Today and for a bit..

Eigenvalues of graphs.

Today and for a bit..

Eigenvalues of graphs.
Through Cuts.

Today and for a bit..

Eigenvalues of graphs.
Through Cuts.
Cheeger's isoperimetric inequality.

Example Problem: clustering.

- Points: documents, dna, preferences.
- Graphs: applications to VLSI, parallel processing, image segmentation.

Image example.

Image Segmentation

Image Segmentation

Image Segmentation

Which region?

Image Segmentation

Which region? Normalized Cut: Find S, which minimizes

$$
\frac{w(S, \bar{S})}{w(S) \times w(\bar{S})}
$$

Image Segmentation

Which region? Normalized Cut: Find S, which minimizes

$$
\frac{w(S, \bar{S})}{w(S) \times w(\bar{S})}
$$

Ratio Cut: minimize

$$
\frac{w(S, \bar{S})}{w(S)}
$$

$w(S)$ no more than half the weight. (Minimize cost per unit weight that is removed.)

Image Segmentation

Which region? Normalized Cut: Find S, which minimizes

$$
\frac{w(S, \bar{S})}{w(S) \times w(\bar{S})}
$$

Ratio Cut: minimize

$$
\frac{w(S, \bar{S})}{w(S)}
$$

$w(S)$ no more than half the weight. (Minimize cost per unit weight that is removed.)
Either is generally useful!

Edge Expansion/Conductance.

Graph $G=(V, E)$,

Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree d.

Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree d.
Edge Expansion.

Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree d.
Edge Expansion.
$h(S)=\frac{|E(S, V-S)|}{d \min |S|,|V-S|}, h(G)=\min _{S} h(S)$

Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree d.
Edge Expansion.
$h(S)=\frac{|E(S, V-S)|}{d \min |S|,|V-S|}, h(G)=\min _{S} h(S)$
Conductance.

Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree d.
Edge Expansion.

$$
h(S)=\frac{|E(S, V-S)|}{d \min |S|,|V-S|}, h(G)=\min _{S} h(S)
$$

Conductance.

$$
\phi(S)=\frac{n|E(S, V-S)|}{d|S| V-S \mid}, \phi(G)=\min _{S} \phi(S)
$$

Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree d.
Edge Expansion.

$$
h(S)=\frac{|E(S, V-S)|}{d \min |S|,|V-S|}, h(G)=\min _{S} h(S)
$$

Conductance.

$$
\phi(S)=\frac{n|E(S, V-S)|}{d|S| V-S \mid}, \phi(G)=\min _{S} \phi(S)
$$

Note $n \geq \max (|S|,|V|-|S|) \geq n / 2$

Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree d.
Edge Expansion.

$$
h(S)=\frac{|E(S, V-S)|}{d \min |S|,|V-S|}, h(G)=\min _{S} h(S)
$$

Conductance.

$$
\phi(S)=\frac{n|E(S, V-S)|}{d|S| V-S \mid}, \phi(G)=\min _{S} \phi(S)
$$

Note $n \geq \max (|S|,|V|-|S|) \geq n / 2$
$\rightarrow h(G) \leq \phi(G) \leq 2 h(G)$

Spectra of the graph.

$M=A / d$ adjacency matrix, A

Spectra of the graph.

$M=A / d$ adjacency matrix, A
Eigenvector: a vector v where $M v=\lambda v$

Spectra of the graph.

$M=A / d$ adjacency matrix, A
Eigenvector: a vector v where $M v=\lambda v$
Real, symmetric.

Spectra of the graph.

$M=A / d$ adjacency matrix, A
Eigenvector: a vector v where $M v=\lambda v$
Real, symmetric.
Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Spectra of the graph.

$M=A / d$ adjacency matrix, A
Eigenvector: a vector v where $M v=\lambda v$
Real, symmetric.
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: v, v^{\prime} with eigenvalues $\lambda, \lambda^{\prime}$.

Spectra of the graph.

$M=A / d$ adjacency matrix, A
Eigenvector: a vector v where $M v=\lambda v$
Real, symmetric.
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: v, v^{\prime} with eigenvalues $\lambda, \lambda^{\prime}$. $v^{\top} M v^{\prime}=v^{\top}\left(\lambda^{\prime} v^{\prime}\right)$

Spectra of the graph.

$M=A / d$ adjacency matrix, A
Eigenvector: a vector v where $M v=\lambda v$
Real, symmetric.
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: v, v^{\prime} with eigenvalues $\lambda, \lambda^{\prime}$. $v^{\top} M v^{\prime}=v^{\top}\left(\lambda^{\prime} v^{\prime}\right)=\lambda^{\prime} v^{\top} v^{\prime}$

Spectra of the graph.

$M=A / d$ adjacency matrix, A
Eigenvector: a vector v where $M v=\lambda v$
Real, symmetric.
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: v, v^{\prime} with eigenvalues $\lambda, \lambda^{\prime}$.
$v^{\top} M v^{\prime}=v^{\top}\left(\lambda^{\prime} v^{\prime}\right)=\lambda^{\prime} v^{\top} v^{\prime}$
$v^{\top} M v^{\prime}=\lambda v^{\top} v^{\prime}$

Spectra of the graph.

$M=A / d$ adjacency matrix, A
Eigenvector: a vector v where $M v=\lambda v$
Real, symmetric.
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: v, v^{\prime} with eigenvalues $\lambda, \lambda^{\prime}$.
$v^{\top} M v^{\prime}=v^{\top}\left(\lambda^{\prime} v^{\prime}\right)=\lambda^{\prime} v^{\top} v^{\prime}$
$v^{\top} M v^{\prime}=\lambda v^{\top} v^{\prime}=\lambda v^{\top} v$.
Distinct eigenvalues

Spectra of the graph.

$M=A / d$ adjacency matrix, A
Eigenvector: a vector v where $M v=\lambda v$
Real, symmetric.
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: v, v^{\prime} with eigenvalues $\lambda, \lambda^{\prime}$.
$v^{\top} M v^{\prime}=v^{\top}\left(\lambda^{\prime} v^{\prime}\right)=\lambda^{\prime} v^{\top} v^{\prime}$
$v^{\top} M v^{\prime}=\lambda v^{\top} v^{\prime}=\lambda v^{\top} v$.
Distinct eigenvalues \rightarrow orthonormal basis.

Spectra of the graph.

