Welcome back...

Probabilistic Tree embedding.

Probabilistic Tree embedding
 Map X into tree.

(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.
Later: use spanning tree for graphical metrics.
The Idea:
HST \equiv recursive decomposition of metric space
Decompose space by diameter $\approx \Delta$ balls.
Recurse on each ball for $\Delta / 2$.
Use randomness in
selection of ball centers.
the \approx diameter of the balls.

Metric spaces.

A metric space $X, d(i, j)$ where $d(i, j) \leq d(i, k)+d(k, j)$,
$d(i, j)=d(j, i)$, and $d(i, j) \geq 0$
Which are metric spaces?
(A) X from R^{d} and $d(\cdot, \cdot)$ is Euclidean distance.
(B) X from R^{d} and $d(\cdot, \cdot)$ is squared Euclidean distance
(C) X-vertices in graph, $d(i, j)$ is shortest path distances in graph.
(D) X is a set of vectors and $d(u, v)$ is $u \cdot v$.

Input to TSP, facility location, some layout problems, ..., metric labelling.
Hard problems. Easier to solve on trees. Dynamic programming on trees.
Approximate metric on trees?

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{3}{8}, \frac{1}{2}\right]$
$\mathrm{T}=[]$
if $\Delta<1$ return [S]
foreach in π
if $i \in S$
$B=\operatorname{ball(i,} \beta \Delta) ; S=S / B$
T.append (B)
return map ($\lambda \mathrm{x}$: subtree $(\mathrm{x}, \Delta / 2), \mathrm{T}$);
3. subtree (X, D)

Tree has internal node for each level of call. Tree edges have weight Δ to children.
Claim 1: $d_{T}(x, y) \geq d(x, y)$.
When $\Delta \leq d(x, y), x$ and y must be in different balls, so cut at Iv|
$\Delta \geq d(x, y) / 2$.

$$
\rightarrow d_{T}(x, y) \geq \Delta+\Delta \geq d(x, y)
$$

Approximate metric using a tree.

Tree metric:

X is nodes of tree with edge weights
$d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$
in expectation.
Map metric onto tree?

Fix it up chappie!
For cycle, remove a random edge get a tree.
Stretch of edge: $\frac{n-1}{n} \times 1+\frac{1}{n} \times(n-1) \approx 2$
General metrics?

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$
Cut at level $\Delta \rightarrow d_{T}(x, y) \leq 4 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?
Would like it to be $\frac{d(x, y)}{\Delta}$.
\rightarrow expected length is $\sum_{\Delta=D / 2^{i}}(4 \Delta) \frac{d(x, y)}{\Delta}=4 \log D \cdot d(x, y)$
Why should it be $\frac{d(x, y)}{}$?
smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball.
random diameter jiggles edge of ball.
$\rightarrow \operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta}$
The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many
random permutation to deal with this

Analysis: (x, y)

Would like $\operatorname{Pr}[x, y$ cut by ball X in balll $<\underline{8 d(x, y)}$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball.
Renumber nodes in order of distance from x
If $d(x, y) \geq \Delta / 8, \frac{8 d(x, y)}{\Delta} \geq 1$, so claim holds trivially
j can only cut (x, y) if $d(j, x) \in[\Delta / 4, \Delta / 2]$ (else (x, y) entirely in ball), Call this set X_{Δ}.
$j \in X_{\Delta}$ cuts (x, y) if.
$d(j, x) \leq \beta \Delta$ and $\beta \Delta \leq d(j, y) \leq d(j, x)+d(x, y)$
$\rightarrow \beta \Delta \in[d[j, x], d(j, x)+d(x, y)]$ $\rightarrow \beta \Delta \in[d[j, x], d(j, x)+d(x, y)]$.
occurs with prob. $\frac{d(x, y)}{\Delta / 8}=\frac{8 d(x, y)}{\Delta}$.

And j must be before any $i<j$ in $\pi \rightarrow$ prob is $\frac{1}{j}$
$\rightarrow \operatorname{Pr}[j$ cuts $(x, y)] \leq\left(\frac{1}{J}\right) \frac{8 d(x, y)}{\Delta}$
$d_{T}(x, y)$ if cut level Δ is 4Δ.
$\rightarrow E\left[d_{T}(x, y)\right]=\sum_{\Delta=\frac{D}{2!}} \sum_{j \in X_{\Delta}}\left(\frac{1}{J}\right) 32 d(x, y)$
And Now For Something..

Completely Different.

The pipes are distinct!

$E\left(d_{T}(x, y)\right]=\Sigma_{\Delta=D / 2 i} \Sigma_{j \in X_{\Delta}}\left(\frac{1}{I}\right) 32 d(x, y)$
Recall X_{Δ} has nodes with $d(x, j) \in[\Delta / 4, \Delta / 2]$
"Listen Stash, the pipes are distinct!!"
Uh.. well X_{Δ} is distinct from $X_{\Delta / 2}$.
$E\left(d_{T}(x, y)\right]=\Sigma_{\Delta=\frac{D}{2}} \sum_{j \in X_{\Delta}}\left(\frac{1}{J}\right) 32 d(x, y)$
$\leq \Sigma_{j}\left(\frac{1}{J}\right) 32 d(x, y)$
$\leq(32 \ln n)(d(x, y))$.
Claim: $E\left[d_{T}(x, y)\right]=O(\operatorname{logn}) d(x, y)$
Expected stretch is $O(\log n)$.
We gave an algorithm that produces a distribution of trees.
The expected stretch of any pair is $O(\log n)$.

Example Problem: clustering.

- Points: documents, dna, preferences
- Graphs: applications to VLSI, parallel processing, image segmentation.

