CS270: Lecture 2.

Admin:
Check Piazza.
Today:

- Finish Path Routing
- ????

Terminology

Routing: Paths $p_{1}, p_{2}, \ldots, p_{k}, p_{i}$ connects s_{i} and t_{i}
Congestion of edge, e: $c(e)$
number of paths in routing that contain e.
Congestion of routing: maximum congestion of any edge.
Find routing that minimizes congestion (or maximum congestion.)

Path Routing.

Given $G=(V, E),\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$, find a set of k paths connecting s_{i} and t_{i} and minimize max load on any edge.

Value: 3

Value: 2

Toll problem.

Given $G=(V, E),\left(s_{1}, t_{1}\right) \ldots\left(s_{k}, t_{k}\right)$, find a set of k paths assign one unit of "toll" to edges to maximize total toll for connecting pairs.

Another problem

Given $G=(V, E),\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$, find a set of k paths assign one unit of "toll" to edges to maximize total toll for connecting pairs.

Assign $\frac{1}{11}$ on each of 11 edges
Toll paid: $\frac{3}{11}+\frac{3}{11}+\frac{3}{11}=\frac{9}{11}$
Can we do better?
Assign $1 / 2$ on these two edges. Toll paid: $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}$

Toll: Terminology.

$d(e)$ - toll assigned to edge e.

Note: $\sum_{e} d(e)=1 . d(p)$ - total toll assigned to path p. $d(u, v)$ - total assigned to shortest path between u and v. $d(x)$ - polymerpic polymorphic
x could be edge, path, or pair.

Toll is lower bound on Path Routing.

From before:

Max bigger than minimum weighted average:
$\max _{e} c(e)>\sum_{e} c(e) d(e)$
Total length is total congestion
$\Sigma_{e} c(e) d(e)=\sum_{i} d\left(p_{i}\right)$
Each path, p_{i}, in routing has length $d\left(p_{i}\right) \geq d\left(s_{i}, t_{i}\right)$.

$$
\max _{e} c(e) \geq \sum_{e} c(e) d(e)=\sum_{i} d\left(p_{i}\right) \geq \sum_{i} d\left(s_{i}, t_{i}\right) .
$$

A toll solution is lower bound on any routing solution.
Any routing solution is an upper bound on a toll solution.

Getting to equilibrium

Maybe no equilibrium!

Approximate equilibrium:
Each path is routed along a path with length within a factor of 3 of the shortest path and $d(e) \propto 2^{c(e)}$

Lose a factor of three at the beginning.
$c_{\text {opt }} \geq \sum_{i} d\left(s_{i}, t_{i}\right) \geq \frac{1}{3} \sum_{e} d\left(p_{i}\right)=\frac{1}{3} \sum_{e} d(e) c(e)$
We obtain $c_{\max }=3\left(1+\frac{1}{m}\right) c_{\text {opt }}+2 \log m$.
This is worse!
What do we gain?

Algorithm

Assign tolls according to routing
How to route? Shortest paths!
Assign routing according to tolls
How to assign tolls? Higher tolls on congested edges.
Toll: $d(e)=\propto 2^{c(e)} . \sum_{e} d(e)=1$.
Equilibrium:
The shortest path routing has has $d(e) \propto 2^{c(e)}$
"The routing is stable, the tolls are stable."
Routing: each path p_{i} in routing is a shortest path w.r.t $d(\cdot)$
Tolls: ...where $d(e)$ is defined w.r.t. to current routing. Subtlety here due to $\sum_{e} d(e)=1$.

An algorithm!

Repeat: reroute any path that is off by a factor of 3 .
(Note: $d(e)$ recomputed every rerouting.)

Potential function: $\sum_{e} w(e), w(e)=2^{c(e)}$ Moving path:
Divides $w(e)$ along long path (with $w(p)$ of X) by two.
Multiplies $w(e)$ along shorter $(w(p) \leq X / 3)$ path by two. $-\frac{x}{2}+\frac{x}{3}=-\frac{x}{6}$
Potential function decreases. \Longrightarrow termination and existence.