$M=A / d$ adjacency matrix, A
Eigenvector: a vector v where $M v=\lambda v$
Real, symmetric.
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: v, v^{\prime} with eigenvalues $\lambda, \lambda^{\prime}$.
$v^{\top} M v^{\prime}=v^{\top}\left(\lambda^{\prime} v^{\prime}\right)=\lambda^{\prime} v^{\top} v^{\prime}$
$v^{\top} M v^{\prime}=\lambda v^{\top} v^{\prime}=\lambda v^{\top} v$.
Distinct eigenvalues \rightarrow orthonormal basis.
In basis: matrix is diagonal..

Spectra of the graph.

$M=A / d$ adjacency matrix, A
Eigenvector: a vector v where $M v=\lambda v$
Real, symmetric.
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: v, v^{\prime} with eigenvalues $\lambda, \lambda^{\prime}$.
$v^{\top} M v^{\prime}=v^{\top}\left(\lambda^{\prime} v^{\prime}\right)=\lambda^{\prime} v^{\top} v^{\prime}$
$v^{\top} M v^{\prime}=\lambda v^{\top} v^{\prime}=\lambda v^{\top} v$.
Distinct eigenvalues \rightarrow orthonormal basis.
In basis: matrix is diagonal..

$$
M=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]
$$

Action of M.

v - assigns weights to vertices.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value?

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=\mathbf{1}$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}$

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}$

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x. Connected \rightarrow path from x valued node to lower value.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.

$$
\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x
$$

$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)
$$

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}={ }_{d}^{1} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.

$$
\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x
$$

$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}={ }_{d}^{1} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.

$$
\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x
$$

$(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x$.
Therefore $\lambda_{2}<1$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}={ }_{d}^{1} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.

$(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x$.
Therefore $\lambda_{2}<1$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.

$(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x$.
Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.

$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.
Proof: Assign +1 to vertices in one component, $-\delta$ to rest.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.

$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.
Proof: Assign +1 to vertices in one component, $-\delta$ to rest.

$$
x_{i}=\left(M x_{i}\right)
$$

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.

$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.
Proof: Assign +1 to vertices in one component, $-\delta$ to rest. $x_{i}=\left(M x_{i}\right) \Longrightarrow$ eigenvector with $\lambda=1$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.

$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.
Proof: Assign +1 to vertices in one component, $-\delta$ to rest. $x_{i}=\left(M x_{i}\right) \Longrightarrow$ eigenvector with $\lambda=1$.
Choose δ to make $\sum_{i} x_{i}=0$,

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.

$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.
Proof: Assign +1 to vertices in one component, $-\delta$ to rest. $x_{i}=\left(M x_{i}\right) \Longrightarrow$ eigenvector with $\lambda=1$.
Choose δ to make $\sum_{i} x_{i}=0$, i.e., $x \perp 1$.

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{j}$.
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}=\frac{1}{d} \sum_{e \in(i, j)} 1=1$.
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.

$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.
Proof: Assign +1 to vertices in one component, $-\delta$ to rest. $x_{i}=\left(M x_{i}\right) \Longrightarrow$ eigenvector with $\lambda=1$.
Choose δ to make $\sum_{i} x_{i}=0$, i.e., $x \perp 1$.

Rayleigh Quotient

$$
\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}
$$

Rayleigh Quotient

$$
\lambda_{1}=\max _{x} \frac{x^{T} M x}{x^{T} x}
$$

In basis, M is diagonal.

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x$

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} X}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2}$

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{T} x$

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} X}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{\top} x$
Tight when x is first eigenvector.

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} X}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{\top} x$
Tight when x is first eigenvector.

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{\top} x$
Tight when x is first eigenvector.
Rayleigh quotient.

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{\top} x$
Tight when x is first eigenvector.
Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} X}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{\top} x$
Tight when x is first eigenvector.
Rayleigh quotient.

$$
\begin{aligned}
& \lambda_{2}=\max _{x \perp 1} \frac{x^{T} M x}{x^{T} x} . \\
& x \perp 1
\end{aligned}
$$

Rayleigh Quotient

$$
\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}
$$

In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{\top} x$
Tight when x is first eigenvector.
Rayleigh quotient.

$$
\begin{aligned}
& \lambda_{2}=\max _{x \perp 1} \frac{x^{T} M x}{x^{T} x} . \\
& x \perp 1 \leftrightarrow \sum_{i} x_{i}=0 .
\end{aligned}
$$

Rayleigh Quotient

$$
\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}
$$

In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{T} x$
Tight when x is first eigenvector.
Rayleigh quotient.

$$
\begin{aligned}
& \lambda_{2}=\max _{x \perp 1} \frac{x^{T} M x}{x^{T} x} . \\
& x \perp 1 \leftrightarrow \sum_{i} x_{i}=0 .
\end{aligned}
$$

Example: $-1 /+1$ Indicator vector for balanced cut, S is one such vector.

Rayleigh Quotient

$$
\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}
$$

In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{T} x$
Tight when x is first eigenvector.
Rayleigh quotient.

$$
\begin{aligned}
& \lambda_{2}=\max _{x \perp 1} \frac{x^{T} M x}{x^{T} x} . \\
& x \perp 1 \leftrightarrow \sum_{i} x_{i}=0 .
\end{aligned}
$$

Example: $-1 /+1$ Indicator vector for balanced cut, S is one such vector.

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{\top} x$
Tight when x is first eigenvector.
Rayleigh quotient.

$$
\begin{aligned}
& \lambda_{2}=\max _{x \perp 1} \frac{x^{T} M x}{x^{T} x} . \\
& x \perp 1 \leftrightarrow \sum_{i} x_{i}=0 .
\end{aligned}
$$

Example: $-1 /+1$ Indicator vector for balanced cut, S is one such vector.
Rayleigh quotient is $\frac{2|E(S, S)|}{2|S|}$

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{\top} x$
Tight when x is first eigenvector.
Rayleigh quotient.

$$
\begin{aligned}
& \lambda_{2}=\max _{x \perp 1} \frac{x^{T} M x}{x^{T} x} . \\
& x \perp 1 \leftrightarrow \sum_{i} x_{i}=0 .
\end{aligned}
$$

Example: $-1 /+1$ Indicator vector for balanced cut, S is one such vector.
Rayleigh quotient is $\frac{2|E(S, S)|}{2|S|}=h(S)$.

