Today.

Modelling.

An Analysis of the Power of PCA.
Musing (rant?) about algorithms in the real world

Gaussians

Population 1: Gaussion with mean $\mu_{1} \in R^{d}$, std dev. σ in each dim Population 2: Gaussion with mean $\mu_{2} \in R^{d}$, std dev. σ in each dim
Difference between humans σ per snp.
Difference between populations ε per snp.
How many snps to collect to determine population for individual x ? x in population 1 .
$E\left[\left(x-\mu_{1}\right)^{2}\right]=d \sigma^{2}$
$E\left[\left(x-\mu_{2}\right)^{2}\right] \geq(d-1) \sigma^{2}+\left(\mu_{1}-\mu_{2}\right)^{2}$
If $\left(\mu_{1}-\mu_{2}\right)^{2}=d \varepsilon^{2} \gg \sigma^{2}$, then different.
\rightarrow take $d \gg \sigma^{2} / \varepsilon^{2}$
Variance of estimator?
Roughly $d \sigma^{4}$
Signal is difference between expecations
roughly $d \varepsilon^{2}$
Signal \gg Noise. $\leftrightarrow d \varepsilon^{2} \gg \sqrt{d} \sigma^{2}$
Need $d \gg \sigma^{4} / \varepsilon^{4}$.

Two populations.

DNA data:
human1: A… C... T... A
human2: $C \ldots C \ldots A \ldots T$
human3: A… G... T...T
Single Nucleotide Polymorphism.
Same population?
Model: same populution breeds
Population 1: snp 843: $\operatorname{Pr}[A]=.4, \operatorname{Pr}[T]=.6$
Population 2: snp 843: $\operatorname{Pr}[A]=.6, \operatorname{Pr}[T]=.4$
Individual: $x_{1}, x_{2}, x_{3} \ldots, x_{n}$
Which population?
Comment: snps could be movie preferences, populations could be types.
E.g., republican/democrat, shopper/saver.

Projection

Population 1: Gaussion with mean $\mu_{1} \in R^{d}$, variance σ in each dim Population 2: Gaussion with mean $\mu_{2} \in R^{d}$, variance σ in each dim.
Difference between humans σ per snp.
Difference between populations ε per snp.
Project x onto unit vector v in direction $\mu_{2}-\mu_{1}$.
$E\left[\left(\left(x-\mu_{1}\right) \cdot v\right)^{2}\right]=\sigma^{2}$ if x is population 1 .
$E\left[\left(\left(x-\mu_{2}\right) \cdot v\right)^{2}\right] \geq\left(\mu_{1}-\mu_{2}\right)^{2}$ if x is population 2
Std deviation is σ^{2} ! versus $\sqrt{d} \sigma^{2}$!
No loss in signa!!

$$
\begin{aligned}
& d \varepsilon^{2} \gg \sigma^{2} . \\
& \rightarrow d \gg \sigma^{2} / \varepsilon^{2}
\end{aligned}
$$

Versus $d \gg \sigma^{4} / \varepsilon^{4}$.
A quadratic difference in amount of datal

Which population?

Population 1: snp 843: $\operatorname{Pr}[\mathrm{A}]=.4, \operatorname{Pr}[\mathrm{~T}]=.6$
Population 2: $\operatorname{snp} 843: \operatorname{Pr}[\mathrm{A}]=.6, \operatorname{Pr}[\mathrm{~T}]=.4$
ndividual: $x_{1}, x_{2}, x_{3} ., x_{n}$.
Population 1: snp $i: \operatorname{Pr}\left[x_{i}=1\right]=p_{i}^{(1)}$
Population 2: snp $i: \operatorname{Pr}\left[x_{i}=1\right]=p_{i}^{(2)}$
Simpler Calculation:
Population 1: Gaussion with mean $\mu_{1} \in R^{d}$, variance σ in each dim Population 2: Gaussion with mean $\mu_{2} \in R^{d}$, variance σ in each dim

- ••

```
••
```

 -
 Don't know much about..

Don't know μ_{1} or μ_{2} ?

Without the means?

Sample of n people.
Some (say half) from population 1, some from population 2.

Which are which?

