Today and for a bit	Example Problem: clustering.	
Eigenvalues of graphs. Through Cuts. Cheeger's isoperimetric inequality.	 Points: documents, dna, preferences. Graphs: applications to VLSI, parallel processing, image segmentation. 	Image example.
Image Segmentation I	Edge Expansion/Conductance.	Spectra of the graph. M = A/d adjacency matrix, A Eigenvector: a vector v where $Mv = \lambda v$
	Graph $G = (V, E)$, Assume regular graph of degree d . Edge Expansion. $h(S) = \frac{ E(S, V-S) }{d\min[S], V-S }, h(G) = \min_S h(S)$	Real, symmetric. Claim: Any two eigenvectors with different eigenvalues are orthogonal. Proof: Eigenvectors: v, v' with eigenvalues λ, λ' . $v^T M v' = v^T (\lambda' v') = \lambda' v^T v'$
$\frac{w(S,\overline{S})}{w(S) \times w(\overline{S})}.$ Ratio Cut: minimize $\frac{w(S,\overline{S})}{w(S)},$	Conductance. $\phi(S) = \frac{n E(S, V-S) }{d S V-S }, \ \phi(G) = \min_{S} \phi(S)$ Note $n \ge \max(S , V - S) \ge n/2$ $\rightarrow h(G) \le \phi(G) \le 2h(G)$	$ \begin{array}{c} \mathbf{v}^T M \mathbf{v}' = \lambda \mathbf{v}^T \mathbf{v}' = \lambda \mathbf{v}^T \mathbf{v}. \\ \text{Distinct eigenvalues} \rightarrow \text{orthonormal basis.} \\ \text{In basis: matrix is diagonal} \\ \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \end{bmatrix} $
w(S) no more than half the weight. (Minimize cost per unit weight that is removed.) Either is generally useful!		$M = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$

Action of *M*. v - assigns weights to vertices. *Mv* replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$. Eigenvector with highest value? v = 1. $\lambda_1 = 1$. $\rightarrow \mathbf{v}_i = (\mathbf{M}\mathbf{1})_i = \frac{1}{d}\sum_{\boldsymbol{e}\in(i,j)}\mathbf{1} = \mathbf{1}.$ **Claim:** For a connected graph $\lambda_2 < 1$. **Proof:** Second Eigenvector: $v \perp 1$. Max value *x*. Connected \rightarrow path from *x* valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_j < x.$ $i \quad j$ $x \quad < x$ $(Mv)_i \leq \frac{1}{d}(x + x \cdots + v_i) < x.$ Therefore $\lambda_2 < 1$. **Claim:** Connected if $\lambda_2 < 1$. **Proof:** Assign +1 to vertices in one component. $-\delta$ to rest. $x_i = (Mx_i) \implies$ eigenvector with $\lambda = 1$. Choose δ to make $\sum_i x_i = 0$, i.e., $x \perp 1$. Easy side of Cheeger.

 $\begin{array}{l} \text{Small cut} \rightarrow \text{small eigenvalue gap.} \\ \frac{\mu}{2} \leq h(G) \\ \text{Cut } S, |S| \leq |V|/2, \\ i \in S : v_i = |V| - |S|, i \in \overline{S} : v_i = -|S|. \\ \sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0 \\ \rightarrow v \perp \mathbf{1}. \\ v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|). \\ v^T Mv = \frac{1}{d} \sum_{e = (i,j)} x_i x_j. \\ \text{Total side endpoints: equal to} \\ v^T v - |E(S,S)||S|^2 - |E(S,S)|(|V - S|)^2 \\ \text{Diff. side endpoints: } -|S|(|V| - |S|) \text{ each or } -2|E(S,S)||S|(|V| - |S|) \\ v^T Mv = v^T v - (2|E(S,S)||V|^2) \\ \frac{v^T Mv}{v^T v} = 1 - \frac{|E(S,\overline{S})||V|}{|S||V - S|} \geq 1 - \frac{2|E(S,\overline{S})|}{|S|} \\ \lambda_2 \geq 1 - 2h(S) \rightarrow h(G) \geq \frac{1 - \lambda_2}{2} \end{array}$

Rayleigh Quotient

$\lambda_1 = \max_x \frac{x^T M x}{x^T x}$		
In basis, <i>M</i> is diagonal.		
Represent <i>x</i> in basis, i.e., $x_i = x \cdot v_i$.		
$xMx = \sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda = \lambda x^{T} x$		
Tight when x is first eigenvector.		
Rayleigh quotient. $\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$		
$x \perp 1 \leftrightarrow \sum_i x_i = 0.$		
Example: $-1/+1$ Indicator vector for balanced cut, S is one such vector.		
Rayleigh quotient is $\frac{2 E(S,S) }{2 S } = h(S)$.		
Rayleigh quotient is less than $h(S)$ for any balanced cut S.		
Find balanced cut from vector that acheives Rayleigh quotient?		