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{\top} x$
Tight when x is first eigenvector.
Rayleigh quotient.

$$
\begin{aligned}
& \lambda_{2}=\max _{x \perp 1} \frac{x^{T} M x}{x^{T} x} . \\
& x \perp 1 \leftrightarrow \sum_{i} x_{i}=0 .
\end{aligned}
$$

Example: $-1 /+1$ Indicator vector for balanced cut, S is one such vector.
Rayleigh quotient is $\frac{2|E(S, S)|}{2|S|}=h(S)$.
Rayleigh quotient is less than $h(S)$ for any balanced cut S.

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{T} x}$
In basis, M is diagonal.
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{\top} x$
Tight when x is first eigenvector.
Rayleigh quotient.

$$
\begin{aligned}
& \lambda_{2}=\max _{x \perp 1} \frac{x^{T} M x}{x^{T} x} . \\
& x \perp 1 \leftrightarrow \sum_{i} x_{i}=0 .
\end{aligned}
$$

Example: $-1 /+1$ Indicator vector for balanced cut, S is one such vector.
Rayleigh quotient is $\frac{2|E(S, S)|}{2|S|}=h(S)$.
Rayleigh quotient is less than $h(S)$ for any balanced cut S.
Find balanced cut from vector that acheives Rayleigh quotient?

Cheeger's inequality.

Rayleigh quotient.

Cheeger's inequality.

Rayleigh quotient.
$\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x}$.

Cheeger's inequality.

Rayleigh quotient.
$\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x}$.
Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.

Cheeger's inequality.

Rayleigh quotient.
$\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x}$.
Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

Cheeger's inequality.

Rayleigh quotient.
$\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x}$.
Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$
$\frac{\mu}{2}$

Cheeger's inequality.

Rayleigh quotient.
$\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x}$.
Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\frac{\mu}{2}=\frac{1-\lambda_{2}}{2}
$$

Cheeger's inequality.

Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G)
$$

Cheeger's inequality.

Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}
$$

Cheeger's inequality.

Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Cheeger's inequality.

Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Hmmm..

Cheeger's inequality.

Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Hmmm..
Connected $\lambda_{2}<\lambda_{1}$.

Cheeger's inequality.

Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Hmmm..
Connected $\lambda_{2}<\lambda_{1}$.
$h(G)$ large

Cheeger's inequality.

Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Hmmm..
Connected $\lambda_{2}<\lambda_{1}$.
$h(G)$ large \rightarrow well connected

Cheeger's inequality.

Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Hmmm..
Connected $\lambda_{2}<\lambda_{1}$.
$h(G)$ large \rightarrow well connected $\rightarrow \lambda_{1}-\lambda_{2}$ big.

Cheeger's inequality.

Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Hmmm..
Connected $\lambda_{2}<\lambda_{1}$.
$h(G)$ large \rightarrow well connected $\rightarrow \lambda_{1}-\lambda_{2}$ big.
Disconnected

Cheeger's inequality.

Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Hmmm..
Connected $\lambda_{2}<\lambda_{1}$.
$h(G)$ large \rightarrow well connected $\rightarrow \lambda_{1}-\lambda_{2}$ big.
Disconnected $\lambda_{2}=\lambda_{1}$.

Cheeger's inequality.

Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Hmmm..
Connected $\lambda_{2}<\lambda_{1}$.
$h(G)$ large \rightarrow well connected $\rightarrow \lambda_{1}-\lambda_{2}$ big.
Disconnected $\lambda_{2}=\lambda_{1}$.
$h(G)$ small

Cheeger's inequality.

Rayleigh quotient.

$$
\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{\top} x} .
$$

Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Hmmm..
Connected $\lambda_{2}<\lambda_{1}$.
$h(G)$ large \rightarrow well connected $\rightarrow \lambda_{1}-\lambda_{2}$ big.
Disconnected $\lambda_{2}=\lambda_{1}$. $h(G)$ small $\rightarrow \lambda_{1}-\lambda_{2}$ small.

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\begin{aligned}
& \quad \frac{\mu}{2} \leq h(G) \\
& \text { Cut } S,|S| \leq|V| / 2
\end{aligned}
$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\begin{aligned}
& \frac{\mu}{2} \leq h(G) \\
& \text { Cut } S,|S| \leq|V| / 2 . \\
& \quad i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S| .
\end{aligned}
$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
\begin{gathered}
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S| \\
\Sigma_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
\end{gathered}
$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.
$i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S|$.

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$\rightarrow v \perp 1$.

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\begin{aligned}
& \quad \frac{\mu}{2} \leq h(G) \\
& \text { Cut } S,|S| \leq|V| / 2 . \\
& \quad i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S| . \\
& \quad \sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0 \\
& \rightarrow v \perp \mathbf{1} . \\
& v^{\top} v
\end{aligned}
$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.
$\frac{\mu}{2} \leq h(G)$
Cut $S,|S| \leq|V| / 2$.
$i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S|$.
$\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0$
$\rightarrow v \perp 1$.
$v^{T} v=|S|(|V|-|S|)^{2}$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S|
$$

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$\rightarrow v \perp 1$.
$v^{\top} v=|S|(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S|
$$

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$\rightarrow v \perp 1$.
$v^{T} v=|S|(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)=|S|(|V|-|S|)(|V|)$.

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S|
$$

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$$
\rightarrow v \perp \mathbf{1}
$$

$$
v^{\top} v=|S|(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)=|S|(|V|-|S|)(|V|) .
$$

$$
v^{\top} M v
$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S|
$$

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$$
\rightarrow v \perp 1 .
$$

$$
v^{\top} v=|S|(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)=|S|(|V|-|S|)(|V|) .
$$

$$
v^{\top} M v=\frac{1}{d} \sum_{e=(i, j)} x_{i} x_{j} .
$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S|
$$

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$$
\rightarrow v \perp 1
$$

$$
v^{\top} v=|S|(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)=|S|(|V|-|S|)(|V|) .
$$

$$
v^{\top} M v=\frac{1}{d} \sum_{e=(i, j)} x_{i} x_{j}
$$

Total side endpoints: equal to $v^{\top} v-|E(S, S)||S|^{2}-|E(S, S)|(|V-S|)^{2}$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S|
$$

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$$
\rightarrow v \perp 1
$$

$$
v^{\top} v=|S|(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)=|S|(|V|-|S|)(|V|) .
$$

$$
v^{\top} M v=\frac{1}{d} \sum_{e=(i, j)} x_{i} x_{j}
$$

Total side endpoints: equal to $v^{\top} v-|E(S, S)||S|^{2}-|E(S, S)|(|V-S|)^{2}$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S|
$$

