Today.

Cuckoo hashing.

Today.

Cuckoo hashing.
Johnson-Lindenstrass.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing: Array.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{j}(y)$.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{j}(y)$. And so on.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{j}(y)$. And so on.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{j}(y)$. And so on.
If go too long.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{j}(y)$. And so on.
If go too long. Fail.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{j}(y)$. And so on.
If go too long. Fail. Rehash entire hash table.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{j}(y)$. And so on.
If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{j}(y)$. And so on.
If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.
C_{ℓ} - event of cycle of length ℓ at a vertex.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{j}(y)$. And so on.
If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.
C_{ℓ} - event of cycle of length ℓ at a vertex.

$$
\begin{equation*}
\operatorname{Pr}\left[C_{\ell}\right] \leq\binom{ m}{\ell}\binom{n}{\ell}\left(\frac{\ell}{n}\right)^{2(\ell)} \leq\left(\frac{e^{2}}{8}\right)^{\ell} \tag{1}
\end{equation*}
$$

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{j}(y)$. And so on.
If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.
C_{ℓ} - event of cycle of length ℓ at a vertex.

$$
\begin{equation*}
\operatorname{Pr}\left[C_{\ell}\right] \leq\binom{ m}{\ell}\binom{n}{\ell}\left(\frac{\ell}{n}\right)^{2(\ell)} \leq\left(\frac{e^{2}}{8}\right)^{\ell} \tag{1}
\end{equation*}
$$

Probability that an insert hits a cycle of length $\ell \leq \frac{\ell}{n}\left(\frac{e^{2}}{8}\right)^{\ell}$

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{j}(y)$. And so on.
If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.
C_{ℓ} - event of cycle of length ℓ at a vertex.

$$
\begin{equation*}
\operatorname{Pr}\left[C_{\ell}\right] \leq\binom{ m}{\ell}\binom{n}{\ell}\left(\frac{\ell}{n}\right)^{2(\ell)} \leq\left(\frac{e^{2}}{8}\right)^{\ell} \tag{1}
\end{equation*}
$$

Probability that an insert hits a cycle of length $\ell \leq \frac{\ell}{n}\left(\frac{e^{2}}{8}\right)^{\ell}$
Rehash every $\Omega(n)$ inserts (if $\leq n / 8$ items in table.)

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{j}(y)$. And so on.
If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.
C_{ℓ} - event of cycle of length ℓ at a vertex.

$$
\begin{equation*}
\operatorname{Pr}\left[C_{\ell}\right] \leq\binom{ m}{\ell}\binom{n}{\ell}\left(\frac{\ell}{n}\right)^{2(\ell)} \leq\left(\frac{e^{2}}{8}\right)^{\ell} \tag{1}
\end{equation*}
$$

Probability that an insert hits a cycle of length $\ell \leq \frac{\ell}{n}\left(\frac{e^{2}}{8}\right)^{\ell}$
Rehash every $\Omega(n)$ inserts (if $\leq n / 8$ items in table.)
$O(1)$ time on average.

Johnson-Lindenstrass

Points: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$.

Johnson-Lindenstrass

Points: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$.
Random $k=\frac{c \log n}{\varepsilon^{2}}$ dimensional subspace.

Johnson-Lindenstrass

Points: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$.
Random $k=\frac{c \log n}{\varepsilon^{2}}$ dimensional subspace.
Claim: with probability $1-\frac{1}{n^{c-2}}$,

$$
(1-\varepsilon) \sqrt{\frac{k}{d}}\left|x_{i}-x_{j}\right| \leq\left|y_{i}-y_{j}\right| \leq(1+\varepsilon) \sqrt{\frac{k}{d}}\left|x_{i}-x_{j}\right|
$$

Johnson-Lindenstrass

Points: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$.
Random $k=\frac{c \log n}{\varepsilon^{2}}$ dimensional subspace.
Claim: with probability $1-\frac{1}{n^{c-2}}$,

$$
(1-\varepsilon) \sqrt{\frac{k}{d}}\left|x_{i}-x_{j}\right| \leq\left|y_{i}-y_{j}\right| \leq(1+\varepsilon) \sqrt{\frac{k}{d}}\left|x_{i}-x_{j}\right|
$$

"Projecting and scaling by $\sqrt{\frac{d}{k}}$ preserves all pairwise distances w/in factor of $1 \pm \varepsilon$."

