Last Time: Summary.

Graph $G=(V, E)$, assume regular graph of degree d.
Edge Expansion. $h(S)=\frac{|E(S, V-S)|}{d \min (S), V-S}, h(G)=\min _{S} h(S)$
$M=A / d$ adjacency matrix, A
Eigenvector: a vector v where $M v=\lambda v$
Spectral theorem: Eigenvectors form basis: v_{1}, \ldots, v_{n}
$x=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots \alpha_{n} v_{n} . \quad M x=\alpha_{1} \lambda_{1} v_{1}+\alpha_{2} \lambda_{2} v_{2}+\cdots \alpha_{n} \lambda_{n} v_{n}$
Highest eigenvalue: $\lambda_{1}=1$. Proof: Plug in 1 .
Second Eigenvalue: $\lambda_{2}<1$ if connected. Proof: v_{2} is not v_{1}.
Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Cheeger: $\frac{\mu}{2} \leq h(G) \leq=\sqrt{2 \mu}$
Proof of LHI: Plug in "cut" vector, x, into Rayleigh Quotient. $\mu=1-\max _{x+1} \frac{x^{t} M x \text {. }}{\frac{1}{x x x}}$.
This expression 'counts' edges in cut ' x ' plus scales by volume.
Yields $h(S)$. Yields $h(S)$

Back to Cheeger.
Coordinate Cuts:
Eigenvalue $1-2 / d$. d Eigenvectors.
$\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}=\sqrt{2 \mu}$
For hypercube: $h(G)=\frac{1}{d} \lambda_{1}-\lambda_{2}=2 / d$.
Left hand side is tight.
Note: hamming weight vector also in first eigenspace.
Lose "names" in hypercube, find coordinate cut?
Find coordinate cut?
Eigenvector v maps to line.
Cut along line.
Eigenvector algorithm gets a linear combination of coordinate cuts. Something like ball cut.
Find coordinate cut?

Hypercube

$V=\{0,1\}^{d} \quad(x, y) \in E$ when x and y differ in one bit.
$|V|=2^{d}|E|=d 2^{d-1}$.

Good cuts? "Coordinate cut": d of them. Edge expansion: $\frac{2^{d-1}}{d 2^{d-1}}=\frac{1}{d}$
Ball cut: All nodes within $d / 2$ of node, say $00 \cdots 0$. Vertex cut size: $\binom{d / 2}{d}$ bit strings with $d / 2$ 1's.

$$
\approx \frac{2^{d}}{\sqrt{d}}
$$

Vertex expansion: $\approx \frac{1}{\sqrt{d}}$.
Edge expansion: $d / 2$ edges to next level. $\approx \frac{1}{2 \sqrt{d}}$
Worse by a factor of \sqrt{d}

Cycle

Tight example for Other side of Cheeger?
$\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}=\sqrt{2 \mu}$
Cycle on n nodes
Will show other side of Cheeger is tight.
Edge expansion:Cut in half
$|S|=n / 2,|E(S, \bar{S})|=2$
$\rightarrow h(G)=\frac{2}{n}$.
Show eigenvalue gap $\mu \leq \frac{1}{n^{2}}$.
Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{T} x}$ close to 1

Eigenvalues of hypercube

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other
$(M v)_{i}=(1-2 / d) v_{i}$
Eigenvalue $1-2 / d$. d Eigenvectors. Why orthogonal?
Next eigenvectors?
Delete edges in two dimensions
Four subcubes: bipartite. Color ± 1
Eigenvalue: $1-4 / d$. ($\left.\begin{array}{l}d \\ 2\end{array}\right)$ eigenvectors.
Eigenvalues: $1-2 k / d$. ($\left.\begin{array}{l}d \\ k\end{array}\right)$ eigenvectors.

Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{T} x}$ close to 1

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

$$
(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\ n / 4-1 & \text { if } i=n / 2 \\ x_{i} & \text { otherwise }\end{cases}
$$

$\rightarrow x^{\top} M x=x^{\top} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \quad \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right)$
$\mu=\lambda_{1}-\lambda_{2}=O\left(\frac{1}{n^{2}}\right)$
$h(G)=\frac{2}{n}=\Theta(\sqrt{\mu})$
$\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}$
Tight example for upper bound for Cheeger.

Eigenvalues of cycle?