Near Neighbors Approach

Compute Euclidean distance squared
Cluster using threshold.
Signal $E\left[d\left(x_{1}, x_{2}\right)\right]-E\left[d\left(x_{1}, y_{1}\right)\right]$
should be larger than noise in $d(x, y)$
Where x 's from one population, y 's from other.
Signal is proportional $d \varepsilon^{2}$.
Noise is proportional to $\sqrt{d} \sigma^{2}$
$d \gg \sigma^{4} / \varepsilon^{4} \quad \rightarrow$ same type people closer to each other.
$d \gg\left(\sigma^{4} / \varepsilon^{4}\right) \log n$ suffices for threshold clustering.
$\log n$ factor for union bound over $\binom{n}{2}$ pairs
Best one can do?

PCA calculation.

Matrix A where rows are points.
First eigenvector of $B=A^{T} A$ is maximum variance direction
$A v$ are projections onto v.
$v B v=(v A)^{T}(A v)$ is $\sum_{x}(x \cdot v)^{2}$
First eigenvector, v, of B maximizes $x^{\top} B x$.
$B v=\lambda v$ for maximum λ
$\rightarrow v B v=\lambda$ for unit v.
Eigenvectors form orthonormal basis.
Any other vector $a v+x, x \cdot v=0$
x is composed of possibly smaller eigenvalue vectors.
$\rightarrow v B v \geq(a v+x) B(a v+x)$ for unit $v, a v+x$.

Principal components analysis
Remember Projection!

```
- ••
\(\bullet\)
```

Prin
Principal component analysis:
Find direction, v, of maximum variance
Maximize $\sum(x \cdot v)^{2}$ (zero center the points)
Recall: $(x \cdot v)^{2}$ could determine population
Typical direction variance. $n \sigma^{2}$.
Direction along $\mu_{1}-\mu_{2}$
$\propto n\left(\mu_{1}-\mu_{2}\right)^{2}$.
$\propto n d \varepsilon^{2}$.
Need $d \gg \sigma^{2} / \varepsilon^{2}$ at least
When will PCA pick correct direction with good probability?
Union bound over directions. How many directions? Infinity and beyond!

Computing eigenvalues.

Power method:
Choose random x
Repeat: Let $x=B x$. Scale x to unit vector.
$x=a_{1} v_{1}+a_{2} v_{2}+\cdots$
$x_{t} \propto B^{t} x=a_{1} \lambda_{1}^{t} v_{1}+a_{2} \lambda_{2}^{t} v_{2}+\cdots$
Mostly v_{1} after a while since $\lambda_{1}^{t} \gg \lambda_{2}^{t}$.
Cluster Algorithm
Choose random partition
Repeat: Compute means of partition. Project, cluster.
Choose random +1 / -1 vector. Multiply by A^{T} (direction between means), multiply by A (project points), cluster (round to $+1 /-1$ vector.) Sort of repeatedly multiplying by $A A^{T}$. Power method.

```
Nets
    \(\delta\) - Net
        where all others, \(v\), are close to \(x \in \mathscr{D}\).
        \(x \cdot v \geq 1-\delta\).
    \(\delta\) - Net:
        \([\cdots, i \delta / d, \cdots]\) integers \(i \in[-d / \delta, d \delta]\).
```

 Total of \(N \propto\left(\frac{d}{\delta}\right)^{O(d)}\) vectors in net.
 Signal \(\gg\) Noise times \(\log N=O\left(d \log \frac{d}{\delta}\right)\) to isolate direction.
 \(\log N\) is due to union bound over vectors in net.
 Signal (exp. projection): \(\propto n d \varepsilon^{2}\).
 Noise (std dev.): \(\sqrt{n} \sigma^{2}\)
 \(n d \gg\left(\sigma^{4} / \varepsilon^{4}\right) \log d\) and \(d \gg \sigma^{2} / \varepsilon^{2}\) works.
 Nearest neighbor works with very high \(d>\sigma^{4} / \varepsilon^{4}\).
 PCA can reduce \(d\) to "knowing centers" case, with reasonable
 number of sample points.
 Sum up.

Clustering mixture of gaussians.

Near Neighbor works with sufficient data.
Projection onto subspace of means is better
Principal compent analysis can find subspace of means
Power method computes principal component.
Generic clustering algorithm is rounded version of power method

