

Toll is lower bound on Path Routing.

From before: Max bigger than minimum weighted average: $\max_{e} c(e) \ge \sum_{e} c(e)d(e)$ Total length is total congestion: $\sum_{e} c(e)d(e) = \sum_{i} d(p_{i})$ Each path, p_{i} , in routing has length $d(p_{i}) \ge d(s_{i}, t_{i})$.

 $\max_e c(e) \geq \sum_e c(e) d(e) = \sum_i d(p_i) \geq \sum_i d(s_i, t_i).$

A toll solution is lower bound on any routing solution. Any routing solution is an upper bound on a toll solution.

Getting to equilibrium.

Maybe no equilibrium!

Approximate equilibrium:

Each path is routed along a path with length within a factor of 3 of the shortest path and $d(e) \propto 2^{c(e)}$.

Lose a factor of three at the beginning. $c_{opt} \ge \sum_i d(s_i, t_i) \ge \frac{1}{3} \sum_e d(p_i) = \frac{1}{3} \sum_e d(e)c(e)$

We obtain $c_{max} = 3(1 + \frac{1}{m})c_{opt} + 2\log m$.

This is worse! What do we gain?

Algorithm.

Assign tolls according to routing. How to route? Shortest paths! Assign routing according to tolls. How to assign tolls? Higher tolls on congested edges. Toll: $d(e) = \propto 2^{c(e)}$. $\sum_{e} d(e) = 1$. Equilibrium: The shortest path routing has has $d(e) \propto 2^{c(e)}$. "The routing is stable, the tolls are stable." Routing: each path p_i in routing is a shortest path w.r.t $d(\cdot)$ Tolls: ...where d(e) is defined w.r.t. to current routing. Subtlety here due to $\sum_{e} d(e) = 1$.

An algorithm!

Repeat: reroute any path that is off by a factor of 3. (Note: d(e) recomputed every rerouting.) p: w(p) = X

Potential function: $\sum_{e} w(e)$, $w(e) = 2^{c(e)}$ Moving path: Divides w(e) along long path (with w(p) of X) by two. Multiplies w(e) along shorter ($w(p) \le X/3$) path by two.

$-\frac{\chi}{2}+\frac{\chi}{3}=-\frac{\chi}{6}.$

Potential function decreases. \implies termination and existence.

How good is equilibrium?

Path is routed along shortest path and $d(e) = \frac{2^{c(e)}}{\sum_{e'} 2^{c(e')}}$. For e with $c(e) \le c_{max} - 2\log m$; $2^{c(e)} \le 2^{c_{max} - 2\log m} = \frac{2^{c_{max}}}{m^2}$. $c_{opt} \ge \sum_{l} d(s_{l}, t_{l}) = \sum_{e} d(e)c(e)$ $= \sum_{e} \frac{2^{c(e)}}{\sum_{e'} 2^{c(e')}} c(e) = \frac{\sum_{e} 2^{c(e)}c(e)}{\sum_{e} 2^{c(e)}}$ Let $c_{t} = c_{max} - 2\log m$. $\ge \frac{\sum_{e:c(e)>c_{l}} 2^{c(e)} + \sum_{e:c(e)\le c_{l}} 2^{c(e)}}{\sum_{e:c(e)>c_{l}} 2^{c(e)}}$ $\ge \frac{(c_{l})\sum_{e:c(e)>c_{l}} 2^{c(e)}}{(1 + \frac{1}{m})\sum_{e:c(e)>c_{l}} 2^{c(e)}}$ $\ge \frac{(c_{l})}{1 + \frac{1}{m}} = \frac{c_{max} - 2\log m}{(1 + \frac{1}{m})}$

Or $c_{max} \le (1 + \frac{1}{m})c_{opt} + 2\log m$. (Almost) within additive term of $2\log m$ of optimal!

Tuning...

$$\begin{split} & \text{Replace } d(e) = (1+\varepsilon)^{c(e)}. \\ & \text{Replace factor of 3 by } (1+2\varepsilon) \\ & \textit{c}_{\textit{max}} \leq (1+2\varepsilon) \textit{c}_{opt} + 2\log m/\varepsilon.. \text{ (Roughly)} \\ & \text{Fractional paths?} \end{split}$$

Dueling players: Toll player raises tolls on congested edges. Congestion player avoids tolls.

Converges to near optimal solution!

A lower bound is "necessary" (natural), and helpful (mysterious?)!

Geometric View: Smooth. Gradient Descent. Stepsize.