Eigenvalues: $\cos \frac{2 \pi k}{n}$.
$x_{i}=\cos \frac{2 \pi k i}{n}$
$(M x)_{i}=\cos \left(\frac{2 \pi k(i+1)}{n}\right)+\cos \left(\frac{2 \pi k(i-1)}{n}\right)=2 \cos \left(\frac{2 \pi k}{n}\right) \cos \left(\frac{2 \pi k i}{n}\right)$
Eigenvalue: $\cos \frac{2 \pi k}{n}$.
Eigenvalues:
vibration modes of system.
Fourier basis.

Sampling.

Sampling: Random element of subset $S \subset\{0,1\}^{n}$ or $\{0, \ldots, k\}^{k}$
Related Problem: Approximate $|S|$ within factor of $1+\varepsilon$.
Random walk to do both for some interesting sets S.

Random Walk.

p - probability distribution.
Probability distrubtion after choose a random neighbor
Mp.
Converge to uniform distribution
Eigenvalues, random walks, volume estimation, counting
$M^{t} x=a_{1} \lambda_{1}^{t} v_{1}+a_{2} \lambda_{2} v_{2}+$
$\lambda_{1}-\lambda_{2}$ - rate of convergence
$\Omega\left(n^{2}\right)$ steps to get close to uniform
Start at node 0 , probability distribution, $[1,0,0, \cdots, 0]$. Takes $\Omega\left(n^{2}\right)$ to get n steps away
Recall drunken sailor.

Convex Bodies

$S \subset[k]^{n}$ is grid points inside Convex Body.
Ex: Numerically integrate convex function in d dimensions
Compute $\sum_{i} v_{i} V o l\left(f(x)>v_{i}\right)$ where $v_{i}=i \delta$.
Example: P defined by set of linear inequalities. Or other "membership oracle" for P
S is set of grid points inside Convex Body. Grid points that satisfy linear inequalities. or "other" membership oracle
Choose a uniformly random elt?
Easy to choose randomly from $[k]^{n}$ which is big
For convex body?
Choose random point in $[k]^{n}$ and check if in P.
Works
But P could be exponentially small compared to $\left|[k]^{n}\right|$.
Takes a long time to even find a point in P.

Convex Body Graph.

$S \subset[k]^{n}$ is set of grid points inside Convex Body
Sample Space: S.
Graph on grid points inside P or on Sample Space.
One neighbor in each direction for each dimension
(if neighbor is inside P.)
Degree: $2 d$.
How big is graph? Big!
So big it ..it INSERT JOKE HERE.
$O\left(k^{n}\right)$ if coordinates in [k].
hat's a big graph!
How to find a random node?
Start at a grid point, and take a (random) walk.
When close to uniform distribution...have a sample point.
How long does this take? More later
But remember power method...which finds first eigenvector

Spanning Trees

Problem: How many?
Another Problem: find a random one.
Algorithm:
Start with spanning tree.
Repeat:
Swap a random nontree edge with a random tree edge

How long?

Sample space graph (BIG GRAPH) of spanning trees. Node for each tree.
Neighboring trees differ in two edges
Algorithm is random walk on BIG GRAPH (sample space graph.)

Analyzing random walks on graph.

Start at vertex, go to random neighbor.
For d-regular graph: eventually uniform
if not bipartite. Odd /even step!

How to analyse?

Random Walk Matrix: M.
M - normalized adjacency matrix
Symmetric, $\sum_{j} M[i, j]=1$.
$M[i, j]$ - probability of going to j from
Probability distribution at time t : v_{t}.
$v_{t+1}=M v_{t} \quad$ Each node is average over neighbors.
Evolution? Random walk starts at 1, distribution $e_{1}=[1,0, \ldots, 0]$.
$M^{t} v_{1}={ }_{N}^{1} v_{1}+\sum_{i>1} \lambda_{i}^{t} \alpha_{i} v_{i}$
$v_{1}=\left[\frac{1}{N}, \ldots, \frac{1}{N}\right] \rightarrow$ Uniform distribution.
Doh! What if bipartite?
Negative eigenvalues of value -1: $(+1,-1)$ on two sides.
Side question: Why the same size? Assumed regular graph.

Spin systems

Each element of S may have associated weight.
Sample element proportional to weight.
Example?
2 or 3 dimensional grid of particles.
Particle State ± 1. System State $\{-1,+1\}^{n}$.
Energy on local interactions: $E=\sum_{(i, j)}-\sigma_{i} \sigma_{j}$
"Ferromagnetic regime": same spin is good.
Gibbs distribution $\propto e^{-E / k T}$.
Physical properties from Gibbs distribution.