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$\rightarrow v \perp 1$.
$v^{\top} v=|S|(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)=|S|(|V|-|S|)(|V|)$.
$v^{\top} M v=\frac{1}{d} \sum_{e=(i, j)} x_{i} x_{j}$.
Total side endpoints: equal to
$v^{T} v-|E(S, S)||S|^{2}-|E(S, S)|(|V-S|)^{2}$
Diff. side endpoints: $-|S|(|V|-|S|)$ each or $-2|E(S, S)||S|(|V|-|S|)$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S|
$$

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$\rightarrow v \perp 1$.
$v^{\top} v=|S|(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)=|S|(|V|-|S|)(|V|)$.
$v^{\top} M v=\frac{1}{d} \sum_{e=(i, j)} x_{i} x_{j}$.
Total side endpoints: equal to
$v^{T} v-|E(S, S)||S|^{2}-|E(S, S)|(|V-S|)^{2}$
Diff. side endpoints: $-|S|(|V|-|S|)$ each or $-2|E(S, S)||S|(|V|-|S|)$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S|
$$

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$\rightarrow v \perp 1$.
$v^{\top} v=|S|(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)=|S|(|V|-|S|)(|V|)$.
$v^{\top} M v=\frac{1}{d} \sum_{e=(i, j)} x_{i} x_{j}$.
Total side endpoints: equal to
$v^{\top} v-|E(S, S)||S|^{2}-|E(S, S)|(|V-S|)^{2}$
Diff. side endpoints: $-|S|(|V|-|S|)$ each or $-2|E(S, S)||S|(|V|-|S|)$

$$
v^{T} M v=v^{T} v-\left(2|E(S, S) \| V|^{2}\right)
$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S| .
$$

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$\rightarrow v \perp 1$.
$v^{\top} v=|S|(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)=|S|(|V|-|S|)(|V|)$.
$v^{\top} M v=\frac{1}{d} \sum_{e=(i, j)} x_{i} x_{j}$.
Total side endpoints: equal to
$v^{T} v-|E(S, S)||S|^{2}-|E(S, S)|(|V-S|)^{2}$
Diff. side endpoints: $-|S|(|V|-|S|)$ each or $-2|E(S, S)||S|(|V|-|S|)$

$$
\begin{gathered}
v^{\top} M v=v^{\top} v-\left(2|E(S, S)||V|^{2}\right) \\
\frac{v^{\top} M v}{v^{\top} v}=1-\frac{|E(S, \bar{S})||V|}{|S||v-S|} \geq 1-\frac{2|E(S, \bar{S})|}{|S|}
\end{gathered}
$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S| .
$$

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$\rightarrow v \perp 1$.
$v^{\top} v=|S|(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)=|S|(|V|-|S|)(|V|)$.
$v^{\top} M v=\frac{1}{d} \sum_{e=(i, j)} x_{i} x_{j}$.
Total side endpoints: equal to
$v^{\top} v-|E(S, S)||S|^{2}-|E(S, S)|(|V-S|)^{2}$
Diff. side endpoints: $-|S|(|V|-|S|)$ each or $-2|E(S, S)||S|(|V|-|S|)$

$$
\begin{aligned}
& v^{\top} M v=v^{\top} v-\left(2|E(S, S)||V|^{2}\right) \\
& \frac{v^{\top} M v}{v^{\top} v}=1-\frac{|E(S, \bar{S})||V|}{|S| V-S \mid} \geq 1-\frac{2|E(S, \bar{S})|}{|S|} \\
& \lambda_{2} \geq 1-2 h(S)
\end{aligned}
$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap.

$$
\frac{\mu}{2} \leq h(G)
$$

Cut $S,|S| \leq|V| / 2$.

$$
i \in S: v_{i}=|V|-|S|, i \in \bar{S}: v_{i}=-|S| .
$$

$$
\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0
$$

$\rightarrow v \perp 1$.
$v^{\top} v=|S|(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)=|S|(|V|-|S|)(|V|)$.
$v^{\top} M v=\frac{1}{d} \sum_{e=(i, j)} x_{i} x_{j}$.
Total side endpoints: equal to
$v^{\top} v-|E(S, S)||S|^{2}-|E(S, S)|(|V-S|)^{2}$
Diff. side endpoints: $-|S|(|V|-|S|)$ each or $-2|E(S, S)||S|(|V|-|S|)$

$$
\begin{gathered}
v^{\top} M v=v^{\top} v-\left(2|E(S, S)||V|^{2}\right) \\
\frac{v^{\top} M v}{v^{\top} v}=1-\frac{|E(S, \bar{S})||V|}{|S| V-S \mid} \geq 1-\frac{2|E(S, \bar{S})|}{|S|} \\
\lambda_{2} \geq 1-2 h(S) \rightarrow h(G) \geq \frac{1-\lambda_{2}}{2}
\end{gathered}
$$

Hypercube

$$
V=\{0,1\}^{d}
$$

Hypercube

$$
V=\{0,1\}^{d} \quad(x, y) \in E
$$

Hypercube

$$
V=\{0,1\}^{d} \quad(x, y) \in E \text { when } x \text { and } y \text { differ in one bit. }
$$

Hypercube

$$
\begin{aligned}
& V=\{0,1\}^{d} \quad(x, y) \in E \text { when } x \text { and } y \text { differ in one bit. } \\
& |V|=2^{d}
\end{aligned}
$$

Hypercube

$$
\begin{aligned}
& V=\{0,1\}^{d} \quad(x, y) \in E \text { when } x \text { and } y \text { differ in one bit. } \\
& |V|=2^{d}|E|=d 2^{d-1} .
\end{aligned}
$$

Hypercube

$$
\begin{aligned}
& V=\{0,1\}^{d} \quad(x, y) \in E \text { when } x \text { and } y \text { differ in one bit. } \\
& |V|=2^{d}|E|=d 2^{d-1} .
\end{aligned}
$$

Good cuts?

Hypercube

$$
\begin{aligned}
& V=\{0,1\}^{d} \quad(x, y) \in E \text { when } x \text { and } y \text { differ in one bit. } \\
& |V|=2^{d}|E|=d 2^{d-1} .
\end{aligned}
$$

Good cuts? "Coordinate cut": d of them.

