



A metric space X, d(i,j) where $d(i,j) \le d(i,k) + d(k,j)$, d(i,j) = d(j,i), and $d(i,j) \ge 0$.

A metric space X, d(i,j) where $d(i,j) \le d(i,k) + d(k,j)$, d(i,j) = d(j,i), and $d(i,j) \ge 0$.

Which are metric spaces?

- (A) X from R^d and $d(\cdot, \cdot)$ is Euclidean distance.
- (B) X from \mathbb{R}^d and $d(\cdot,\cdot)$ is squared Euclidean distance.
- (C) X- vertices in graph, d(i,j) is shortest path distances in graph.
- (D) X is a set of vectors and d(u, v) is $u \cdot v$.

A metric space X, d(i,j) where $d(i,j) \le d(i,k) + d(k,j)$, d(i,j) = d(j,i), and $d(i,j) \ge 0$.

Which are metric spaces?

- (A) X from R^d and $d(\cdot, \cdot)$ is Euclidean distance.
- (B) X from R^d and $d(\cdot, \cdot)$ is squared Euclidean distance.
- (C) X- vertices in graph, d(i,j) is shortest path distances in graph.
- (D) X is a set of vectors and d(u, v) is $u \cdot v$.

A metric space X, d(i,j) where $d(i,j) \le d(i,k) + d(k,j)$, d(i,j) = d(j,i), and $d(i,j) \ge 0$.

Which are metric spaces?

- (A) X from \mathbb{R}^d and $d(\cdot, \cdot)$ is Euclidean distance.
- (B) X from \mathbb{R}^d and $d(\cdot, \cdot)$ is squared Euclidean distance.
- (C) X- vertices in graph, d(i,j) is shortest path distances in graph.
- (D) X is a set of vectors and d(u, v) is $u \cdot v$.

Input to TSP, facility location, some layout problems, ..., metric labelling.

A metric space X, d(i,j) where $d(i,j) \le d(i,k) + d(k,j)$, d(i,j) = d(j,i), and $d(i,j) \ge 0$.

Which are metric spaces?

- (A) X from \mathbb{R}^d and $d(\cdot, \cdot)$ is Euclidean distance.
- (B) X from \mathbb{R}^d and $d(\cdot, \cdot)$ is squared Euclidean distance.
- (C) X- vertices in graph, d(i,j) is shortest path distances in graph.
- (D) X is a set of vectors and d(u, v) is $u \cdot v$.

Input to TSP, facility location, some layout problems, ..., metric labelling.

Hard problems.

A metric space X, d(i,j) where $d(i,j) \le d(i,k) + d(k,j)$, d(i,j) = d(j,i), and $d(i,j) \ge 0$.

Which are metric spaces?

- (A) X from \mathbb{R}^d and $d(\cdot, \cdot)$ is Euclidean distance.
- (B) X from R^d and $d(\cdot, \cdot)$ is squared Euclidean distance.
- (C) X- vertices in graph, d(i,j) is shortest path distances in graph.
- (D) X is a set of vectors and d(u, v) is $u \cdot v$.

Input to TSP, facility location, some layout problems, ..., metric labelling.

Hard problems. Easier to solve on trees.

A metric space X, d(i,j) where $d(i,j) \le d(i,k) + d(k,j)$, d(i,j) = d(j,i), and $d(i,j) \ge 0$.

Which are metric spaces?

- (A) X from R^d and $d(\cdot, \cdot)$ is Euclidean distance.
- (B) X from \mathbb{R}^d and $d(\cdot, \cdot)$ is squared Euclidean distance.
- (C) X- vertices in graph, d(i,j) is shortest path distances in graph.
- (D) X is a set of vectors and d(u, v) is $u \cdot v$.

Input to TSP, facility location, some layout problems, ..., metric labelling.

Hard problems. Easier to solve on trees. Dynamic programming on trees.

A metric space X, d(i,j) where $d(i,j) \le d(i,k) + d(k,j)$, d(i,j) = d(j,i), and $d(i,j) \ge 0$.

Which are metric spaces?

- (A) X from R^d and $d(\cdot, \cdot)$ is Euclidean distance.
- (B) X from \mathbb{R}^d and $d(\cdot, \cdot)$ is squared Euclidean distance.
- (C) X- vertices in graph, d(i,j) is shortest path distances in graph.
- (D) X is a set of vectors and d(u, v) is $u \cdot v$.

Input to TSP, facility location, some layout problems, ..., metric labelling.

Hard problems. Easier to solve on trees. Dynamic programming on trees.

Approximate metric on trees?

Tree metric:

Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Tree metric:

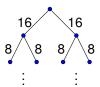
X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric:

Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.



Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

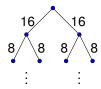
Hierarchically well separated tree metric: Tree weights are geometrically decreasing. 16 16 8 8 8 8 : :

Map *X* into tree.

Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.



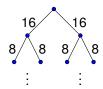
Map X into tree.

(i) No distance shrinks. (dominating)

Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.



Map *X* into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$

Tree metric:

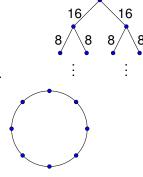
X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric:

Tree weights are geometrically decreasing.

Map *X* into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$



Tree metric:

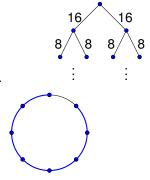
X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric:

Tree weights are geometrically decreasing.

Map *X* into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$



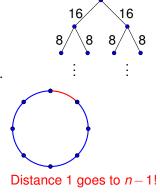
Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.

Map X into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$



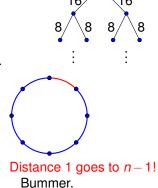
Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.

Map X into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$



Tree metric:

X is nodes of tree with edge weights $d_{\mathcal{T}}(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.

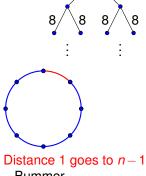
Probabilistic Tree embedding.

Map X into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $< \alpha$ in expectation.

Map metric onto tree?

Fix it up chappie!



Distance 1 goes to n-1! Bummer.

Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.

Probabilistic Tree embedding.

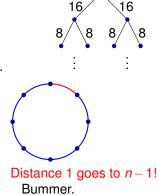
Map *X* into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$ in expectation.

Map metric onto tree?

Fix it up chappie!

For cycle, remove a random edge



Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.

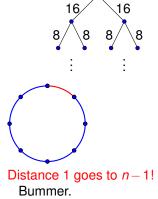
Probabilistic Tree embedding.

Map *X* into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$ in expectation.

Map metric onto tree?

Fix it up chappie!



Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.

Probabilistic Tree embedding.

Map *X* into tree.

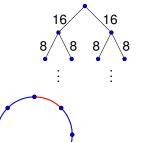
- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$ in expectation.

Map metric onto tree?

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge:
$$\frac{n-1}{n} \times 1$$



Distance 1 goes to n-1!

Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.

Probabilistic Tree embedding.

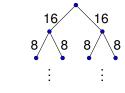
Map *X* into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$ in expectation.

Map metric onto tree?

Fix it up chappie!

Stretch of edge:
$$\frac{n-1}{n} \times 1 + \frac{1}{n} \times (n-1)$$



Distance 1 goes to n-1!

Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.

Probabilistic Tree embedding.

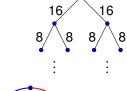
Map *X* into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$ in expectation.

Map metric onto tree?

Fix it up chappie!

Stretch of edge:
$$\frac{n-1}{n} \times 1 + \frac{1}{n} \times (n-1) \approx$$



Distance 1 goes to n-1!

Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.

Probabilistic Tree embedding.

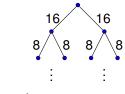
Map *X* into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$ in expectation.