Metric Labelling

nput: graph $G=(V, E)$ with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c: V \times X$.
Find an labeling of vertices, $\ell: V \rightarrow X$ that minimizes
$\sum_{e=(u, v)} c(e) d(I(u), l(v))+\sum_{v} c(v, l(v))$
dea: find HST for metric (X, d)
Solve the problem on a hierarchically well separated tree metric Kleinberg-Tardos: constant factor on uniform metric.
Hierarchically well separated tree, "geometric", constant factor
$\rightarrow O(\log n)$ approximation

Image example

Image Segmentation

Which region? Normalized Cut: Find S, which minimizes

$$
\frac{w(S, \bar{S})}{w(S) \times w(\bar{S})}
$$

Ratio Cut: minimize

$$
\frac{w(S, \bar{S})}{w(S)},
$$

$w(S)$ no more than half the weight. (Minimize cost per unit weight that is removed.)
Either is generally useful!

Action of M.

v - assigns weights to vertices.
$M v$ replaces v_{i} with $\frac{1}{d} \sum_{e=(i, j)} v_{i .}$
Eigenvector with highest value? $\quad v=1 . \lambda_{1}=1$.
$\rightarrow v_{i}=(M 1)_{i}={ }_{d}^{1} \sum_{e \in(i, j)} 1=1$
Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.
$\begin{array}{ll}i & j \\ x \quad \leq x & (M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x . \\ \text { Therefore } \lambda_{2}<1 .\end{array}$
Claim: Connected if $\lambda_{2}<1$.
Proof: Assign +1 to vertices in one component, $-\delta$ to rest. $x_{i}=\left(M x_{i}\right) \Longrightarrow$ eigenvector with $\lambda=1$.
$x_{i}=\left(x_{i}\right) \Longrightarrow$ make $\sum_{i} x_{i}=0$, i.e., $x \perp 1$.

Edge Expansion/Conductance.

Graph $G=(V, E)$
Assume regular graph of degree d
Edge Expansion.
$h(S)=\frac{|E(S, V-S)|}{d \min \mid S, V-S}, h(G)=\min _{S} h(S)$
Conductance.
$\phi(S)=\frac{n \mid E(S, V-S| |}{d S \| V-S \mid}, \phi(G)=\min _{S} \phi(S)$
Note $n \geq \max (|S|,|V|-|S|) \geq n / 2$
$\rightarrow h(G) \leq \phi(G) \leq 2 h(S)$

Rayleigh Quotient

$\lambda_{1}=\max _{x} \frac{x^{\top} M x}{x^{\top} x}$
In basis, M is diagonal
Represent x in basis, i.e., $x_{i}=x \cdot v_{i}$.
$x M x=\sum_{i} \lambda_{i} x_{i}^{2} \leq \lambda_{1} \sum_{i} x_{i}^{2} \lambda=\lambda x^{\top} x$
Tight when x is first eigenvector
Rayleigh quotient.
$\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{T} X}$
$x \perp 1 \leftrightarrow \sum_{i} x_{i}=0$.
Example: $0 / 1$ Indicator vector for balanced cut, S is one such vector
Rayleigh quotient is $\frac{|E(S, S)|}{|S|}=h(S)$.
Rayleigh quotient is less than $h(S)$ for any balanced cut S. Find balanced cut from vector that acheives Rayleigh quotient?

Spectra of the graph

$M=A / d$ adjacency matrix, A
Eigenvector: $v-M v=\lambda v$
Real, symmetric.
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: v, v^{\prime} with eigenvalues $\lambda, \lambda^{\prime}$
$v^{\top} M v^{\prime}=v^{\top}\left(\lambda^{\prime} v^{\prime}\right)=\lambda^{\prime} v^{\top} v^{\prime}$
$v^{\top} M v^{\prime}=\lambda v^{\top} v^{\prime}=\lambda v^{\top} v$.
Distinct eigenvalues \rightarrow orthonormal basis.
In basis: matrix is diagonal.

$$
M=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]
$$

Cheeger's inequality.

Rayleigh quotient.

$\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{T} x}$
Eigenvalue gap: $\mu=\lambda_{1}-\lambda_{2}$
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$
$\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}=\sqrt{2 \mu}$
Hmm.
Connected $\lambda_{2}<\lambda_{1}$.
$h(G)$ large \rightarrow well connected $\rightarrow \lambda_{1}-\lambda_{2}$ big
Disconnected $\lambda_{2}=\lambda_{1}$.
$h(G)$ small $\rightarrow \lambda_{1}-\lambda_{2}$ small.

Easy side of Cheeger.
Small cut \rightarrow small eigenvalue gap.
$\frac{\mu}{2} \leq h(G)$
Cut $S . i \in S: v_{i}=|V|-|S|, i \in \bar{S} v_{i}=-|S|$.
$\sum_{i} v_{i}=|S|(|V|-|S|)-|S|(|V|-|S|)=0$
$\rightarrow v \perp 1$.
$v^{\top} v=\left|S(|V|-|S|)^{2}+|S|^{2}(|V|-|S|)=|S|(|V|-|S|)(|V|)\right.$.
$v^{\top} M v={ }_{d}^{1} \sum_{e=(i, j)} x_{i} x_{j}$.
Same side endpoints: like $v^{\top} v$.
Different side endpoints: $-|S|| | V|-|S|)$
$v^{\top} M v=v^{\top} v-(2|E(S, S)||S|| | V|-|S|)$
$\frac{v^{\top} M v}{v^{\top} v_{v}}=1-\frac{2 \mid E(S, S)}{\mid S}$
$\lambda_{2} \geq 1-2 h(S) \rightarrow h(G) \geq \frac{1-\lambda_{2}}{2}$

See you ...

Thursday.

