
Welcome back... Metric spaces.

A metric space X , d(i , j) where d(i , j)≤ d(i ,k) + d(k , j),
d(i , j) = d(j , i), and d(i , j)≥ 0.

Which are metric spaces?

(A) X from Rd and d(·, ·) is Euclidean distance.

(B) X from Rd and d(·, ·) is squared Euclidean distance.

(C) X - vertices in graph, d(i , j) is shortest path distances in graph.

(D) X is a set of vectors and d(u,v) is u ·v .

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems. Easier to solve on trees. Dynamic programming on
trees.

Approximate metric on trees?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.
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Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

Later: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Algorithm
Algorithm: (X ,d), diam(X )≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [ 3

8 ,
1
2 ].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S
B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,D)

Tree has internal node for each level of call. Tree edges have weight
∆ to children.

Claim 1: dT (x ,y)≥ d(x ,y).

When ∆≤ d(x ,y), x and y must be in different balls, so cut at lvl
∆≥ d(x ,y)/2.

→ dT (x ,y)≥∆ + ∆≥ d(x ,y)

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≤ 4∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (4∆) d(x ,y)
∆ = 4logD ·d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.

random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this



Analysis: (x ,y)
Would like Pr [x ,y cut by ball|x in ball]≤ 8d(x ,y)

∆
(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

If d(x ,y)≥∆/8, 8d(x ,y)
∆ ≥ 1, so claim holds trivially.

j can only cut (x ,y) if d(j ,x) ∈ [∆/4,∆/2] (else (x ,y) entirely in ball),
Call this set X∆.

j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x ],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/8 = 8d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
8d(x ,y)

∆

dT (x ,y) if cut level ∆ is 4∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
32d(x ,y)

The pipes are distinct!

E(dT (x ,y)] = ∑∆=D/2i ∑j∈X∆

(
1
j

)
32d(x ,y)

Recall X∆ has nodes with d(x , j) ∈ [∆/4,∆/2]

“Listen Stash, the pipes are distinct!!”

Uh.. well X∆ is distinct from X∆/2.

E(dT (x ,y)] = ∑∆= D
2i

∑j∈X∆

(
1
j

)
32d(x ,y)

≤ ∑j

(
1
j

)
32d(x ,y)

≤ (32lnn)(d(x ,y)).

Claim: E [dT (x ,y)] = O(logn)d(x ,y)

Expected stretch is O(logn).

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is O(logn).

Metric Labelling

Input: graph G = (V ,E) with edge weights, w(·), metric labels (X ,d),
and costs for mapping vertices to labels c : V ×X .

Find an labeling of vertices, ` : V → X that minimizes

∑e=(u,v) c(e)d(l(u), l(v)) + ∑v c(v , l(v))

Idea: find HST for metric (X ,d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, “geometric”, constant factor.

→ O(logn) approximation.

And Now For Something...

Completely Different.

Example Problem: clustering.

I Points: documents, dna, preferences.
I Graphs: applications to VLSI, parallel processing, image

segmentation.

Image example.



Image Segmentation

Which region? Normalized Cut: Find S, which minimizes

w(S,S)

w(S)×w(S)
.

Ratio Cut: minimize
w(S,S)

w(S)
,

w(S) no more than half the weight. (Minimize cost per unit weight
that is removed.)
Either is generally useful!

Edge Expansion/Conductance.

Graph G = (V ,E),

Assume regular graph of degree d .

Edge Expansion.

h(S) = |E(S,V−S)|
d min |S|,|V−S| , h(G) = minS h(S)

Conductance.

φ(S) = n|E(S,V−S)|
d |S||V−S| , φ(G) = minS φ(S)

Note n ≥max(|S|, |V |− |S|)≥ n/2

→ h(G)≤ φ(G)≤ 2h(S)

Spectra of the graph.
M = A/d adjacency matrix, A

Eigenvector: v – Mv = λv

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are
orthogonal.

Proof: Eigenvectors: v ,v ′ with eigenvalues λ ,λ ′.
vT Mv ′ = vT (λ ′v ′) = λ ′vT v ′

vT Mv ′ = λvT v ′ = λvT v .
Distinct eigenvalues→ orthonormal basis.

In basis: matrix is diagonal..

M =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn




Action of M.

v - assigns weights to vertices.

Mv replaces vi with 1
d ∑e=(i ,j) vj .

Eigenvector with highest value? v = 1. λ1 = 1.

→ vi = (M1)i = 1
d ∑e∈(i ,j) 1 = 1.

Claim: For a connected graph λ2 < 1.

Proof: Second Eigenvector: v ⊥ 1. Max value x .
Connected→ path from x valued node to lower value.
→ ∃ e = (i , j), vi = x , xj < x .

i

x

...

j

≤ x

(Mv)i ≤ 1
d (x + x · · ·+ vj ) < x .

Therefore λ2 < 1.

Claim: Connected if λ2 < 1.
Proof: Assign +1 to vertices in one component, −δ to rest.

xi = (Mxi ) =⇒ eigenvector with λ = 1.
Choose δ to make ∑i xi = 0, i.e., x ⊥ 1.

Rayleigh Quotient

λ1 = maxx
xT Mx
xT x

In basis, M is diagonal.

Represent x in basis, i.e., xi = x ·vi .

xMx = ∑i λix2
i ≤ λ1 ∑i x2

i λ = λxT x

Tight when x is first eigenvector.

Rayleigh quotient.
λ2 = maxx⊥1

xT Mx
xT x .

x ⊥ 1↔ ∑i xi = 0.

Example: 0/1 Indicator vector for balanced cut, S is one such vector.

Rayleigh quotient is |E(S,S)|
|S| = h(S).

Rayleigh quotient is less than h(S) for any balanced cut S.

Find balanced cut from vector that acheives Rayleigh quotient?

Cheeger’s inequality.

Rayleigh quotient.
λ2 = maxx⊥1

xT Mx
xT x .

Eigenvalue gap: µ = λ1−λ2.

Recall: h(G) = minS,|S|≤|V |/2
|E(S,V−S)|

|S|
µ
2 = 1−λ2

2 ≤ h(G)≤
√

2(1−λ2) =
√

2µ

Hmmm..

Connected λ2 < λ1.
h(G) large→ well connected→ λ1−λ2 big.

Disconnected λ2 = λ1.
h(G) small→ λ1−λ2 small.



Easy side of Cheeger.

Small cut→ small eigenvalue gap.
µ
2 ≤ h(G)

Cut S. i ∈ S : vi = |V |− |S|, i ∈ Svi =−|S|.
∑i vi = |S|(|V |− |S|)−|S|(|V |− |S|) = 0

→ v ⊥ 1.

vT v = |S|(|V |− |S|)2 + |S|2(|V |− |S|) = |S|(|V |− |S|)(|V |).
vT Mv = 1

d ∑e=(i ,j) xixj .

Same side endpoints: like vT v .

Different side endpoints: −|S|(|V |− |S|)
vT Mv = vT v − (2|E(S,S)||S|(|V |− |S|)

vT Mv
vT v = 1− 2|E(S,S)|

|S|

λ2 ≥ 1−2h(S)→ h(G)≥ 1−λ2
2

See you ...

Thursday.