Map metric onto tree?

Fix it up chappie!

Stretch of edge:
$$\frac{n-1}{n} \times 1 + \frac{1}{n} \times (n-1) \approx 2$$



Distance 1 goes to n-1!

Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.

Probabilistic Tree embedding.

Map *X* into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$ in expectation.

Map metric onto tree?

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge:
$$\frac{n-1}{n} \times 1 + \frac{1}{n} \times (n-1) \approx 2$$

General metrics?

16 16 8 8 8 8 : :

Distance 1 goes to n-1!

Probabilistic Tree embedding. Map X into tree.

Probabilistic Tree embedding.

Map X into tree.

(i) No distance shrinks (dominating).

Probabilistic Tree embedding.

Map *X* into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $\leq \alpha$ in expecation.

Probabilistic Tree embedding.

Map *X* into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST).

Probabilistic Tree embedding.

Map *X* into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST). Elements of X are leaves of tree.

Probabilistic Tree embedding.

Map *X* into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST). Elements of *X* are leaves of tree.

Later: **use** spanning tree for graphical metrics.

Probabilistic Tree embedding.

Map *X* into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST). Elements of X are leaves of tree.

Later: **use** spanning tree for graphical metrics.

The Idea:

 $HST \equiv recursive decomposition of metric space.$

Probabilistic Tree embedding.

Map *X* into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST). Elements of X are leaves of tree.

Later: **use** spanning tree for graphical metrics.

The Idea:

 $HST \equiv recursive decomposition of metric space.$

Probabilistic Tree embedding.

Map *X* into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST). Elements of X are leaves of tree.

Later: **use** spanning tree for graphical metrics.

The Idea:

 $HST \equiv recursive decomposition of metric space.$

Decompose space by diameter $\approx \Delta$ balls.

Probabilistic Tree embedding.

Map *X* into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST). Elements of X are leaves of tree.

Later: **use** spanning tree for graphical metrics.

The Idea:

 $HST \equiv recursive decomposition of metric space.$

Decompose space by diameter $\approx \Delta$ balls.

Recurse on each ball for $\Delta/2$.

Probabilistic Tree embedding.

Map *X* into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST). Elements of X are leaves of tree.

Later: **use** spanning tree for graphical metrics.

The Idea:

 $HST \equiv recursive decomposition of metric space.$

Decompose space by diameter $\approx \Delta$ balls.

Recurse on each ball for $\Delta/2$.

Use randomness in

Probabilistic Tree embedding.

Map *X* into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST). Elements of X are leaves of tree.

Later: **use** spanning tree for graphical metrics.

The Idea:

 $HST \equiv recursive decomposition of metric space.$

Decompose space by diameter $\approx \Delta$ balls.

Recurse on each ball for $\Delta/2$.

Use randomness in selection of ball centers.

Probabilistic Tree embedding.

Map X into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST). Elements of X are leaves of tree.

Later: **use** spanning tree for graphical metrics.

The Idea:

 $HST \equiv recursive decomposition of metric space.$

Decompose space by diameter $\approx \Delta$ balls.

Recurse on each ball for $\Delta/2$.

Use randomness in selection of ball centers. the \approx diameter of the balls.

Probabilistic Tree embedding.

Map X into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST). Elements of X are leaves of tree.

Later: **use** spanning tree for graphical metrics.

The Idea:

 $HST \equiv recursive decomposition of metric space.$

Decompose space by diameter $\approx \Delta$ balls.

Recurse on each ball for $\Delta/2$.

Use randomness in selection of ball centers. the \approx diameter of the balls.

Algorithm: (X, d), diam $(X) \le D$, |X| = n, $d(i, j) \ge 1$

Algorithm: (X, d), diam $(X) \le D$, |X| = n, $d(i,j) \ge 1$

1. π – random permutation of X.

Algorithm: (X, d), diam $(X) \le D$, |X| = n, $d(i, j) \ge 1$

- 1. π random permutation of X.
- 2. Choose β in $\left[\frac{3}{8}, \frac{1}{2}\right]$.

Algorithm: (X, d), diam $(X) \le D$, |X| = n, $d(i, j) \ge 1$

- 1. π random permutation of X.
- 2. Choose β in $\left[\frac{3}{8}, \frac{1}{2}\right]$. def subtree(S, Δ):

```
Algorithm: (X, d), diam(X) \le D, |X| = n, d(i,j) \ge 1
1. \pi – random permutation of X.
```

2. Choose β in $\left[\frac{3}{8}, \frac{1}{2}\right]$. def subtree(S, Δ):

T = []

```
Algorithm: (X, d), \operatorname{diam}(X) \leq D, |X| = n, d(i,j) \geq 1

1. \pi – random permutation of X.

2. Choose \beta in \left[\frac{3}{8}, \frac{1}{2}\right].

def subtree(S,\Delta):

T = []

if \Delta < 1 return [S]
```

```
Algorithm: (X, d), \operatorname{diam}(X) \leq D, |X| = n, d(i, j) \geq 1

1. \pi – random permutation of X.

2. Choose \beta in \left[\frac{3}{8}, \frac{1}{2}\right].

def subtree(S,\Delta):

T = []

if \Delta < 1 return [S]

foreach i in \pi:
```

```
Algorithm: (X, d), \operatorname{diam}(X) \leq D, |X| = n, d(i, j) \geq 1

1. \pi – random permutation of X.

2. Choose \beta in \left[\frac{3}{8}, \frac{1}{2}\right].

def subtree(S,\Delta):

T = []

if \Delta < 1 return [S]

foreach i in \pi:

if i \in S
```

```
Algorithm: (X, d), \operatorname{diam}(X) \leq D, |X| = n, d(i,j) \geq 1

1. \pi – random permutation of X.

2. Choose \beta in [\frac{3}{8}, \frac{1}{2}].

def subtree(S,\Delta):

T = []

if \Delta < 1 return [S]

foreach i in \pi:

if i \in S

B = \operatorname{ball}(i, \beta \Delta)
```

```
Algorithm: (X, d), \operatorname{diam}(X) \leq D, |X| = n, d(i,j) \geq 1

1. \pi – random permutation of X.

2. Choose \beta in [\frac{3}{8}, \frac{1}{2}].

def subtree(S,\Delta):

T = []

if \Delta < 1 return [S]

foreach i in \pi:

if i \in S

B = \operatorname{ball}(i, \beta \Delta); S = S/B
```

```
Algorithm: (X, d), \operatorname{diam}(X) \leq D, |X| = n, d(i,j) \geq 1

1. \pi – random permutation of X.

2. Choose \beta in \left[\frac{3}{8}, \frac{1}{2}\right].

def subtree(S,\Delta):

T = []

if \Delta < 1 return [S]

foreach i in \pi:

if i \in S

B = \operatorname{ball}(i, \beta \Delta); S = S/B

T.append(B)
```

```
Algorithm: (X, d), diam(X) \le D, |X| = n, d(i, j) \ge 1
1. \pi – random permutation of X.
2. Choose \beta in \left[\frac{3}{8}, \frac{1}{2}\right].
 def subtree(S,\Delta):
  T = []
  if \Delta < 1 return [S]
  foreach i in \pi:
    if i \in S
      B = \text{ball}(i, \beta \Delta) ; S = S/B
      T.append(B)
  return map (\lambda x: subtree(x,\Delta/2), T);
```

```
Algorithm: (X, d), diam(X) \le D, |X| = n, d(i, j) \ge 1
1. \pi – random permutation of X.
2. Choose \beta in \left[\frac{3}{8}, \frac{1}{2}\right].
 def subtree(S,\Delta):
  T = []
  if \Delta < 1 return [S]
  foreach i in \pi:
    if i \in S
      B = \text{ball}(i, \beta \Delta); S = S/B
      T.append(B)
  return map (\lambda x: subtree(x,\Delta/2), T);
3. subtree(X, D)
```

```
Algorithm: (X, d), diam(X) \le D, |X| = n, d(i, j) \ge 1
1. \pi – random permutation of X.
2. Choose \beta in \left[\frac{3}{8}, \frac{1}{2}\right].
 def subtree(S,\Delta):
  T = []
  if \Delta < 1 return [S]
  foreach i in \pi:
    if i \in S
      B = \text{ball}(i, \beta \Delta); S = S/B
      T.append(B)
  return map (\lambda x: subtree(x,\Delta/2), T);
3. subtree(X, D)
```