Hypercube

$$
\begin{aligned}
& V=\{0,1\}^{d} \quad(x, y) \in E \text { when } x \text { and } y \text { differ in one bit. } \\
& |V|=2^{d}|E|=d 2^{d-1} .
\end{aligned}
$$

Good cuts? "Coordinate cut": d of them.
Edge expansion:

Hypercube

$$
\begin{aligned}
& V=\{0,1\}^{d} \quad(x, y) \in E \text { when } x \text { and } y \text { differ in one bit. } \\
& |V|=2^{d}|E|=d 2^{d-1} .
\end{aligned}
$$

Good cuts? "Coordinate cut": d of them.
Edge expansion: $\frac{2^{d-1}}{d 2^{d-1}}$

Hypercube

$$
\begin{aligned}
& V=\{0,1\}^{d} \quad(x, y) \in E \text { when } x \text { and } y \text { differ in one bit. } \\
& |V|=2^{d}|E|=d 2^{d-1} .
\end{aligned}
$$

Good cuts? "Coordinate cut": d of them.
Edge expansion: $\frac{2^{d-1}}{d 2^{d-1}}=\frac{1}{d}$

Hypercube

$$
\begin{aligned}
& V=\{0,1\}^{d} \quad(x, y) \in E \text { when } x \text { and } y \text { differ in one bit. } \\
& |V|=2^{d}|E|=d 2^{d-1} .
\end{aligned}
$$

Good cuts? "Coordinate cut": d of them.
Edge expansion: $\frac{2^{d-1}}{d 2^{d-1}}=\frac{1}{d}$
Ball cut: All nodes within $d / 2$ of node, say $00 \cdots 0$.

Hypercube

$V=\{0,1\}^{d} \quad(x, y) \in E$ when x and y differ in one bit.
$|V|=2^{d}|E|=d 2^{d-1}$.

Good cuts? "Coordinate cut": d of them.
Edge expansion: $\frac{2^{d-1}}{d 2^{d-1}}=\frac{1}{d}$
Ball cut: All nodes within $d / 2$ of node, say $00 \cdots 0$.
Vertex cut size:

Hypercube

$V=\{0,1\}^{d} \quad(x, y) \in E$ when x and y differ in one bit.
$|V|=2^{d}|E|=d 2^{d-1}$.

Good cuts? "Coordinate cut": d of them.
Edge expansion: $\frac{2^{d-1}}{d 2^{d-1}}=\frac{1}{d}$
Ball cut: All nodes within $d / 2$ of node, say $00 \cdots 0$.
Vertex cut size: $\binom{d / 2}{d / 2}$ bit strings with $d / 2$ 1's.

Hypercube

$V=\{0,1\}^{d} \quad(x, y) \in E$ when x and y differ in one bit.
$|V|=2^{d}|E|=d 2^{d-1}$.

Good cuts? "Coordinate cut": d of them.
Edge expansion: $\frac{2^{d-1}}{d 2^{d-1}}=\frac{1}{d}$
Ball cut: All nodes within $d / 2$ of node, say $00 \cdots 0$.
Vertex cut size: $\binom{d}{d / 2}$ bit strings with $d / 2$ 1's.

$$
\approx \frac{2^{d}}{\sqrt{d}}
$$

Hypercube

$V=\{0,1\}^{d} \quad(x, y) \in E$ when x and y differ in one bit.
$|V|=2^{d}|E|=d 2^{d-1}$.

Good cuts? "Coordinate cut": d of them.
Edge expansion: $\frac{2^{d-1}}{d 2^{d-1}}=\frac{1}{d}$
Ball cut: All nodes within $d / 2$ of node, say $00 \cdots 0$.
Vertex cut size: $\binom{d}{d / 2}$ bit strings with $d / 2$ 1's.

$$
\approx \frac{2^{d}}{\sqrt{d}}
$$

Vertex expansion: $\approx \frac{1}{\sqrt{d}}$.

Hypercube

$$
\begin{aligned}
& V=\{0,1\}^{d} \quad(x, y) \in E \text { when } x \text { and } y \text { differ in one bit. } \\
& |V|=2^{d}|E|=d 2^{d-1} .
\end{aligned}
$$

Good cuts? "Coordinate cut": d of them.
Edge expansion: $\frac{2^{d-1}}{d 2^{d-1}}=\frac{1}{d}$
Ball cut: All nodes within $d / 2$ of node, say $00 \cdots 0$.
Vertex cut size: $\binom{d}{d / 2}$ bit strings with $d / 2$ 1's.

$$
\approx \frac{2^{d}}{\sqrt{d}}
$$

Vertex expansion: $\approx \frac{1}{\sqrt{d}}$.
Edge expansion: $d / 2$ edges to next level. $\approx \frac{1}{2 \sqrt{d}}$

Hypercube

$$
\begin{aligned}
& V=\{0,1\}^{d} \quad(x, y) \in E \text { when } x \text { and } y \text { differ in one bit. } \\
& |V|=2^{d}|E|=d 2^{d-1} .
\end{aligned}
$$

Good cuts? "Coordinate cut": d of them.
Edge expansion: $\frac{2^{d-1}}{d 2^{d-1}}=\frac{1}{d}$
Ball cut: All nodes within $d / 2$ of node, say $00 \cdots 0$.
Vertex cut size: $\binom{d}{d / 2}$ bit strings with $d / 2$ 1's.

$$
\approx \frac{2^{d}}{\sqrt{d}}
$$

Vertex expansion: $\approx \frac{1}{\sqrt{d}}$.
Edge expansion: $d / 2$ edges to next level. $\approx \frac{1}{2 \sqrt{d}}$
Worse by a factor of \sqrt{d}

Eigenvalues of hypercube.

Anyone see any symmetry?

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i} .
$$

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i}
$$

Eigenvalue 1-2/d.

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i}
$$

Eigenvalue $1-2 / d$. d Eigenvectors.

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i}
$$

Eigenvalue $1-2 / d$. d Eigenvectors. Why orthogonal?

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i}
$$

Eigenvalue $1-2 / d$. d Eigenvectors. Why orthogonal?
Next eigenvectors?

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i}
$$

Eigenvalue $1-2 / d$. d Eigenvectors. Why orthogonal?
Next eigenvectors?
Delete edges in two dimensions.

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i}
$$

Eigenvalue $1-2 / d$. d Eigenvectors. Why orthogonal?
Next eigenvectors?
Delete edges in two dimensions.
Four subcubes: bipartite.