Random subspace.

Method 1:

Random subspace.

Method 1:
Pick unit v_{1}

Random subspace.

Method 1:
Pick unit v_{1},

Random subspace.

Method 1:
Pick unit v_{1}, v_{2} orthogonal to v_{1},

Random subspace.

Method 1:
Pick unit v_{1}, v_{2} orthogonal to v_{1},

Random subspace.

Method 1:
Pick unit v_{1},
v_{2} orthogonal to v_{1},
v_{k} orthogonal to previous vectors...

Random subspace.

Method 1:
Pick unit v_{1},
v_{2} orthogonal to v_{1},
v_{k} orthogonal to previous vectors...
Method 2:

Random subspace.

Method 1:
Pick unit v_{1},
v_{2} orthogonal to v_{1},
v_{k} orthogonal to previous vectors...
Method 2:
Choose k vectors v_{1}, \ldots, v_{k}

Random subspace.

Method 1:
Pick unit v_{1},
v_{2} orthogonal to v_{1},
v_{k} orthogonal to previous vectors...
Method 2:
Choose k vectors v_{1}, \ldots, v_{k}
Gram Schmidt orthonormalization of $k \times d$ matrix where rows are v_{i}.

Random subspace.

Method 1:
Pick unit v_{1},
v_{2} orthogonal to v_{1},
v_{k} orthogonal to previous vectors...
Method 2:
Choose k vectors v_{1}, \ldots, v_{k}
Gram Schmidt orthonormalization of $k \times d$ matrix where rows are v_{i}. remove projection onto previous subspace.

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.

$$
y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}
$$

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_{1}, \ldots, v_{k} onto e_{1}, \ldots, e_{k}

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_{1}, \ldots, v_{k} onto e_{1}, \ldots, e_{k}
y_{i}

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_{1}, \ldots, v_{k} onto e_{1}, \ldots, e_{k}
$y_{i}=\left\langle v_{i} \mid x\right\rangle$

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_{1}, \ldots, v_{k} onto e_{1}, \ldots, e_{k}
$y_{i}=\left\langle v_{i} \mid x\right\rangle=\left\langle U v_{i} \mid U x\right\rangle$

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_{1}, \ldots, v_{k} onto e_{1}, \ldots, e_{k}
$y_{i}=\left\langle v_{i} \mid x\right\rangle=\left\langle U v_{i} \mid U x\right\rangle=\left\langle e_{i} \mid U x\right\rangle$

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_{1}, \ldots, v_{k} onto e_{1}, \ldots, e_{k}
$y_{i}=\left\langle v_{i} \mid x\right\rangle=\left\langle U v_{i} \mid U x\right\rangle=\left\langle e_{i} \mid U x\right\rangle=\left\langle e_{i} \mid z\right\rangle$

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_{1}, \ldots, v_{k} onto e_{1}, \ldots, e_{k}
$y_{i}=\left\langle v_{i} \mid x\right\rangle=\left\langle U v_{i} \mid U x\right\rangle=\left\langle e_{i} \mid U x\right\rangle=\left\langle e_{i} \mid z\right\rangle$
Inverse of U maps e_{i} to random vector v_{i}

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_{1}, \ldots, v_{k} onto e_{1}, \ldots, e_{k}
$y_{i}=\left\langle v_{i} \mid x\right\rangle=\left\langle U v_{i} \mid U x\right\rangle=\left\langle e_{i} \mid U x\right\rangle=\left\langle e_{i} \mid z\right\rangle$
Inverse of U maps e_{i} to random vector v_{i}

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_{1}, \ldots, v_{k} onto e_{1}, \ldots, e_{k}
$y_{i}=\left\langle v_{i} \mid x\right\rangle=\left\langle U v_{i} \mid U x\right\rangle=\left\langle e_{i} \mid U x\right\rangle=\left\langle e_{i} \mid z\right\rangle$
Inverse of U maps e_{i} to random vector v_{i}
$z=U x$ is uniformly distributed on d sphere for unit $x \in \mathbb{R}^{d}$.

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_{1}, \ldots, v_{k} onto e_{1}, \ldots, e_{k}
$y_{i}=\left\langle v_{i} \mid x\right\rangle=\left\langle U v_{i} \mid U x\right\rangle=\left\langle e_{i} \mid U x\right\rangle=\left\langle e_{i} \mid z\right\rangle$
Inverse of U maps e_{i} to random vector v_{i}
$z=U x$ is uniformly distributed on d sphere for unit $x \in \mathbb{R}^{d}$.
y_{i} is i th coordinate of random vector z.