Tree has internal node for each level of call.

```
Algorithm: (X, d), diam(X) < D, |X| = n, d(i, j) > 1
1. \pi – random permutation of X.
2. Choose \beta in \left[\frac{3}{8}, \frac{1}{2}\right].
 def subtree(S,\Delta):
  T = []
  if \Delta < 1 return [S]
  foreach i in \pi:
    if i \in S
      B = \text{ball}(i, \beta \Delta); S = S/B
      T.append(B)
  return map (\lambda x: subtree(x,\Delta/2), T);
3. subtree(X, D)
```

Tree has internal node for each level of call. Tree edges have weight Δ to children.

```
Algorithm: (X, d), diam(X) < D, |X| = n, d(i, j) > 1
1. \pi – random permutation of X.
2. Choose \beta in \left[\frac{3}{8}, \frac{1}{2}\right].
 def subtree(S,\Delta):
  T = []
  if \Delta < 1 return [S]
  foreach i in \pi:
    if i \in S
      B = \text{ball}(i, \beta \Delta); S = S/B
      T.append(B)
  return map (\lambda x: subtree(x,\Delta/2), T);
3. subtree(X, D)
```

Tree has internal node for each level of call. Tree edges have weight Δ to children.

Claim 1: $d_T(x, y) \ge d(x, y)$.

Algorithm: (X, d), $\operatorname{diam}(X) \leq D$, |X| = n, $d(i, j) \geq 1$ 1. π – random permutation of X. 2. Choose β in $\left[\frac{3}{8}, \frac{1}{2}\right]$. def subtree(S, Δ): T = []if $\Delta < 1$ return [S] foreach i in π : if $i \in S$ $B = \operatorname{ball}(i, \beta \Delta)$; S = S/BT.append(B)

return map (λ x: subtree(x, Δ /2), T);

Tree has internal node for each level of call. Tree edges have weight Δ to children.

Claim 1: $d_T(x, y) \ge d(x, y)$.

3. subtree(X, D)

When $\Delta \le d(x,y)$, x and y must be in different balls, so cut at IVI $\Delta \ge d(x,y)/2$.

Algorithm: (X, d), diam(X) < D, |X| = n, d(i, j) > 1

1. π – random permutation of X.

2. Choose β in $\left[\frac{3}{8}, \frac{1}{2}\right]$.

def subtree(S, Δ):

T = []

if Δ < 1 return [S]

foreach i in π :

if $i \in S$ $B = \text{ball}(i, \beta \Delta)$; S = S/B

T.append(B)

return map (λ x: subtree(x, Δ /2), T);

3. subtree(X, D)

Tree has internal node for each level of call. Tree edges have weight Δ to children.

Claim 1: $d_T(x, y) \ge d(x, y)$.

When $\Delta \le d(x,y)$, x and y must be in different balls, so cut at IVI $\Delta \ge d(x,y)/2$.

$$\to d_T(x,y) \ge \Delta + \Delta \ge d(x,y)$$

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$.

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$. (Level of subtree call.)

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x, y) \le 4\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Would like it to be $\frac{d(x,y)}{\Delta}$.

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Would like it to be $\frac{d(x,y)}{\Delta}$.

ightarrow expected length is $\sum_{\Delta=D/2^i} (4\Delta) rac{d(x,y)}{\Delta} = 4 \log D \cdot d(x,y)$.

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Would like it to be $\frac{d(x,y)}{\Delta}$.

ightarrow expected length is $\sum_{\Delta=D/2^i} (4\Delta) \frac{d(x,y)}{\Delta} = 4 \log D \cdot d(x,y)$.

Why should it be $\frac{d(x,y)}{\Delta}$?

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Would like it to be $\frac{d(x,y)}{\Delta}$.

ightarrow expected length is $\sum_{\Delta=D/2^i} (4\Delta) \frac{d(x,y)}{\Delta} = 4 \log D \cdot d(x,y)$.

Why should it be $\frac{d(x,y)}{\Delta}$? smaller the edge the less likely to be on edge of ball.

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Would like it to be $\frac{d(x,y)}{\Delta}$.

ightarrow expected length is $\sum_{\Delta=D/2^i} (4\Delta) \frac{d(x,y)}{\Delta} = 4 \log D \cdot d(x,y)$.

Why should it be $\frac{d(x,y)}{\Delta}$? smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball.

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Would like it to be $\frac{d(x,y)}{\Delta}$.

$$ightarrow$$
 expected length is $\sum_{\Delta=D/2^i} (4\Delta) \frac{d(x,y)}{\Delta} = 4 \log D \cdot d(x,y)$.

Why should it be $\frac{d(x,y)}{\Delta}$? smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball. random diameter jiggles edge of ball.

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Would like it to be $\frac{d(x,y)}{\Delta}$.

$$ightarrow$$
 expected length is $\sum_{\Delta=D/2^i} (4\Delta) \frac{d(x,y)}{\Delta} = 4 \log D \cdot d(x,y)$.

Why should it be $\frac{d(x,y)}{\Delta}$? smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball.

random diameter jiggles edge of ball.

$$\rightarrow Pr[x, y \text{ cut by ball}|x \text{ in ball}] \approx \frac{d(x,y)}{\beta \Delta}$$

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Would like it to be $\frac{d(x,y)}{\Delta}$.

$$ightarrow$$
 expected length is $\sum_{\Delta=D/2^i} (4\Delta) \frac{d(x,y)}{\Delta} = 4 \log D \cdot d(x,y)$.

Why should it be $\frac{d(x,y)}{\Delta}$? smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball.

random diameter jiggles edge of ball.

$$\rightarrow Pr[x, y \text{ cut by ball}|x \text{ in ball}] \approx \frac{d(x, y)}{\beta \Delta}$$

The problem?

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Would like it to be $\frac{d(x,y)}{\Delta}$.

$$\rightarrow$$
 expected length is $\sum_{\Delta=D/2^i} (4\Delta) \frac{d(x,y)}{\Delta} = 4 \log D \cdot d(x,y)$.

Why should it be $\frac{d(x,y)}{\Delta}$? smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball.

random diameter jiggles edge of ball.

$$ightarrow Pr[x,y \text{ cut by ball}|x \text{ in ball}] pprox rac{d(x,y)}{\beta\Delta}$$

The problem?

Could be cut be many different balls.

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Would like it to be $\frac{d(x,y)}{\Delta}$.

$$\rightarrow$$
 expected length is $\sum_{\Delta=D/2^i} (4\Delta) \frac{d(x,y)}{\Delta} = 4 \log D \cdot d(x,y)$.

Why should it be $\frac{d(x,y)}{\Delta}$?

smaller the edge the less likely to be on edge of ball.

larger the delta, more room inside ball.

random diameter jiggles edge of ball.

$$ightarrow Pr[x,y \text{ cut by ball}|x \text{ in ball}] pprox rac{d(x,y)}{\beta\Delta}$$

The problem?