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i}
$$

Eigenvalue $1-2 / d$. d Eigenvectors. Why orthogonal?
Next eigenvectors?
Delete edges in two dimensions.
Four subcubes: bipartite. Color ± 1

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i}
$$

Eigenvalue $1-2 / d$. d Eigenvectors. Why orthogonal?
Next eigenvectors?
Delete edges in two dimensions.
Four subcubes: bipartite. Color ± 1
Eigenvalue:

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i}
$$

Eigenvalue $1-2 / d$. d Eigenvectors. Why orthogonal?
Next eigenvectors?
Delete edges in two dimensions.
Four subcubes: bipartite. Color ± 1
Eigenvalue: 1-4/d.

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i}
$$

Eigenvalue $1-2 / d$. d Eigenvectors. Why orthogonal?
Next eigenvectors?
Delete edges in two dimensions.
Four subcubes: bipartite. Color ± 1
Eigenvalue: 1-4/d. ($\left.\begin{array}{l}d \\ 2\end{array}\right)$ eigenvectors.

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i}
$$

Eigenvalue $1-2 / d$. d Eigenvectors. Why orthogonal?
Next eigenvectors?
Delete edges in two dimensions.
Four subcubes: bipartite. Color ± 1
Eigenvalue: $1-4 / d$. $\binom{d}{2}$ eigenvectors.
Eigenvalues: $1-2 k / d$.

Eigenvalues of hypercube.

Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.

$$
(M v)_{i}=(1-2 / d) v_{i}
$$

Eigenvalue $1-2 / d$. d Eigenvectors. Why orthogonal?
Next eigenvectors?
Delete edges in two dimensions.
Four subcubes: bipartite. Color ± 1
Eigenvalue: $1-4 / d$. $\binom{d}{2}$ eigenvectors.
Eigenvalues: $1-2 k / d$. ($\binom{d}{k}$ eigenvectors.

Back to Cheeger.

Coordinate Cuts:

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d.

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.
$\frac{\mu}{2}$

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\frac{\mu}{2}=\frac{1-\lambda_{2}}{2}
$$

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G)
$$

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}
$$

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

For hypercube: $h(G)=\frac{1}{d}$

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

For hypercube: $h(G)=\frac{1}{d} \lambda_{1}-\lambda_{2}=2 / d$.
Left hand side is tight.

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

For hypercube: $h(G)=\frac{1}{d} \lambda_{1}-\lambda_{2}=2 / d$.
Left hand side is tight.
Note: hamming weight vector also in first eigenspace.

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

For hypercube: $h(G)=\frac{1}{d} \lambda_{1}-\lambda_{2}=2 / d$.
Left hand side is tight.
Note: hamming weight vector also in first eigenspace.

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

For hypercube: $h(G)=\frac{1}{d} \lambda_{1}-\lambda_{2}=2 / d$.
Left hand side is tight.
Note: hamming weight vector also in first eigenspace.
Lose "names" in hypercube, find coordinate cut?

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

For hypercube: $h(G)=\frac{1}{d} \lambda_{1}-\lambda_{2}=2 / d$.
Left hand side is tight.
Note: hamming weight vector also in first eigenspace.
Lose "names" in hypercube, find coordinate cut?
Find coordinate cut?

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

For hypercube: $h(G)=\frac{1}{d} \lambda_{1}-\lambda_{2}=2 / d$.
Left hand side is tight.
Note: hamming weight vector also in first eigenspace.
Lose "names" in hypercube, find coordinate cut?
Find coordinate cut?
Eigenvector v maps to line.

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

For hypercube: $h(G)=\frac{1}{d} \lambda_{1}-\lambda_{2}=2 / d$.
Left hand side is tight.
Note: hamming weight vector also in first eigenspace.
Lose "names" in hypercube, find coordinate cut?
Find coordinate cut?
Eigenvector v maps to line. Cut along line.

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

For hypercube: $h(G)=\frac{1}{d} \lambda_{1}-\lambda_{2}=2 / d$.
Left hand side is tight.
Note: hamming weight vector also in first eigenspace.
Lose "names" in hypercube, find coordinate cut?
Find coordinate cut?
Eigenvector v maps to line. Cut along line.
Eigenvector algorithm gets a linear combination of coordinate cuts.

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

For hypercube: $h(G)=\frac{1}{d} \lambda_{1}-\lambda_{2}=2 / d$.
Left hand side is tight.
Note: hamming weight vector also in first eigenspace.
Lose "names" in hypercube, find coordinate cut?
Find coordinate cut?
Eigenvector v maps to line. Cut along line.
Eigenvector algorithm gets a linear combination of coordinate cuts.
Something like ball cut.

Back to Cheeger.

Coordinate Cuts:
Eigenvalue 1-2/d. d Eigenvectors.

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

For hypercube: $h(G)=\frac{1}{d} \lambda_{1}-\lambda_{2}=2 / d$.
Left hand side is tight.
Note: hamming weight vector also in first eigenspace.
Lose "names" in hypercube, find coordinate cut?
Find coordinate cut?
Eigenvector v maps to line. Cut along line.
Eigenvector algorithm gets a linear combination of coordinate cuts.
Something like ball cut.
Find coordinate cut?

Cycle

Tight example for Other side of Cheeger?

Cycle

Tight example for Other side of Cheeger?

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Cycle

Tight example for Other side of Cheeger?

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Cycle on n nodes.

Cycle

Tight example for Other side of Cheeger?

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Cycle on n nodes.
Will show other side of Cheeger is tight.

Cycle

Tight example for Other side of Cheeger?

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Cycle on n nodes.
Will show other side of Cheeger is tight.
Edge expansion:Cut in half.

Cycle

Tight example for Other side of Cheeger?

$$
\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}=\sqrt{2 \mu}
$$

Cycle on n nodes.
Will show other side of Cheeger is tight.
Edge expansion:Cut in half.

$$
|S|=n / 2,|E(S, \bar{S})|=2
$$

Cycle

Tight example for Other side of Cheeger?

$$
\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}=\sqrt{2 \mu}
$$

Cycle on n nodes.
Will show other side of Cheeger is tight.
Edge expansion:Cut in half.

$$
\begin{aligned}
& |S|=n / 2,|E(S, \bar{S})|=2 \\
& \rightarrow h(G)=\frac{2}{n} .
\end{aligned}
$$

Cycle

Tight example for Other side of Cheeger?

$$
\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}=\sqrt{2 \mu}
$$

Cycle on n nodes.
Will show other side of Cheeger is tight.
Edge expansion:Cut in half.

$$
\begin{aligned}
& |S|=n / 2,|E(S, \bar{S})|=2 \\
& \rightarrow h(G)=\frac{2}{n} .
\end{aligned}
$$

Show eigenvalue gap $\mu \leq \frac{1}{n^{2}}$.

