
CS270: Lecture 2.

Admin:
Check Piazza.
Today:

I Finish Path Routing.

I ????

Path Routing.

Given G = (V ,E), (s1, t1), . . . ,(sk , tk ), find a set of k paths connecting
si and ti and minimize max load on any edge.
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Another problem.

Given G = (V ,E), (s1, t1), . . . ,(sk , tk ), find a set of k paths assign one
unit of “toll” to edges to maximize total toll for connecting pairs.
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Can we do better?

Assign 1/2 on these two edges.
Toll paid: 1
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Terminology

Routing: Paths p1,p2, . . . ,pk , pi connects si and ti .

Congestion of edge, e: c(e)
number of paths in routing that contain e.

Congestion of routing: maximum congestion of any edge.

Find routing that minimizes congestion (or maximum congestion.)

Toll problem.

Given G = (V ,E), (s1, t1), . . . ,(sk , tk ), find a set of k paths assign one
unit of “toll” to edges to maximize total toll for connecting pairs.
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Can we do better?

Assign 1/2 on these two edges.
Total toll: 1
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Toll: Terminology.

d(e) - toll assigned to edge e.
Note: ∑e d(e) = 1. d(p) - total toll assigned to path p.
d(u,v) - total assigned to shortest path between u and v .
d(x) - polymorpic

polymorpic

polymorphic
x could be edge, path, or pair.



Toll is lower bound on Path Routing.

From before:
Max bigger than minimum weighted average:

maxe c(e)≥ ∑e c(e)d(e)
Total length is total congestion:

∑e c(e)d(e) = ∑i d(pi)

Each path, pi , in routing has length d(pi)≥ d(si , ti).

max
e

c(e)≥ ∑
e

c(e)d(e) =∑
i

d(pi)≥∑
i

d(si , ti).

A toll solution is lower bound on any routing solution.

Any routing solution is an upper bound on a toll solution.

Algorithm.

Assign tolls according to routing.

How to route? Shortest paths!

Assign routing according to tolls.

How to assign tolls? Higher tolls on congested edges.

Toll: d(e) =∝ 2c(e). ∑e d(e) = 1.

Equilibrium:
The shortest path routing has has d(e) ∝ 2c(e).

“The routing is stable, the tolls are stable.”

Routing: each path pi in routing is a shortest path w.r.t d(·)
Tolls: ...where d(e) is defined w.r.t. to current routing.

Subtlety here due to ∑e d(e) = 1.

How good is equilibrium?

Path is routed along shortest path and d(e) = 2c(e)

∑e′ 2
c(e′) .

For e with c(e)≤ cmax −2logm; 2c(e) ≤ 2cmax−2logm = 2cmax

m2 .

copt ≥ ∑
i

d(si , ti) = ∑
e

d(e)c(e)

= ∑
e

2c(e)

∑e′ 2c(e′) c(e) = ∑e 2c(e)c(e)
∑e 2c(e) Let ct = cmax −2logm.

≥ ∑e:c(e)>ct 2c(e)c(e)

∑e:c(e)>ct 2c(e)+ ∑e:c(e)≤ct 2c(e)

≥
(ct)∑e:c(e)>ct 2c(e)

(1+ 1
m )∑e:c(e)>ct 2c(e)

≥ (ct)

1+ 1
m

=
cmax−2logm

(1+ 1
m )

Or cmax ≤ (1+ 1
m )copt +2logm.

(Almost) within additive term of 2 logm of optimal!

Getting to equilibrium.

Maybe no equilibrium!

Approximate equilibrium:

Each path is routed along a path with length
within a factor of 3 of the shortest path and d(e) ∝ 2c(e).

Lose a factor of three at the beginning.
copt ≥ ∑i d(si , ti)≥ 1

3 ∑e d(pi) =
1
3 ∑e d(e)c(e)

We obtain cmax = 3(1+ 1
m )copt +2logm.

This is worse!
What do we gain?

An algorithm!

Repeat: reroute any path that is off by a factor of 3.
(Note: d(e) recomputed every rerouting.)

si ti

p: w(p) = X
=⇒ w ′(p) = X/2−1 for c(e)

+1 for c(e)
p′: w(p′)≤ X/3

=⇒ w ′(p′)≤ 2X/3

Potential function: ∑e w(e), w(e) = 2c(e)

Moving path:
Divides w(e) along long path (with w(p) of X ) by two.
Multiplies w(e) along shorter (w(p)≤ X/3) path by two.

−X
2 + X

3 =−X
6 .

Potential function decreases. =⇒ termination and existence.

Tuning...

Replace d(e) = (1+ ε)c(e).

Replace factor of 3 by (1+2ε)

cmax ≤ (1+2ε)copt +2logm/ε.. (Roughly)

Fractional paths?



Revisit Equilibrium.
Solution Pair: ({pi},d()̇).

Toll Solution Value: ∑i d(si , ti). Path Routing Value: maxe c(e).

Toll player assigns toll on only maximally congested edges.
Routing player routes on only cheapest paths.

Routing R uses shortest paths. Summation Switch

d(e)≥ 0. Only Toll on max congestion. ∑e d(e) = 1

∑
i

d(si , ti) = ∑
i

d(pi)

= ∑
e

c(e)d(e)

= ∑
e:d(e)>0

c(e)d(e)

= ∑
e:d(e)>0

d(e)(max
e

c(e))

= max
e

c(e)

Any routing solution value ≥ Any toll solution value.
Both these solutions are optimal!!!!! Complementary slackness.

Why all the mess before? To get an algorithm!

Algorithm:exact?

s t

Not shortest when tolls on top.
Hmmm...
Uh oh?
Route half a unit on both!

Hey! Fractional!

Use previous algorithms but route two paths between each pair.

Half integral!

Optimality: (3)Cmax +2logm/2.

Additive factor shrinking!
The 3 can be made (1+ ε) using different base!

Geometrical view.

x = .5

maxe c(e) ∑e 2c(e)

Smooth: use ∑e 2c(e) as a proxy for maxe c(e).
Minimize new function.
Gradient descent.
Stepsize=1. Back and forth!
Stepsize=.5. Back and forth ...but closer to minimum.

Wrap up.

Dueling players:
Toll player raises tolls on congested edges.
Congestion player avoids tolls.

Converges to near optimal solution!

A lower bound is “necessary” (natural),
and helpful (mysterious?)!

Geometric View: Smooth. Gradient Descent. Stepsize.