Could be cut be many different balls.

For each probability is good, but could be hit by many.

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \le 4\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Would like it to be $\frac{d(x,y)}{\Delta}$.

$$\rightarrow$$
 expected length is $\sum_{\Delta=D/2^i} (4\Delta) \frac{d(x,y)}{\Delta} = 4 \log D \cdot d(x,y)$.

Why should it be $\frac{d(x,y)}{\Delta}$?

smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball.

random diameter jiggles edge of hal

$$ightarrow Pr[x,y \text{ cut by ball}|x \text{ in ball}] pprox rac{d(x,y)}{\beta\Delta}$$

The problem?

Could be cut be many different balls.

For each probability is good, but could be hit by many.

random permutation to deal with this

Analysis: (x, y)Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x, y)}{\Delta}$

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x, y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x, y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level Δ

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level Δ

At some point x is in some Δ level ball.

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level Δ

At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level Δ

At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level Δ

At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

If $d(x,y) \geq \Delta/8$, $\frac{8d(x,y)}{\Delta} \geq 1$, so claim holds trivially.

Would like Pr[x, y] cut by ball|x in ball] $\leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level Δ

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

j can only cut (x,y) if $d(j,x) \in [\Delta/4,\Delta/2]$ (else (x,y) entirely in ball),

Would like Pr[x, y] cut by ball|x in $ball] \le \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level Δ

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level Δ

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

j can only cut (x,y) if $d(j,x) \in [\Delta/4,\Delta/2]$ (else (x,y) entirely in ball), Call this set X_{Δ} .

 $j \in X_{\Delta}$ cuts (x, y) if..

Would like Pr[x, y] cut by ball|x in ball] $\leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level Δ

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

$$j \in X_{\Delta}$$
 cuts (x, y) if.. $d(j, x) < \beta \Delta$

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level △

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

$$j \in X_{\Delta}$$
 cuts (x, y) if..
 $d(j, x) < \beta \Delta$ and $\beta \Delta < d(j, y)$

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level △

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

$$j \in X_{\Delta}$$
 cuts (x, y) if..
 $d(j, x) \le \beta \Delta$ and $\beta \Delta \le d(j, y) \le d(j, x) + d(x, y)$

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level △

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

$$j \in X_{\Delta}$$
 cuts (x, y) if..
 $d(j, x) \le \beta \Delta$ and $\beta \Delta \le d(j, y) \le d(j, x) + d(x, y)$
 $\rightarrow \beta \Delta \in [d[j, x], d(j, x) + d(x, y)].$

 $i \in X_{\wedge}$ cuts (x, y) if...

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level △

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

$$d(j,x) \le \beta \Delta$$
 and $\beta \Delta \le d(j,y) \le d(j,x) + d(x,y)$

 $i \in X_{\wedge}$ cuts (x, y) if...

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level △

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

$$d(j,x) \le \beta \Delta$$
 and $\beta \Delta \le d(j,y) \le d(j,x) + d(x,y)$

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level △

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

j can only cut (x,y) if $d(j,x) \in [\Delta/4,\Delta/2]$ (else (x,y) entirely in ball), Call this set X_{Δ} .

$$j \in X_{\Delta}$$
 cuts (x,y) if.. $d(j,x) \leq \beta \Delta$ and $\beta \Delta \leq d(j,y) \leq d(j,x) + d(x,y) \to \beta \Delta \in [d[j,x],d(j,x)+d(x,y)].$ occurs with prob. $\frac{d(x,y)}{\Delta/8} = \frac{8d(x,y)}{\Delta}.$

And *j* must be before any i < j in π

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level △

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

j can only cut (x,y) if $d(j,x) \in [\Delta/4,\Delta/2]$ (else (x,y) entirely in ball), Call this set X_{Δ} .

$$j \in X_{\Delta}$$
 cuts (x,y) if.. $d(j,x) \leq \beta\Delta$ and $\beta\Delta \leq d(j,y) \leq d(j,x) + d(x,y) \to \beta\Delta \in [d[j,x],d(j,x)+d(x,y)].$ occurs with prob. $\frac{d(x,y)}{\Delta/8} = \frac{8d(x,y)}{\Delta}$.

And j must be before any i < j in $\pi \to \text{prob is } \frac{1}{j}$

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level Δ

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

j can only cut (x,y) if $d(j,x) \in [\Delta/4,\Delta/2]$ (else (x,y) entirely in ball), Call this set X_{Δ} .

$$j \in X_{\Delta}$$
 cuts (x, y) if..
 $d(j, x) \le \beta \Delta$ and $\beta \Delta \le d(j, y) \le d(j, x) + d(x, y)$
 $\rightarrow \beta \Delta \in [d[j, x], d(j, x) + d(x, y)].$

occurs with prob. $\frac{d(x,y)}{\Delta/8} = \frac{8d(x,y)}{\Delta}$.

And j must be before any i < j in $\pi \to \text{prob is } \frac{1}{j}$ $\to Pr[j \text{ cuts } (x,y)] \le \left(\frac{1}{j}\right) \frac{8d(x,y)}{\Delta}$

Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level ∆

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If $d(x,y) \ge \Delta/8$, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

j can only cut (x,y) if $d(j,x) \in [\Delta/4,\Delta/2]$ (else (x,y) entirely in ball), Call this set X_{Δ} .

$$j \in X_{\Delta}$$
 cuts (x, y) if..
 $d(j, x) \le \beta \Delta$ and $\beta \Delta \le d(j, y) \le d(j, x) + d(x, y)$

$$\rightarrow \beta \Delta \in [d[j,x],d(j,x)+d(x,y)].$$
 occurs with prob.
$$\frac{d(x,y)}{\Delta/8} = \frac{8d(x,y)}{\Delta}.$$

And j must be before any i < j in $\pi \to \text{prob is } \frac{1}{j}$ $\to Pr[j \text{ cuts } (x,y)] \le \left(\frac{1}{j}\right) \frac{8d(x,y)}{\Delta}$

 $d_T(x,y)$ if cut level Δ is 4Δ .

Analysis: (x, y)Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x,y)}{\Delta}$ (Only consider cut by x, factor 2 loss.)

At level Δ

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

If
$$d(x,y) \ge \Delta/8$$
, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.

$$j$$
 can only cut (x,y) if $d(j,x) \in [\Delta/4,\Delta/2]$ (else (x,y) entirely in ball), Call this set X_{Δ} .

$$j \in X_{\Delta}$$
 cuts (x,y) if..
 $d(j,x) \le \beta \Delta$ and $\beta \Delta \le d(j,y) \le d(j,x) + d(x,y)$

$$ightarrow eta \Delta \in [d[j,x],d(j,x)+d(x,y)].$$
 occurs with prob. $rac{d(x,y)}{\Delta/8} = rac{8d(x,y)}{\Delta}.$

And
$$j$$
 must be before any $i < j$ in $\pi \to \text{prob is } \frac{1}{j}$
 $\to Pr[j \text{ cuts } (x,y)] \le \left(\frac{1}{j}\right) \frac{8d(x,y)}{\Delta}$

$$d_T(x,y)$$
 if cut level Δ is 4Δ .
 $\rightarrow E[d_T(x,y)] = \sum_{\Delta = \frac{D}{2^d}} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$

Analysis: (x, y) Would like $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \leq \frac{8d(x, y)}{\Lambda}$

(Only consider cut by x, factor 2 loss.)

At level Δ

At some point x is in some Δ level ball.

Renumber nodes in order of distance from x.

Renumber nodes in order of distance from
$$x$$
.