Metropolis Algorithm

At x, generate y with a single random flip
Go to y with probability $\min (1, w(y) / w(x))$
Random walk in sample space graph (BIG GRAPH ALERT) (not random walk in 2d grid of particles.)
Markov Chain on statespace of system.

Fix-it-up chappie

"Lazy" random walk: With probability $1 / 2$ stay at current vertex
Evolution Matrix: $\frac{l+M}{2}$
Eigenvalues: $\frac{1+\lambda_{i}{ }^{2}}{2}$
$\frac{1}{2}(I+M) v_{i}=\frac{1}{2}\left(v_{i}+\lambda_{i} v_{i}\right)=\frac{1+\lambda_{i}}{2} v_{i}$
Eigenvalues in interval $[0,1]$.
Spectral gap: $\frac{1-\lambda_{2}}{2}=\frac{\mu}{2}$
Uniform distribution: $\pi=\left[\frac{1}{N}, \ldots, \frac{1}{N}\right]$
$\stackrel{N}{N} \sum_{i} \mid\left(v_{t}\right)_{i}-\pi$
Rapidly mixing": $d_{1}\left(v_{t}, \pi\right)<\varepsilon$ in poly $\left(\log N, \log \frac{1}{\varepsilon}\right)$ time When is chain rapidly mixing?
Another measure: $d_{2}\left(v_{t}, \pi\right)=\sum_{i}\left(\left(v_{t}\right)_{i}-\pi_{i}\right)^{2}$
Note: $d_{1}\left(v_{t}, \pi\right) \leq \sqrt{N} d_{2}\left(v_{t}, \pi\right)$
$n-$ "size" of vertex, $\mu \geq \frac{1}{p(n)}$ for poly $p(n), t=O(p(n) \log N)$
$d_{2}\left(v_{t}, \pi\right)=\left|A^{t} e_{1}-\pi\right|^{2} \leq\left(\frac{\left(1+\lambda_{2}\right)}{2}\right)^{2 t} \leq\left(1-\frac{1}{2 p(n)}\right)^{2 t} \leq \frac{1}{\operatorname{poly}(N)}$
Rapidly mixing with big $\left(\geq \frac{1}{p(n)}\right)$ spectral gap.

Sampling structures and the BIG GRAPH

Sampling Algorithms \equiv Random walk on BIG GRAPH. Small degree.

Rapid mixing, volume, and surface area.

Recall volume of convex body.
Grid graph on grid points inside convex body.
Recall Cheeger: $\frac{\mu}{2} \leq h(G) \leq \sqrt{2 \mu}$.
Lower bound expansion \rightarrow lower bounds on spectral gap μ

\rightarrow Upper bound mixing time

$h(G) \approx \frac{\text { Surface Area }}{\text { Volume }}$
Isoperimetric inequality.
$\operatorname{Vol}_{n-1}(S, \bar{S}) \geq \frac{\min (\operatorname{Vol}(S), \operatorname{Vol}(\bar{S}))}{\operatorname{diam}(P)}$

Edges \propto surface area, Assume $\operatorname{Diam}(P) \leq p^{\prime}(n)$
$\rightarrow h(G) \geq 1 / p^{\prime}(n)$
$\rightarrow \mu>1 / 2 p^{\prime}(n)^{2}$
$\rightarrow O\left(p^{\prime}(n)^{2} \log N\right)$ convergence for Markov chain on BIG GRAPH
\rightarrow Rapidly mixing chain:

Khachiyan's algorithm for counting partial orders. Given partial order on x_{1}, \ldots, x_{n}.
Sample from uniform distribution over total orders.
Start at an ordering
Swap random pair and go if consistent with partial order.
Rapidly mixing chain?
Map into d-dimensional unit cube.
$x_{i}<x_{j}$ corresponds to halfspace (one side of hyperplane) of cube "dimension $i=$ dimension j "
total order is intersection of n halfspaces.
each of volume: $\frac{1}{n!}$
since each total order is disjoint
and together cover cube.

$x_{1}>x_{2}$

Summary.

Eigenvectors for hypercubes.
Tight example for LHI of Cheeger. Eigenvectors for cycle. Tight example for RHI of Cheeger.
Random Walks and Sampling.
Eigenvectors, Isoperimetry of Volume, Mixing
Partial Order Application.