Expected value of y_{i}.

Random projection: first k coordinates of random unit vector, z_{i}.

Expected value of y_{i}.

Random projection: first k coordinates of random unit vector, z_{i}.
$E\left[\sum_{i \in[d]} z_{i}^{2}\right]=1$.

Expected value of y_{i}.

Random projection: first k coordinates of random unit vector, z_{i}. $E\left[\sum_{i \in[d]} z_{i}^{2}\right]=1$. Linearity of Expectation.

Expected value of y_{i}.

Random projection: first k coordinates of random unit vector, z_{i}. $E\left[\sum_{i \in[d]} z_{i}^{2}\right]=1$. Linearity of Expectation.
By symmetry, each z_{i} is identically distributed.

Expected value of y_{i}.

Random projection: first k coordinates of random unit vector, z_{i}. $E\left[\sum_{i \in[d]} z_{i}^{2}\right]=1$. Linearity of Expectation.
By symmetry, each z_{i} is identically distributed.
$E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.

Expected value of y_{i}.

Random projection: first k coordinates of random unit vector, z_{i}. $E\left[\sum_{i \in[d]} z_{i}^{2}\right]=1$. Linearity of Expectation.
By symmetry, each z_{i} is identically distributed.
$E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$. Linearity of Expectation.

Expected value of y_{i}.

Random projection: first k coordinates of random unit vector, z_{i}. $E\left[\sum_{i \in[d]} z_{i}^{2}\right]=1$. Linearity of Expectation.
By symmetry, each z_{i} is identically distributed.
$E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$. Linearity of Expectation.
Expected length is $\sqrt{\frac{k}{d}}$.

Expected value of y_{i}.

Random projection: first k coordinates of random unit vector, z_{i}.
$E\left[\sum_{i \in[d]} z_{i}^{2}\right]=1$. Linearity of Expectation.
By symmetry, each z_{i} is identically distributed.
$E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$. Linearity of Expectation.
Expected length is $\sqrt{\frac{k}{d}}$.
Johnson-Lindenstrass: close to expectation.

Expected value of y_{i}.

Random projection: first k coordinates of random unit vector, z_{i}.
$E\left[\sum_{i \in[d]} z_{i}^{2}\right]=1$. Linearity of Expectation.
By symmetry, each z_{i} is identically distributed.
$E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$. Linearity of Expectation.
Expected length is $\sqrt{\frac{k}{d}}$.
Johnson-Lindenstrass: close to expectation.
k is large enough \rightarrow

Expected value of y_{i}.

Random projection: first k coordinates of random unit vector, z_{i}.
$E\left[\sum_{i \in[d]} z_{i}^{2}\right]=1$. Linearity of Expectation.
By symmetry, each z_{i} is identically distributed.
$E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$. Linearity of Expectation.
Expected length is $\sqrt{\frac{k}{d}}$.
Johnson-Lindenstrass: close to expectation.
k is large enough \rightarrow
$\approx(1 \pm \varepsilon) \sqrt{\frac{k}{d}}$ with decent probability.

Concentration Bounds.

z is uniformly random unit vector.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.

$$
\left|z_{1}\right| \geq \Delta \text { if }
$$

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.

$$
\left|z_{1}\right| \geq \Delta \text { if }
$$

$z \geq \Delta$ from equator of sphere.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.

$$
\left|z_{1}\right| \geq \Delta \text { if }
$$

$z \geq \Delta$ from equator of sphere. Point on " Δ-spherical cap".