If
$$d(x,y) \ge \Delta/8$$
, $\frac{8d(x,y)}{\Delta} \ge 1$, so claim holds trivially.
 j can only cut (x,y) if $d(j,x) \in [\Delta/4,\Delta/2]$ (else (x,y) entirely in ball),

$$j \in X_{\Delta}$$
 cuts (x, y) if..

Call this set X_{\wedge} .

$$d(j,x) \le \beta \Delta$$
 and $\beta \Delta \le d(j,y) \le d(j,x) + d(x,y)$
 $\rightarrow \beta \Delta \in [d[j,x],d(j,x)+d(x,y)].$
occurs with prob. $\frac{d(x,y)}{\Delta \setminus B} = \frac{8d(x,y)}{\Delta}.$

And
$$j$$
 must be before any $i < j$ in $\pi \to \text{prob}$ is $\frac{1}{j}$

$$\rightarrow Pr[j \text{ cuts } (x,y)] \leq \left(\frac{1}{j}\right) \frac{8d(x,y)}{\Delta}$$

$$d_T(x,y)$$
 if cut level Δ is 4Δ .
 $\rightarrow E[d_T(x,y)] = \sum_{\Delta = \frac{D}{2d}} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$

$$E(d_T(x,y)] = \sum_{\Delta = D/2^i} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

$$E(d_T(x,y)] = \sum_{\Delta = D/2^j} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

Recall X_{Δ} has nodes with $d(x,j) \in [\Delta/4, \Delta/2]$

$$E(d_T(x,y)] = \sum_{\Delta = D/2^i} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

Recall X_{Δ} has nodes with $d(x,j) \in [\Delta/4, \Delta/2]$

"Listen Stash, the pipes are distinct!!"

$$E(d_T(x,y)] = \sum_{\Delta = D/2^i} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

Recall X_{Δ} has nodes with $d(x,j) \in [\Delta/4, \Delta/2]$

"Listen Stash, the pipes are distinct!!"

$$E(d_T(x,y)) = \sum_{\Delta = D/2^i} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

Recall X_{Δ} has nodes with $d(x,j) \in [\Delta/4, \Delta/2]$

"Listen Stash, the pipes are distinct!!"

$$E(d_T(x,y)] = \sum_{\Delta = \frac{D}{2i}} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

$$E(d_T(x,y)] = \sum_{\Delta = D/2^i} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

Recall X_{Δ} has nodes with $d(x,j) \in [\Delta/4, \Delta/2]$

"Listen Stash, the pipes are distinct!!"

$$E(d_T(x,y)] = \sum_{\Delta = \frac{D}{2^j}} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

$$< \sum_{i} \left(\frac{1}{j}\right) 32d(x,y)$$

$$\leq \sum_{j} \left(\frac{1}{j}\right) 32d(x,y)$$

$$E(d_T(x,y)] = \sum_{\Delta = D/2^i} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

Recall X_{Δ} has nodes with $d(x,j) \in [\Delta/4, \Delta/2]$

"Listen Stash, the pipes are distinct!!"

$$E(d_T(x,y)] = \sum_{\Delta = \frac{D}{2^j}} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

$$\leq \sum_{j} \left(\frac{1}{j}\right) 32d(x,y)$$

$$\leq (32\ln n)(d(x,y)).$$

$$E(d_T(x,y)] = \sum_{\Delta = D/2^i} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

Recall X_{Δ} has nodes with $d(x,j) \in [\Delta/4, \Delta/2]$

"Listen Stash, the pipes are distinct!!"

Uh.. well X_{Δ} is distinct from $X_{\Delta/2}$.

$$E(d_T(x,y)] = \sum_{\Delta = \frac{D}{2^j}} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

$$\leq \sum_{j} \left(\frac{1}{j}\right) 32d(x,y)$$

$$\leq (32\ln n)(d(x,y)).$$

Claim: $E[d_T(x,y)] = O(logn)d(x,y)$

$$E(d_T(x,y)] = \sum_{\Delta = D/2^j} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

Recall X_{Δ} has nodes with $d(x,j) \in [\Delta/4, \Delta/2]$

"Listen Stash, the pipes are distinct!!"

Uh.. well X_{Δ} is distinct from $X_{\Delta/2}$.

$$E(d_{T}(x,y)] = \sum_{\Delta = \frac{D}{2^{i}}} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

$$\leq \sum_{j} \left(\frac{1}{j}\right) 32d(x,y)$$

$$\leq \sum_{j} \left(\frac{1}{j}\right) 32d(x,y)$$

$$\leq (32\ln n)(d(x,y)).$$

Claim: $E[d_T(x,y)] = O(logn)d(x,y)$

Expected stretch is $O(\log n)$.

$$E(d_T(x,y)] = \sum_{\Delta = D/2^i} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

Recall X_{Δ} has nodes with $d(x,j) \in [\Delta/4, \Delta/2]$

"Listen Stash, the pipes are distinct!!"

Uh.. well X_{Δ} is distinct from $X_{\Delta/2}$.

$$E(d_{T}(x,y)] = \sum_{\Delta = \frac{D}{2^{j}}} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

$$\leq \sum_{j} \left(\frac{1}{j}\right) 32d(x,y)$$

$$\leq (32 \ln n) (d(x,y)).$$

Claim: $E[d_T(x,y)] = O(logn)d(x,y)$

Expected stretch is $O(\log n)$.

We gave an algorithm that produces a distribution of trees.

The pipes are distinct!

$$E(d_T(x,y)] = \sum_{\Delta = D/2^i} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

Recall X_{Δ} has nodes with $d(x,j) \in [\Delta/4, \Delta/2]$

"Listen Stash, the pipes are distinct!!"

Uh.. well X_{Δ} is distinct from $X_{\Delta/2}$.

$$E(d_{T}(x,y)] = \sum_{\Delta = \frac{D}{2^{j}}} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 32d(x,y)$$

$$\leq \sum_{j} \left(\frac{1}{j}\right) 32d(x,y)$$

$$\leq (32 \ln n) (d(x,y)).$$

Claim: $E[d_T(x,y)] = O(logn)d(x,y)$

Expected stretch is $O(\log n)$.

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is $O(\log n)$.

Input: graph G = (V, E) with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c : V \times X$.

Input: graph G = (V, E) with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c : V \times X$.

Find an labeling of vertices, $\ell: V \to X$ that minimizes

Input: graph G = (V, E) with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c : V \times X$.

Find an labeling of vertices, $\ell: V \to X$ that minimizes

$$\sum_{e=(u,v)} c(e)d(l(u),l(v)) + \sum_{v} c(v,l(v))$$

Input: graph G = (V, E) with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c : V \times X$.

Find an labeling of vertices, $\ell: V \to X$ that minimizes

$$\sum_{e=(u,v)} c(e)d(I(u),I(v)) + \sum_{v} c(v,I(v))$$

Idea: find HST for metric (X, d).

Input: graph G = (V, E) with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c : V \times X$.

Find an labeling of vertices, $\ell: V \to X$ that minimizes

$$\sum_{e=(u,v)} c(e)d(I(u),I(v)) + \sum_{v} c(v,I(v))$$

Idea: find HST for metric (X, d).

Solve the problem on a hierarchically well separated tree metric.

Input: graph G = (V, E) with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c : V \times X$.

Find an labeling of vertices, $\ell: V \to X$ that minimizes

$$\textstyle \sum_{e=(u,v)} c(e) d(I(u),I(v)) + \sum_{v} c(v,I(v))$$

Idea: find HST for metric (X, d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Input: graph G = (V, E) with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c : V \times X$.