Hypercube

 $V = \{0,1\}^d$ $(x,y) \in E$ when x and y differ in one bit. $|V| = 2^d |E| = d2^{d-1}.$

Good cuts? "Coordinate cut": *d* of them. Edge expansion: $\frac{2^{d-1}}{d^2} = \frac{1}{d}$ Ball cut: All nodes within d/2 of node, say $00\cdots 0$. Vertex cut size: $\binom{d}{d/2}$ bit strings with d/2 1's. $\approx \frac{2^d}{\sqrt{d}}$ Vertex expansion: $\approx \frac{1}{\sqrt{d}}$. Edge expansion: d/2 edges to next level. $\approx \frac{1}{2\sqrt{d}}$ Worse by a factor of \sqrt{d}

Cheeger's inequality.

```
\begin{split} & \text{Rayleigh quotient.} \\ & \lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}. \\ & \text{Eigenvalue gap: } \mu = \lambda_1 - \lambda_2. \\ & \text{Recall: } h(G) = \min_{S, |S| \leq |V|/2} \frac{|E(S, V-S)|}{|S|} \\ & \frac{\mu}{2} = \frac{1 - \lambda_2}{2} \leq h(G) \leq \sqrt{2(1 - \lambda_2)} = \sqrt{2\mu} \\ & \text{Hmmm.} \\ & \text{Connected } \lambda_2 < \lambda_1. \\ & h(G) \text{ large } \rightarrow \text{ well connected } \rightarrow \lambda_1 - \lambda_2 \text{ big.} \\ & \text{Disconnected } \lambda_2 = \lambda_1. \\ & h(G) \text{ small } \rightarrow \lambda_1 - \lambda_2 \text{ small.} \end{split}
```

Eigenvalues of hypercube.

Anyone see any symmetry? Coordinate cuts. +1 on one side, -1 on other. $(Mv)_i = (1 - 2/d)v_i$. Eigenvalue 1 - 2/d. *d* Eigenvectors. Why orthogonal? Next eigenvectors? Delete edges in two dimensions. Four subcubes: bipartite. Color ±1 Eigenvalue: 1 - 4/d. $\binom{d}{2}$ eigenvectors. Eigenvalues: 1 - 2k/d. $\binom{d}{k}$ eigenvectors.

Back to Cheeger.

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors. $\frac{\mu}{2} = \frac{1-\lambda_2}{2} \le h(G) \le \sqrt{2(1-\lambda_2)} = \sqrt{2\mu}$ For hypercube: $h(G) = \frac{1}{d} \lambda_1 - \lambda_2 = 2/d$. Left hand side is tight. Note: hamming weight vector also in first eigenspace. Lose "names" in hypercube, find coordinate cut? Find coordinate cut? Eigenvector ν maps to line. Cut along line. Eigenvector algorithm gets a linear combination of coordinate cuts. Something like ball cut. Find coordinate cut?

Eigenvalues of cycle?

Eigenvalues: $\cos \frac{2\pi ki}{n}$. $x_i = \cos \frac{2\pi ki}{n}$ $(Mx)_i = \cos \left(\frac{2\pi k(i+1)}{n}\right) + \cos \left(\frac{2\pi k(i-1)}{n}\right) = 2\cos \left(\frac{2\pi k}{n}\right) \cos \left(\frac{2\pi ki}{n}\right)$ Eigenvalue: $\cos \frac{2\pi k}{n}$. Eigenvalues: vibration modes of system. Fourier basis.

Cycle

Tight example for Other side of Cheeger? $\frac{\mu}{2} = \frac{1-\lambda_2}{2} \le h(G) \le \sqrt{2(1-\lambda_2)} = \sqrt{2\mu}$ Cycle on *n* nodes. Will show other side of Cheeger is tight. Edge expansion:Cut in half. $|S| = n/2, |E(S,\overline{S})| = 2$ $\rightarrow h(G) = \frac{2}{n}.$ Show eigenvalue gap $\mu \le \frac{1}{n^2}$. Find $x \perp 1$ with Rayleigh quotient, $\frac{x^T M x}{\sqrt{1}x}$ close to 1.

Random Walk.

 $\begin{array}{l} p \text{ - probability distribution.}\\ \text{Probability distrubtion after choose a random neighbor.}\\ Mp.\\ \text{Converge to uniform distribution.}\\ \text{Power method: } M^t x \text{ goes to highest eigenvector.}\\ M^t x = a_1 \lambda_1^t v_1 + a_2 \lambda_2 v_2 + \cdots \\ \lambda_1 - \lambda_2 \text{ - rate of convergence.}\\ \Omega(n^2) \text{ steps to get close to uniform.}\\ \text{Start at node 0, probability distribution, } [1,0,0,\cdots,0].\\ \text{Takes } \Omega(n^2) \text{ to get } n \text{ steps away.}\\ \text{Recall drunken sailor.} \end{array}$

Find $x \perp 1$ with Rayleigh quotient, $\frac{x^T M x}{x^T x}$ close to 1. $x_i = \begin{cases} i - n/4 & \text{if } i \le n/2 \\ 3n/4 - i & \text{if } i > n/2 \end{cases}$ Hit with M. $(Mx)_i = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_i & \text{otherwise} \end{cases}$ $\Rightarrow x^T M x = x^T x (1 - O(\frac{1}{n^2})) \Rightarrow \lambda_2 \ge 1 - O(\frac{1}{n^2})$ $\mu = \lambda_1 - \lambda_2 = O(\frac{1}{n^2})$ $h(G) = \frac{2}{n} = \Theta(\sqrt{\mu})$ $\frac{\mu}{2} = \frac{1 - \lambda_2}{2} \le h(G) \le \sqrt{2}(1 - \lambda_2) = \sqrt{2\mu}$ Tight example for upper bound for Cheeger.