Cycle

Tight example for Other side of Cheeger?

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Cycle on n nodes.
Will show other side of Cheeger is tight.
Edge expansion:Cut in half.

$$
\begin{aligned}
& |S|=n / 2,|E(S, \bar{S})|=2 \\
& \rightarrow h(G)=\frac{2}{n} .
\end{aligned}
$$

Show eigenvalue gap $\mu \leq \frac{1}{n^{2}}$.
Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

$$
(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\ n / 4-1 & \text { if } i=n / 2 \\ x_{i} & \text { otherwise }\end{cases}
$$

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

$$
\begin{aligned}
& \qquad(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\
n / 4-1 & \text { if } i=n / 2 \\
x_{i} & \text { otherwise }\end{cases} \\
& \rightarrow x^{\top} M x=x^{\top} x\left(1-O\left(\frac{1}{n^{2}}\right)\right)
\end{aligned}
$$

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

$$
\begin{aligned}
& \qquad(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\
n / 4-1 & \text { if } i=n / 2 \\
x_{i} & \text { otherwise }\end{cases} \\
& \rightarrow x^{\top} M x=x^{\top} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

$$
\begin{aligned}
& \qquad(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\
n / 4-1 & \text { if } i=n / 2 \\
x_{i} & \text { otherwise }\end{cases} \\
& \rightarrow x^{\top} M x=x^{T} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right) \\
& \mu=\lambda_{1}-\lambda_{2}=O\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

$$
\begin{aligned}
& \qquad(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\
n / 4-1 & \text { if } i=n / 2 \\
x_{i} & \text { otherwise }\end{cases} \\
& \rightarrow x^{T} M x=x^{T} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right) \\
& \mu=\lambda_{1}-\lambda_{2}=O\left(\frac{1}{n^{2}}\right) \\
& h(G)=\frac{2}{n}=\Theta(\sqrt{\mu})
\end{aligned}
$$

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

$$
\begin{aligned}
& \qquad(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\
n / 4-1 & \text { if } i=n / 2 \\
x_{i} & \text { otherwise }\end{cases} \\
& \rightarrow x^{\top} M x=x^{T} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right) \\
& \mu=\lambda_{1}-\lambda_{2}=O\left(\frac{1}{n^{2}}\right) \\
& h(G)=\frac{2}{n}=\Theta(\sqrt{\mu}) \\
& \frac{\mu}{2}
\end{aligned}
$$

Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{T} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

$$
\begin{aligned}
& \qquad(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\
n / 4-1 & \text { if } i=n / 2 \\
x_{i} & \text { otherwise }\end{cases} \\
& \rightarrow x^{\top} M x=x^{T} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right) \\
& \mu=\lambda_{1}-\lambda_{2}=O\left(\frac{1}{n^{2}}\right) \\
& h(G)=\frac{2}{n}=\Theta(\sqrt{\mu}) \\
& \frac{\mu}{2}=\frac{1-\lambda_{2}}{2}
\end{aligned}
$$

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

$$
\begin{aligned}
& \qquad(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\
n / 4-1 & \text { if } i=n / 2 \\
x_{i} & \text { otherwise }\end{cases} \\
& \rightarrow x^{\top} M x=x^{T} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right) \\
& \mu=\lambda_{1}-\lambda_{2}=O\left(\frac{1}{n^{2}}\right) \\
& h(G)=\frac{2}{n}=\Theta(\sqrt{\mu}) \\
& \frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G)
\end{aligned}
$$

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

$$
\begin{aligned}
& \qquad(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\
n / 4-1 & \text { if } i=n / 2 \\
x_{i} & \text { otherwise }\end{cases} \\
& \rightarrow x^{\top} M x=x^{T} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right) \\
& \mu=\lambda_{1}-\lambda_{2}=O\left(\frac{1}{n^{2}}\right) \\
& h(G)=\frac{2}{n}=\Theta(\sqrt{\mu}) \\
& \left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)
\end{aligned}
$$

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

$$
\begin{aligned}
& \qquad(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\
n / 4-1 & \text { if } i=n / 2 \\
x_{i} & \text { otherwise }\end{cases} \\
& \rightarrow x^{\top} M x=x^{\top} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right) \\
& \mu=\lambda_{1}-\lambda_{2}=O\left(\frac{1}{n^{2}}\right) \\
& h(G)=\frac{2}{n}=\Theta(\sqrt{\mu}) \\
& \left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
\end{aligned}
$$

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

Hit with M.

$$
\begin{aligned}
& \qquad(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\
n / 4-1 & \text { if } i=n / 2 \\
x_{i} & \text { otherwise }\end{cases} \\
& \rightarrow x^{T} M x=x^{T} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right) \\
& \mu=\lambda_{1}-\lambda_{2}=O\left(\frac{1}{n^{2}}\right) \\
& h(G)=\frac{2}{n}=\Theta(\sqrt{\mu}) \\
& \left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
\end{aligned}
$$

Tight example for upper bound for Cheeger.

Eigenvalues of cycle?

Eigenvalues: $\cos \frac{2 \pi k}{n}$.

Eigenvalues of cycle?

Eigenvalues: $\cos \frac{2 \pi k}{n}$.

$$
x_{i}=\cos \frac{2 \pi k i}{n}
$$

Eigenvalues of cycle?

Eigenvalues: $\cos \frac{2 \pi k}{n}$.
$x_{i}=\cos \frac{2 \pi k i}{n}$
$(M x)_{i}$

Eigenvalues of cycle?

Eigenvalues: $\cos \frac{2 \pi k}{n}$.

$$
\begin{aligned}
& x_{i}=\cos \frac{2 \pi k i}{n} \\
& (M x)_{i}=\cos \left(\frac{2 \pi k(i+1)}{n}\right)+\cos \left(\frac{2 \pi k(i-1)}{n}\right)
\end{aligned}
$$

Eigenvalues of cycle?

Eigenvalues: $\cos \frac{2 \pi k}{n}$.

$$
\begin{aligned}
& x_{i}=\cos \frac{2 \pi k i}{n} \\
& (M x)_{i}=\cos \left(\frac{2 \pi k(i+1)}{n}\right)+\cos \left(\frac{2 \pi k(i-1)}{n}\right)=2 \cos \left(\frac{2 \pi k}{n}\right) \cos \left(\frac{2 \pi k i}{n}\right)
\end{aligned}
$$

Eigenvalues of cycle?