Find an labeling of vertices, $\ell: V \to X$ that minimizes

$$\sum_{e=(u,v)} c(e)d(l(u),l(v)) + \sum_{v} c(v,l(v))$$

Idea: find HST for metric (X, d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree,

Input: graph G = (V, E) with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c : V \times X$.

Find an labeling of vertices, $\ell: V \to X$ that minimizes

$$\sum_{e=(u,v)} c(e)d(I(u),I(v)) + \sum_{v} c(v,I(v))$$

Idea: find HST for metric (X, d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, "geometric",

Input: graph G = (V, E) with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c : V \times X$.

Find an labeling of vertices, $\ell: V \to X$ that minimizes

$$\sum_{e=(u,v)} c(e)d(l(u),l(v)) + \sum_{v} c(v,l(v))$$

Idea: find HST for metric (X, d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, "geometric", constant factor.

Input: graph G = (V, E) with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c : V \times X$.

Find an labeling of vertices, $\ell: V \to X$ that minimizes

$$\sum_{e=(u,v)} c(e)d(I(u),I(v)) + \sum_{v} c(v,I(v))$$

Idea: find HST for metric (X, d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, "geometric", constant factor.

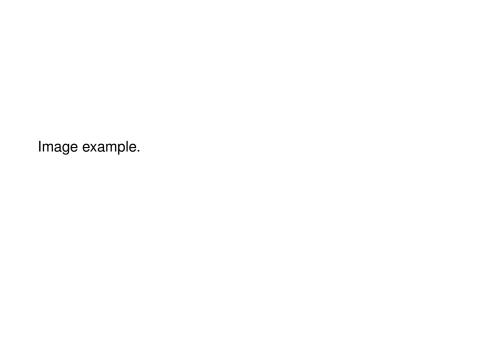
 \rightarrow $O(\log n)$ approximation.

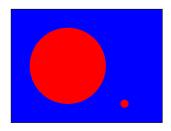
And Now For Something...

Completely Different.

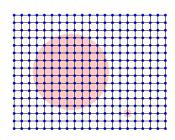
Example Problem: clustering.

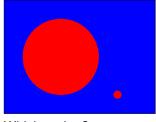
- Points: documents, dna, preferences.
- Graphs: applications to VLSI, parallel processing, image segmentation.

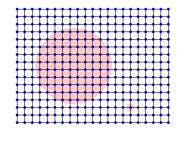




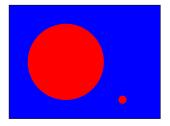


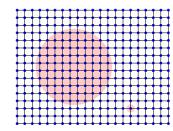






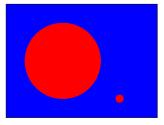
Which region?

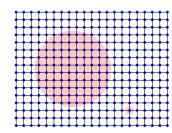




Which region? Normalized Cut: Find \mathcal{S} , which minimizes

$$\frac{w(S,\overline{S})}{w(S)\times w(\overline{S})}.$$





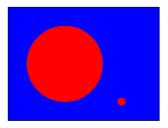
Which region? Normalized Cut: Find *S*, which minimizes

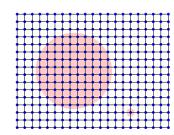
$$\frac{w(S,\overline{S})}{w(S)\times w(\overline{S})}$$

Ratio Cut: minimize

$$\frac{w(S,\overline{S})}{w(S)}$$
,

w(S) no more than half the weight. (Minimize cost per unit weight that is removed.)





Which region? Normalized Cut: Find S, which minimizes

$$\frac{w(S,\overline{S})}{w(S)\times w(\overline{S})}.$$

Ratio Cut: minimize

$$\frac{w(S,\overline{S})}{w(S)}$$
,

w(S) no more than half the weight. (Minimize cost per unit weight that is removed.)

Either is generally useful!

Graph G = (V, E),

Graph G = (V, E),

Assume regular graph of degree d.

Graph G = (V, E),

Assume regular graph of degree d.

Edge Expansion.

Graph G = (V, E),

Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V - S)|}{d\min|S|, |V - S|}, \ h(G) = \min_{S} h(S)$$

Graph
$$G = (V, E)$$
,

Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V - S)|}{d\min|S|, |V - S|}, \ h(G) = \min_{S} h(S)$$

Conductance.

Graph G = (V, E),

Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V - S)|}{d\min|S|, |V - S|}, \ h(G) = \min_{S} h(S)$$

Conductance.

$$\phi(S) = \frac{n|E(S, V - S)|}{d|S||V - S|}, \ \phi(G) = \min_{S} \phi(S)$$

Graph G = (V, E),

Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V - S)|}{d\min[S|, |V - S|}, \ h(G) = \min_{S} h(S)$$

Conductance.

$$\phi(S) = \frac{n|E(S, V - S)|}{d|S||V - S|}, \ \phi(G) = \min_{S} \phi(S)$$

Note $n \ge \max(|S|, |V| - |S|) \ge n/2$

Graph
$$G = (V, E)$$
,

Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V - S)|}{d\min|S|, |V - S|}, \ h(G) = \min_{S} h(S)$$

Conductance.

$$\phi(S) = \frac{n|E(S, V - S)|}{d|S||V - S|}, \ \phi(G) = \min_{S} \phi(S)$$

Note
$$n \ge \max(|S|, |V| - |S|) \ge n/2$$

$$\rightarrow h(G) \leq \phi(G) \leq 2h(S)$$

M = A/d adjacency matrix, A

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' .

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' .

 $v^T M v' = v^T (\lambda' v')$

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, \underline{v}' with eigenvalues λ, λ' .

 $\mathbf{v}^T \mathbf{M} \mathbf{v}' = \mathbf{v}^T (\lambda' \mathbf{v}') = \lambda' \mathbf{v}^T \mathbf{v}'$

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, \underline{v}' with eigenvalues λ, λ' .

$$\mathbf{v}^T \mathbf{M} \mathbf{v}' = \mathbf{v}^T (\lambda' \mathbf{v}') = \lambda' \mathbf{v}^T \mathbf{v}'$$

$$\mathbf{v}^{\mathsf{T}} \mathbf{M} \mathbf{v}' = \lambda \mathbf{v}^{\mathsf{T}} \mathbf{v}'$$

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' .

$$v^T M v' = v^T (\lambda' v') = \lambda' v^T v'$$

$$\mathbf{v}^{\mathsf{T}} \mathbf{M} \mathbf{v}' = \lambda \mathbf{v}^{\mathsf{T}} \mathbf{v}' = \lambda \mathbf{v}^{\mathsf{T}} \mathbf{v}.$$

Distinct eigenvalues

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' .

$$\mathbf{v}^T \mathbf{M} \mathbf{v}' = \mathbf{v}^T (\lambda' \mathbf{v}') = \lambda' \mathbf{v}^T \mathbf{v}'$$

$$\mathbf{v}^{\mathsf{T}} \mathbf{M} \mathbf{v}' = \lambda \mathbf{v}^{\mathsf{T}} \mathbf{v}' = \lambda \mathbf{v}^{\mathsf{T}} \mathbf{v}.$$

Distinct eigenvalues \rightarrow orthonormal basis.

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' .

$$\mathbf{v}^T \mathbf{M} \mathbf{v}' = \mathbf{v}^T (\lambda' \mathbf{v}') = \lambda' \mathbf{v}^T \mathbf{v}'$$

$$\mathbf{v}^{\mathsf{T}} \mathbf{M} \mathbf{v}' = \lambda \mathbf{v}^{\mathsf{T}} \mathbf{v}' = \lambda \mathbf{v}^{\mathsf{T}} \mathbf{v}.$$

Distinct eigenvalues \rightarrow orthonormal basis.

In basis: matrix is diagonal..