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.

$$
\begin{aligned}
& \left|z_{1}\right| \geq \Delta \text { if } \\
& z \geq \Delta \text { from equator of sphere. } \\
& \text { Point on " } \Delta \text {-spherical cap". }
\end{aligned}
$$

Area of caps

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.

$$
\begin{aligned}
& \left|z_{1}\right| \geq \Delta \text { if } \\
& z \geq \Delta \text { from equator of sphere. } \\
& \text { Point on " } \Delta \text {-spherical cap". } \\
& \text { Area of caps } \\
& \quad \leq \text { S.A. of sphere of radius } \sqrt{1-\Delta^{2}}
\end{aligned}
$$

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.

$$
\begin{aligned}
& \left|z_{1}\right| \geq \Delta \text { if } \\
& z \geq \Delta \text { from equator of sphere. } \\
& \text { Point on " } \Delta \text {-spherical cap". }
\end{aligned}
$$

Area of caps
$\leq \mathrm{S} . \mathrm{A}$. of sphere of radius $\sqrt{1-\Delta^{2}}$
$\propto r^{d}=\left(1-\Delta^{2}\right)^{d / 2}$

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.

$$
\left|z_{1}\right| \geq \Delta \text { if }
$$

$z \geq \Delta$ from equator of sphere.
Point on " Δ-spherical cap".
Area of caps
$\leq \mathrm{S} . \mathrm{A}$. of sphere of radius $\sqrt{1-\Delta^{2}}$
$\propto r^{d}=\left(1-\Delta^{2}\right)^{d / 2}$
$\propto\left(1-\frac{t^{2}}{d}\right)^{d / 2}$

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.

$$
\left|z_{1}\right| \geq \Delta \text { if }
$$

$z \geq \Delta$ from equator of sphere.
Point on " Δ-spherical cap".
Area of caps
$\leq \mathrm{S} . \mathrm{A}$. of sphere of radius $\sqrt{1-\Delta^{2}}$
$\propto r^{d}=\left(1-\Delta^{2}\right)^{d / 2}$
$\propto\left(1-\frac{t^{2}}{d}\right)^{d / 2} \approx e^{\frac{-t^{2}}{2}}$

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.
$\left|z_{1}\right| \geq \Delta$ if
$z \geq \Delta$ from equator of sphere.
Point on " Δ-spherical cap".
Area of caps
\leq S.A. of sphere of radius $\sqrt{1-\Delta^{2}}$
$\propto r^{d}=\left(1-\Delta^{2}\right)^{d / 2}$
$\propto\left(1-\frac{t^{2}}{d}\right)^{d / 2} \approx e^{\frac{-t^{2}}{2}}$

Constant of \propto is unit sphere area.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.
Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.

Constant of \propto is unit sphere area.
$\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length?

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.

$$
\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}
$$

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|\right.$

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right]$

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}$

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}=e^{-c \log n}=\frac{1}{n^{c}}$

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}=e^{-c \log n}=\frac{1}{n^{c}}$
Johnson-Lindenstraus: For n points, x_{1}, \ldots, x_{n}, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}=e^{-c \log n}=\frac{1}{n^{c}}$
Johnson-Lindenstraus: For n points, x_{1}, \ldots, x_{n}, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.
View one pair $x_{i}-x_{j}$ as vector.

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}=e^{-c \log n}=\frac{1}{n^{c}}$
Johnson-Lindenstraus: For n points, x_{1}, \ldots, x_{n}, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.
View one pair $x_{i}-x_{j}$ as vector.
Scale to unit.

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}=e^{-c \log n}=\frac{1}{n^{c}}$
Johnson-Lindenstraus: For n points, x_{1}, \ldots, x_{n}, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.
View one pair $x_{i}-x_{j}$ as vector.
Scale to unit.
Projection fails to preserve $\left|x_{i}-x_{j}\right|$

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}=e^{-c \log n}=\frac{1}{n^{c}}$
Johnson-Lindenstraus: For n points, x_{1}, \ldots, x_{n}, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.
View one pair $x_{i}-x_{j}$ as vector.
Scale to unit.
Projection fails to preserve $\left|x_{i}-x_{j}\right|$
with probability $\leq \frac{1}{n^{c}}$

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}=e^{-c \log n}=\frac{1}{n^{c}}$
Johnson-Lindenstraus: For n points, x_{1}, \ldots, x_{n}, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.
View one pair $x_{i}-x_{j}$ as vector.
Scale to unit.
Projection fails to preserve $\left|x_{i}-x_{j}\right|$
with probability $\leq \frac{1}{n^{c}}$
Scaled vector length also preserved.