Eigenvalues: $\cos \frac{2 \pi k}{n}$.

$$
\begin{aligned}
& x_{i}=\cos \frac{2 \pi k i}{n} \\
& (M x)_{i}=\cos \left(\frac{2 \pi k(i+1)}{n}\right)+\cos \left(\frac{2 \pi k(i-1)}{n}\right)=2 \cos \left(\frac{2 \pi k}{n}\right) \cos \left(\frac{2 \pi k i}{n}\right)
\end{aligned}
$$

Eigenvalue: $\cos \frac{2 \pi k}{n}$.

Eigenvalues of cycle?

Eigenvalues: $\cos \frac{2 \pi k}{n}$.

$$
\begin{aligned}
& x_{i}=\cos \frac{2 \pi k i}{n} \\
& (M x)_{i}=\cos \left(\frac{2 \pi k(i+1)}{n}\right)+\cos \left(\frac{2 \pi k(i-1)}{n}\right)=2 \cos \left(\frac{2 \pi k}{n}\right) \cos \left(\frac{2 \pi k i}{n}\right)
\end{aligned}
$$

Eigenvalue: $\cos \frac{2 \pi k}{n}$.
Eigenvalues:

Eigenvalues of cycle?

Eigenvalues: $\cos \frac{2 \pi k}{n}$.

$$
\begin{aligned}
& x_{i}=\cos \frac{2 \pi k i}{n} \\
& (M x)_{i}=\cos \left(\frac{2 \pi k(i+1)}{n}\right)+\cos \left(\frac{2 \pi k(i-1)}{n}\right)=2 \cos \left(\frac{2 \pi k}{n}\right) \cos \left(\frac{2 \pi k i}{n}\right)
\end{aligned}
$$

Eigenvalue: $\cos \frac{2 \pi k}{n}$.
Eigenvalues:
vibration modes of system.

Eigenvalues of cycle?

Eigenvalues: $\cos \frac{2 \pi k}{n}$.

$$
\begin{aligned}
& x_{i}=\cos \frac{2 \pi k i}{n} \\
& (M x)_{i}=\cos \left(\frac{2 \pi k(i+1)}{n}\right)+\cos \left(\frac{2 \pi k(i-1)}{n}\right)=2 \cos \left(\frac{2 \pi k}{n}\right) \cos \left(\frac{2 \pi k i}{n}\right)
\end{aligned}
$$

Eigenvalue: $\cos \frac{2 \pi k}{n}$.
Eigenvalues:
vibration modes of system.
Fourier basis.

Eigenvalues of cycle?

Eigenvalues: $\cos \frac{2 \pi k}{n}$.

$$
\begin{aligned}
& x_{i}=\cos \frac{2 \pi k i}{n} \\
& (M x)_{i}=\cos \left(\frac{2 \pi k(i+1)}{n}\right)+\cos \left(\frac{2 \pi k(i-1)}{n}\right)=2 \cos \left(\frac{2 \pi k}{n}\right) \cos \left(\frac{2 \pi k i}{n}\right)
\end{aligned}
$$

Eigenvalue: $\cos \frac{2 \pi k}{n}$.
Eigenvalues:
vibration modes of system.
Fourier basis.

Random Walk.

p - probability distribution.

Random Walk.

p - probability distribution.
Probability distrubtion after choose a random neighbor.

Random Walk.

p - probability distribution.
Probability distrubtion after choose a random neighbor. Mp.

Random Walk.

p - probability distribution.
Probability distrubtion after choose a random neighbor. Mp.
Converge to uniform distribution.

Random Walk.

p - probability distribution.
Probability distrubtion after choose a random neighbor. Mp.
Converge to uniform distribution.
Power method: $M^{t} x$ goes to highest eigenvector.

Random Walk.

p - probability distribution.
Probability distrubtion after choose a random neighbor. Mp.
Converge to uniform distribution.
Power method: $M^{t} x$ goes to highest eigenvector.
$M^{t} x=a_{1} \lambda_{1}^{t} v_{1}+a_{2} \lambda_{2} v_{2}+\cdots$

Random Walk.

p - probability distribution.
Probability distrubtion after choose a random neighbor. Mp.

Converge to uniform distribution.
Power method: $M^{t} x$ goes to highest eigenvector.
$M^{t} x=a_{1} \lambda_{1}^{t} v_{1}+a_{2} \lambda_{2} v_{2}+\cdots$
$\lambda_{1}-\lambda_{2}$ - rate of convergence.

Random Walk.

p - probability distribution.
Probability distrubtion after choose a random neighbor. Mp.
Converge to uniform distribution.
Power method: $M^{t} x$ goes to highest eigenvector.
$M^{t} x=a_{1} \lambda_{1}^{t} v_{1}+a_{2} \lambda_{2} v_{2}+\cdots$
$\lambda_{1}-\lambda_{2}$ - rate of convergence.
$\Omega\left(n^{2}\right)$ steps to get close to uniform.

Random Walk.

p - probability distribution.
Probability distrubtion after choose a random neighbor. Mp.

Converge to uniform distribution.
Power method: $M^{t} x$ goes to highest eigenvector.
$M^{t} x=a_{1} \lambda_{1}^{t} v_{1}+a_{2} \lambda_{2} v_{2}+\cdots$
$\lambda_{1}-\lambda_{2}$ - rate of convergence.
$\Omega\left(n^{2}\right)$ steps to get close to uniform.
Start at node 0 , probability distribution, $[1,0,0, \cdots, 0]$.
Takes $\Omega\left(n^{2}\right)$ to get n steps away.

Random Walk.

p - probability distribution.
Probability distrubtion after choose a random neighbor. Mp.
Converge to uniform distribution.
Power method: $M^{t} x$ goes to highest eigenvector.
$M^{t} x=a_{1} \lambda_{1}^{t} v_{1}+a_{2} \lambda_{2} v_{2}+\cdots$
$\lambda_{1}-\lambda_{2}$ - rate of convergence.
$\Omega\left(n^{2}\right)$ steps to get close to uniform.
Start at node 0 , probability distribution, $[1,0,0, \cdots, 0]$.
Takes $\Omega\left(n^{2}\right)$ to get n steps away.
Recall drunken sailor.