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' .

$$v^T M v' = v^T (\lambda' v') = \lambda' v^T v'$$

$$\mathbf{v}^{\mathsf{T}} \mathbf{M} \mathbf{v}' = \lambda \mathbf{v}^{\mathsf{T}} \mathbf{v}' = \lambda \mathbf{v}^{\mathsf{T}} \mathbf{v}.$$

Distinct eigenvalues \rightarrow orthonormal basis.

In basis: matrix is diagonal..

$$M = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

v - assigns weights to vertices.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value?

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

$$\rightarrow v_i$$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

$$\rightarrow v_i = (M1)_i$$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

$$v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\to v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x. Connected \rightarrow path from x valued node to lower value.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\to v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x. Connected \rightarrow path from x valued node to lower value.

$$\rightarrow \exists e = (i,j), v_i = x, x_j < x.$$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$ightarrow v_i = (M\mathbf{1})_i = rac{1}{d} \sum_{e \in (i,j)} \mathbf{1} = \mathbf{1}.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected \rightarrow path from x valued node to lower value.

$$\rightarrow \exists e = (i,j), v_i = x, x_j < x.$$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$ightarrow v_i = (M\mathbf{1})_i = rac{1}{d} \sum_{e \in (i,j)} \mathbf{1} = \mathbf{1}.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected
$$\rightarrow$$
 path from x valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_i < x.$

$$(Mv)_{i} \leq \frac{1}{d}(x + x \cdots + v_{j})$$

$$\vdots$$

$$x \leq x$$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

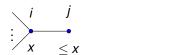
$$\to v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected \rightarrow path from x valued node to lower value.

$$ightarrow \exists e = (i,j), v_i = x, x_j < x.$$



$$(Mv)_i \leq \frac{1}{d}(x + x \cdots + v_j) < x.$$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

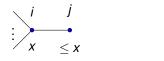
Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\to v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected
$$\rightarrow$$
 path from x valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_i < x.$



$$(Mv)_i \le \frac{1}{d}(x + x \cdots + v_j) < x$$
.
Therefore $\lambda_2 < 1$.

v - assigns weights to vertices.

Mv replaces
$$v_i$$
 with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$ightarrow v_i = (M\mathbf{1})_i = rac{1}{d} \sum_{e \in (i,j)} \mathbf{1} = \mathbf{1}.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected
$$\rightarrow$$
 path from x valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_i < x.$

$$\vdots \xrightarrow{x} \xrightarrow{\leq x}$$

$$(Mv)_i \leq \frac{1}{d}(x+x\cdots+v_j) < x.$$

Therefore $\lambda_2 < 1$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

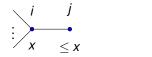
Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\to v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x. Connected \rightarrow path from x valued node to lower value.

$$\rightarrow \exists e = (i,j), v_i = x, x_i < x.$$



$$(Mv)_i \le \frac{1}{d}(x + x \cdots + v_j) < x.$$

Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

v - assigns weights to vertices.

Mv replaces
$$v_i$$
 with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

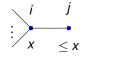
Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\to v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x. Connected \rightarrow path from x valued node to lower value.

$$\rightarrow \exists e = (i,j), v_i = x, x_i < x.$$



$$(Mv)_i \le \frac{1}{d}(x + x \cdots + v_j) < x$$
.
Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Proof: Assign +1 to vertices in one component, $-\delta$ to rest.

v - assigns weights to vertices.

Mv replaces
$$v_i$$
 with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

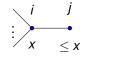
$$\to v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected \rightarrow path from x valued node to lower value.

$$\rightarrow \exists e = (i,j), v_i = x, x_j < x.$$



$$(Mv)_i \leq \frac{1}{d}(x+x\cdots+v_j) < x.$$

Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Proof: Assign +1 to vertices in one component, $-\delta$ to rest.

$$x_i = (Mx_i)$$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\to v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected
$$\rightarrow$$
 path from x valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_i < x.$

$$(Mv)_i \leq \frac{1}{d}(x + x \cdots + v_j) < x.$$

Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Proof: Assign +1 to vertices in one component, $-\delta$ to rest.

$$x_i = (Mx_i) \implies \text{eigenvector with } \lambda = 1.$$

v - assigns weights to vertices.

Mv replaces
$$v_i$$
 with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

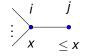
$$\to v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected \rightarrow path from x valued node to lower value.

$$\rightarrow \exists e = (i,j), v_i = x, x_j < x.$$



$$(Mv)_i \leq \frac{1}{d}(x + x \cdots + v_j) < x.$$

Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Proof: Assign +1 to vertices in one component, $-\delta$ to rest.

$$x_i = (Mx_i) \implies \text{eigenvector with } \lambda = 1.$$

Choose δ to make $\sum_i x_i = 0$,

v - assigns weights to vertices.

Mv replaces
$$v_i$$
 with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

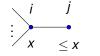
Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\to v_i = (M1)_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x. Connected \rightarrow path from x valued node to lower value.

$$\rightarrow \exists e = (i,j), v_i = x, x_i < x.$$



$$(Mv)_i \leq \frac{1}{d}(x + x \cdots + v_j) < x.$$

Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Proof: Assign +1 to vertices in one component, $-\delta$ to rest.

$$x_i = (Mx_i) \implies \text{eigenvector with } \lambda = 1.$$

Choose δ to make $\sum_i x_i = 0$, i.e., $x \perp 1$.

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

 $\lambda_1 = \text{max}_x \frac{x^T M x}{x^T x}$

In basis, *M* is diagonal.

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, M is diagonal.

Represent x in basis, i.e., $x_i = x \cdot v_i$.

```
\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}
```

In basis, *M* is diagonal.

Represent x in basis, i.e., $x_i = x \cdot v_i$.

xMx

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, M is diagonal.

Represent x in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_{i} \lambda_{i} x_{i}^{2}$$

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, M is diagonal.

Represent x in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda_{i} = \lambda_{i} x_{i}^{T} x_{i}^{T}$$

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, *M* is diagonal.

Represent x in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda = \lambda_{i} x^{T} x$$

Tight when *x* is first eigenvector.

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, M is diagonal.

Represent x in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda_{i} = \lambda_{i} x_{i}^{T} x_{i}^{T}$$

Tight when *x* is first eigenvector.

Rayleigh quotient.

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, M is diagonal.

Represent x in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda = \lambda x^{T} x$$

Tight when *x* is first eigenvector.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, *M* is diagonal.

Represent x in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda_{i} = \lambda_{i} x_{i}^{T} x_{i}^{T}$$

Tight when *x* is first eigenvector.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

$$x \perp 1$$

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, *M* is diagonal.

Represent x in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda = \lambda x^{T} x$$

Tight when *x* is first eigenvector.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

$$x \perp 1 \leftrightarrow \sum_{i} x_{i} = 0.$$

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, M is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda = \lambda x^{T} x$$

Tight when *x* is first eigenvector.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

$$x \perp 1 \leftrightarrow \sum_{i} x_{i} = 0.$$

Example: 0/1 Indicator vector for balanced cut, S is one such vector.

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, M is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda = \lambda x^{T} x$$

Tight when *x* is first eigenvector.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

$$x \perp 1 \leftrightarrow \sum_i x_i = 0.$$

Example: 0/1 Indicator vector for balanced cut, S is one such vector.

Rayleigh quotient is $\frac{|E(S,S)|}{|S|}$

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, M is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda = \lambda x^{T} x$$

Tight when *x* is first eigenvector.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$$

$$x \perp 1 \leftrightarrow \sum_i x_i = 0.$$

Example: 0/1 Indicator vector for balanced cut, S is one such vector.

