin{cases} x_i, x_j \text{ same sign:} & Pr[T_{i,j} = 1] = |x_i^2 - x_j^2| \\ x_i, x_j \text{ different sign:} & Pr[T_{i,j} = 1] = x_i^2 + x_j^2 \end{cases}$$

A common upper bound: $\mathbb{E}[T_{i,j}] = Pr[T_{i,j} = 1] \le |x_i - x_j|(|x_i| + |x_j|)$

$$\begin{split} \mathbb{E}_{\mathcal{S} \sim \mathcal{D}}[\frac{1}{d} | \mathcal{E}(\mathcal{S}, V - \mathcal{S})|] &= \frac{1}{2} \sum_{i,j} M_{ij} \mathbb{E}[T_{i,j}] \\ &\leq \frac{1}{2} \sum_{i,j} M_{ij} |x_i - x_j| (|x_i| + |x_j|) \end{split}$$

 $\text{Goal: } \textstyle \frac{\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S,V-S)|]}{\mathbb{E}_{S \sim D}[\min(|S|,|V-S|)]} \leq \sqrt{2\mu}$

Numerator

$$\begin{split} \mathbb{E}_{\mathcal{S} \sim \mathcal{D}}[\frac{1}{d} | \mathcal{E}(\mathcal{S}, V - \mathcal{S})|] &= \leq \frac{1}{2} \|a\| \|b\| \\ &\leq \frac{1}{2} \sqrt{2\mu \sum_{i} x_{i}^{2}} \sqrt{4 \sum_{i} x_{i}^{2}} \quad = \sqrt{2\mu} \sum_{i} x_{i}^{2} \end{split}$$

Recall Denominator:

$$\mathbb{E}_{S \sim D}[min(|S|, |V - S|)] = \sum_{i} x_i^2$$

We get

$$\frac{\mathbb{E}_{\mathcal{S} \sim D}[\frac{1}{d} | E(\mathcal{S}, V - \mathcal{S})|]}{\mathbb{E}_{\mathcal{S} \sim D}[\min(|\mathcal{S}|, |V - \mathcal{S}|)]} \leq \sqrt{2\mu}$$

Thus $\exists S_i$ such that $h(S_i) \leq \sqrt{2\mu}$, which gives $h(G) \leq \sqrt{2(1-\lambda)}$

Cauchy-Schwarz Inequality

 $|a \cdot b| \le ||a|| ||b||$, as $a \cdot b = ||a|| ||b|| \cos(a, b)$

Applying with $a,b \in \mathbb{R}^{n^2}$ with $a_{ij} = \sqrt{M_{ij}}|x_i - x_j|, b_{ij} = \sqrt{M_{ij}}|x_i| + |x_j|$

umerator

$$\mathbb{E}_{S \sim D}[\frac{1}{d} | E(S, V - S)|] = \frac{1}{2} \sum_{i,j} M_{ij} \mathbb{E}[T_{i,j}]$$

$$\leq \frac{1}{2} \sum_{i,j} M_{ij} | x_i - x_j | (|x_i| + |x_j|)$$

$$= \frac{1}{2} a \cdot b$$

$$\leq \frac{1}{2} ||a|| ||b||$$

Summary

Second largest eigenvlaue of matrix: λ_2 .

Bounds mixing time.

Connected to "sparse" cuts.

Cheeger: $\frac{\mu}{2} \le h(G) \le \sqrt{2\mu}$.

Left hand tight: Hypercube.

Right hand tight: Cycle.

Left side proof: produce good Rayleigh quotient vector from

sparse cut

Right hand proof: produce sparse cut from good Rayleigh

quotient.

Connect to bounding mixing time on Markov Chain.

Recall
$$\mu = \frac{\sum_{i,j} M_{ij}(x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2}, a_{ij} = \sqrt{M_{ij}} |x_i - x_j|, b_{ij} = \sqrt{M_{ij}} |x_i| + |x_j|$$

$$\||a||^2 = \sum_{i,j} M_{ij} (x_i - x_j)^2 = \frac{\mu}{n} \sum_{i,j} (x_i - x_j)^2$$

$$= \frac{\mu}{n} \sum_{i,j} (x_i^2 + x_j^2) - \sum_{i,j} 2x_i x_j$$

$$= \frac{\mu}{n} \sum_{i,j} (x_i^2 + x_j^2) - 2(\sum_i x_i)^2$$

$$\leq \frac{\mu}{n} \sum_{i,j} (x_i^2 + x_j^2) = 2\mu \sum_i x_i^2$$

$$\||b||^2 = \sum_{i,j} M_{ij} (|x_i| + |x_j|)^2$$

$$\leq \sum_{i,j} M_{ij} (2x_i^2 + 2x_j^2)$$

$$= 4 \sum_i x_i^2$$