How good is equilibrium?

Path is routed along shortest path and $d(e)=\frac{2^{c(e)}}{\sum_{e^{\prime}} 2^{2\left(e^{\prime}\right)}}$.
For e with $c(e) \leq c_{\text {max }}-2 \log m ; 2^{c(e)} \leq 2^{c_{\text {max }}-2 \log m}=\frac{2^{c_{\text {max }}}}{m^{2}}$
$c_{\text {opt }} \geq \sum_{i} d\left(s_{i}, t_{i}\right)=\sum_{e} d(e) c(e)$
$=\sum_{e} \frac{2^{c(e)}}{\sum_{e^{\prime}} 2^{c\left(e^{\prime}\right)}} c(e)=\frac{\sum_{e} 2^{c(e)} c(e)}{\sum_{e} 2^{c(e)}}$ Let $c_{t}=c_{\text {max }}-2 \log m$.
$\geq \frac{\sum_{e: c(e)>c_{t}} 2^{c(e)} c(e)}{\sum_{e: c(e)>c_{t}} t^{c(e)}+\sum_{e: c(e)<c_{t}} 2^{c(e)}}$
$\geq \frac{\left(c_{t}\right) \sum_{e: c(e)>c_{t}} 2^{c(e)}}{\left(1+\frac{1}{m}\right) \sum_{e: c(e)>c_{t}} 2^{c(e)}}$
$\geq \frac{\left(c_{t}\right)}{1+1}=\frac{c_{\text {max }}-2 \log m}{(1+1)}$

Or $c_{\text {max }} \leq\left(1+\frac{1}{m}\right) c_{o p t}+2 \log m$
(Almost) within additive term of $2 \log m$ of optimal!

Tuning...

Replace $d(e)=(1+\varepsilon)^{c(e)}$
Replace factor of 3 by $(1+2 \varepsilon)$
$c_{\max } \leq(1+2 \varepsilon) c_{o p t}+2 \log m / \varepsilon .$. (Roughly)
Fractional paths?

Revisit Equilibrium.
Solution Pair: $\left(\left\{p_{i}\right\}, d()\right)$
Toll Solution Value: $\sum_{i} d\left(s_{i}, t_{i}\right)$. Path Routing Value: $\max _{e} c(e)$. Toll player assigns toll on only maximally congested edges. Routing player routes on only cheapest paths.
Routing R uses shortest paths. Summation Switch
$d(\theta) \geq 0$. Only for on max congestion. $\Sigma_{e} d(\theta)=1$
$\sum_{i} d\left(s_{i}, t_{i}\right)=\sum_{i} d\left(p_{i}\right)$
$=\sum_{e} c(e) d(e)$
$=\sum_{e: d(e)>0} c(e) d(e)$
$=\sum_{e: d(e)>0} d(e)\left(\max _{e} c(e)\right)$
$=\max c(e)$
Any routing solution value \geq Any toll solution value Both these solutions are optimal!!!!! Complementary slackness. Why all the mess before? To get an algorithm!

Wrap up.

Dueling players:
Toll player raises tolls on congested edges.
Congestion player avoids tolls.
Converges to near optimal solution!
A lower bound is "necessary" (natural),
and helpful (mysterious?)!
Geometric View: Smooth. Gradient Descent. Stepsize.

Algorithm:exact?

Not shortest when tolls on top.
Hmmm..
Uh oh?
Route half a unit on both!
Hey! Fractiona!!
Use previous algorithms but route two paths between each pair.
Half integral!
Optimality: (3) $C_{\max }+2 \log m / 2$.
Additive factor shrinking!
The 3 can be made $(1+\varepsilon)$ using different base!

Geometrical view.

Smooth: use $\sum_{e} 2^{c(e)}$ as a proxy for max ${ }_{e} c(e)$.
Minimize new function
Gradient descent.
Stepsize=1. Back and forth!
Stepsize=.5. Back and forth ...but closer to minimum.