Rayleigh quotient is $\frac{|E(S,S)|}{|S|} = h(S)$.

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, M is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda = \lambda x^{T} x$$

Tight when *x* is first eigenvector.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

$$x \perp 1 \leftrightarrow \sum_{i} x_{i} = 0.$$

Example: 0/1 Indicator vector for balanced cut, S is one such vector.

Rayleigh quotient is $\frac{|E(S,S)|}{|S|} = h(S)$.

Rayleigh quotient is less than h(S) for any balanced cut S.

$$\lambda_1 = \max_{x} \frac{x^T M x}{x^T x}$$

In basis, M is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda = \lambda x^{T} x$$

Tight when *x* is first eigenvector.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

$$x \perp 1 \leftrightarrow \sum_{i} x_{i} = 0.$$

Example: 0/1 Indicator vector for balanced cut, S is one such vector.

Rayleigh quotient is $\frac{|E(S,S)|}{|S|} = h(S)$.

Rayleigh quotient is less than h(S) for any balanced cut S.

Find balanced cut from vector that acheives Rayleigh quotient?

Rayleigh quotient.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$$

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

2

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$$

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$\frac{\mu}{2} = \frac{1 - \lambda_2}{2}$$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$$

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$\frac{\mu}{2} = \frac{1-\lambda_2}{2} \le h(G)$$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$\frac{\mu}{2} = \frac{1-\lambda_2}{2} \le h(G) \le \sqrt{2(1-\lambda_2)}$$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$\frac{\mu}{2} = \frac{1-\lambda_2}{2} \le h(G) \le \sqrt{2(1-\lambda_2}) = \sqrt{2\mu}$$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$\frac{\mu}{2} = \frac{1-\lambda_2}{2} \leq h(G) \leq \sqrt{2(1-\lambda_2}) = \sqrt{2\mu}$$

Hmmm..

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2})=\sqrt{2\mu}$$

Hmmm..

Connected $\lambda_2 < \lambda_1$.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2})=\sqrt{2\mu}$$

Hmmm..

Connected $\lambda_2 < \lambda_1$.

h(G) large

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$\frac{\mu}{2} = \frac{1 - \lambda_2}{2} \le h(G) \le \sqrt{2(1 - \lambda_2}) = \sqrt{2\mu}$$

Hmmm..

Connected $\lambda_2 < \lambda_1.$

h(G) large \rightarrow well connected

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2})=\sqrt{2\mu}$$

Hmmm..

Connected $\lambda_2 < \lambda_1$.

h(G) large \rightarrow well connected $\rightarrow \lambda_1 - \lambda_2$ big.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(\textit{G})\leq \sqrt{2(1-\lambda_2})=\sqrt{2\mu}$$

Hmmm..

Connected $\lambda_2 < \lambda_1$.

h(G) large \rightarrow well connected $\rightarrow \lambda_1 - \lambda_2$ big.

Disconnected

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(\textit{G})\leq \sqrt{2(1-\lambda_2})=\sqrt{2\mu}$$

Hmmm..

Connected $\lambda_2 < \lambda_1$.

h(G) large \rightarrow well connected $\rightarrow \lambda_1 - \lambda_2$ big.

Disconnected $\lambda_2 = \lambda_1$.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$\frac{\mu}{2} = \frac{1 - \lambda_2}{2} \le h(G) \le \sqrt{2(1 - \lambda_2}) = \sqrt{2\mu}$$

Hmmm..

Connected $\lambda_2 < \lambda_1$.

h(G) large \rightarrow well connected $\rightarrow \lambda_1 - \lambda_2$ big.

Disconnected $\lambda_2 = \lambda_1$.

h(G) small

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall:
$$h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V - S)|}{|S|}$$

$$\frac{\mu}{2} = \frac{1-\lambda_2}{2} \le h(G) \le \sqrt{2(1-\lambda_2)} = \sqrt{2\mu}$$

Hmmm..

Connected $\lambda_2 < \lambda_1$.

$$h(G)$$
 large \rightarrow well connected $\rightarrow \lambda_1 - \lambda_2$ big.

Disconnected $\lambda_2 = \lambda_1$.

$$h(G)$$
 small $\rightarrow \lambda_1 - \lambda_2$ small.

Small cut \rightarrow small eigenvalue gap.

Small cut \rightarrow small eigenvalue gap.

 $\frac{\mu}{2} \leq h(G)$

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

 $\operatorname{Cut}\,\mathcal{S}.$

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut
$$S$$
. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut
$$S$$
. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$ightarrow$$
 $V \perp 1$.

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$ightarrow$$
 $V \perp 1$.

$$v^T v$$

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut
$$S$$
. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$ightarrow$$
 $v \perp$ 1.

$$v^T v = |S|(|V| - |S|)^2$$

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut
$$S$$
. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$\rightarrow v \perp 1$$
.

$$v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|)$$

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$\rightarrow v \perp 1$$
.

$$v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$$

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$\rightarrow$$
 $v \perp 1$.

$$v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$$

 $v^T M v$

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$\rightarrow$$
 $v \perp 1$.

$$v^Tv = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$$

$$v^T M v = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$$

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$\rightarrow v \perp 1$$
.

$$v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$$

$$v^T M v = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$$

Same side endpoints: like $v^T v$.

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$\rightarrow v \perp 1$$
.

$$v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$$

$$v^T M v = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$$

Same side endpoints: like $v^T v$.

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$\rightarrow v \perp 1$$
.

$$v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$$

$$v^T M v = \frac{1}{d} \sum_{e=(i,j)} x_i x_j$$
.

Same side endpoints: like v^Tv .

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$\rightarrow v \perp 1$$
.

$$v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$$

$$v^T M v = \frac{1}{d} \sum_{e=(i,j)} x_i x_j$$
.

Same side endpoints: like v^Tv .

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$\rightarrow$$
 $v \perp 1$.

$$v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$$

$$v^T M v = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$$

Same side endpoints: like v^Tv .

$$v^{T}Mv = v^{T}v - (2|E(S,S)||S|(|V| - |S|)$$

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$\rightarrow v \perp 1$$
.

$$v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$$

$$v^T M v = \frac{1}{d} \sum_{e=(i,j)} x_i x_j$$
.

Same side endpoints: like $v^T v$.

$$v^{T}Mv = v^{T}v - (2|E(S,S)||S|(|V| - |S|)$$

$$\frac{v^T M v}{v^T v} = 1 - \frac{2|E(S,\overline{S})|}{|S|}$$

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$\rightarrow v \perp 1$$
.

$$v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$$

$$v^T M v = \frac{1}{d} \sum_{e=(i,j)} x_i x_j$$
.

Same side endpoints: like $v^T v$.

$$v^{T}Mv = v^{T}v - (2|E(S,S)||S|(|V| - |S|)$$

$$\frac{v^T M v}{v^T v} = 1 - \frac{2|E(S, \overline{S})|}{|S|}$$

$$\lambda_2 \geq 1 - 2h(S)$$

Small cut \rightarrow small eigenvalue gap.

$$\frac{\mu}{2} \leq h(G)$$

Cut S. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

$$\sum_{i} v_{i} = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$$

$$\rightarrow v \perp 1$$
.

$$v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$$

$$v^T M v = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$$

Same side endpoints: like $v^T v$.

$$v^{T}Mv = v^{T}v - (2|E(S,S)||S|(|V| - |S|)$$

$$\frac{v^T M v}{v^T v} = 1 - \frac{2|E(S,S)|}{|S|}$$

$$\lambda_2 \geq 1 - 2h(S) \rightarrow h(G) \geq \frac{1 - \lambda_2}{2}$$

See you ...

Thursday.