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}=e^{-c \log n}=\frac{1}{n^{c}}$
Johnson-Lindenstraus: For n points, x_{1}, \ldots, x_{n}, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.
View one pair $x_{i}-x_{j}$ as vector.
Scale to unit.
Projection fails to preserve $\left|x_{i}-x_{j}\right|$
with probability $\leq \frac{1}{n^{c}}$
Scaled vector length also preserved.
$\leq n^{2}$ pairs

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}=e^{-c \log n}=\frac{1}{n^{c}}$
Johnson-Lindenstraus: For n points, x_{1}, \ldots, x_{n}, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.
View one pair $x_{i}-x_{j}$ as vector.
Scale to unit.
Projection fails to preserve $\left|x_{i}-x_{j}\right|$
with probability $\leq \frac{1}{n^{c}}$
Scaled vector length also preserved.
$\leq n^{2}$ pairs plus union bound

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}=e^{-c \log n}=\frac{1}{n^{c}}$
Johnson-Lindenstraus: For n points, x_{1}, \ldots, x_{n}, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.
View one pair $x_{i}-x_{j}$ as vector.
Scale to unit.
Projection fails to preserve $\left|x_{i}-x_{j}\right|$ with probability $\leq \frac{1}{n^{c}}$
Scaled vector length also preserved.
$\leq n^{2}$ pairs plus union bound \rightarrow prob any pair fails to be preserved with $\leq \frac{1}{n^{c-2}}$.

Locality Preserving Hashing

Find nearby points in high dimensional space.

Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!

Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!

Hash function $h(\cdot)$ s.t. $h\left(x_{i}\right)=h\left(x_{j}\right)$ if $d\left(x_{i}, x_{j}\right) \leq \delta$.

Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!

Hash function $h(\cdot)$ s.t. $h\left(x_{i}\right)=h\left(x_{j}\right)$ if $d\left(x_{i}, x_{j}\right) \leq \delta$.
Low dimensions: grid cells give \sqrt{d}-approximation.

Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!

Hash function $h(\cdot)$ s.t. $h\left(x_{i}\right)=h\left(x_{j}\right)$ if $d\left(x_{i}, x_{j}\right) \leq \delta$.
Low dimensions: grid cells give \sqrt{d}-approximation. Not quite a solution.

Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!

Hash function $h(\cdot)$ s.t. $h\left(x_{i}\right)=h\left(x_{j}\right)$ if $d\left(x_{i}, x_{j}\right) \leq \delta$.
Low dimensions: grid cells give \sqrt{d}-approximation. Not quite a solution. Why?

Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!
Hash function $h(\cdot)$ s.t. $h\left(x_{i}\right)=h\left(x_{j}\right)$ if $d\left(x_{i}, x_{j}\right) \leq \delta$.
Low dimensions: grid cells give \sqrt{d}-approximation. Not quite a solution. Why?

Close to grid boundary.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!
Hash function $h(\cdot)$ s.t. $h\left(x_{i}\right)=h\left(x_{j}\right)$ if $d\left(x_{i}, x_{j}\right) \leq \delta$.
Low dimensions: grid cells give \sqrt{d}-approximation.
Not quite a solution. Why?
Close to grid boundary.
Find close points to x :

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!
Hash function $h(\cdot)$ s.t. $h\left(x_{i}\right)=h\left(x_{j}\right)$ if $d\left(x_{i}, x_{j}\right) \leq \delta$.
Low dimensions: grid cells give \sqrt{d}-approximation.
Not quite a solution. Why?
Close to grid boundary.
Find close points to x :
Check grid cell and neighboring grid cells.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!
Hash function $h(\cdot)$ s.t. $h\left(x_{i}\right)=h\left(x_{j}\right)$ if $d\left(x_{i}, x_{j}\right) \leq \delta$.
Low dimensions: grid cells give \sqrt{d}-approximation.
Not quite a solution. Why?
Close to grid boundary.
Find close points to x :
Check grid cell and neighboring grid cells.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!
Hash function $h(\cdot)$ s.t. $h\left(x_{i}\right)=h\left(x_{j}\right)$ if $d\left(x_{i}, x_{j}\right) \leq \delta$.
Low dimensions: grid cells give \sqrt{d}-approximation.
Not quite a solution. Why?
Close to grid boundary.
Find close points to x :
Check grid cell and neighboring grid cells.
Project high dimensional points into low dimensions.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!
Hash function $h(\cdot)$ s.t. $h\left(x_{i}\right)=h\left(x_{j}\right)$ if $d\left(x_{i}, x_{j}\right) \leq \delta$.
Low dimensions: grid cells give \sqrt{d}-approximation.
Not quite a solution. Why?
Close to grid boundary.
Find close points to x :
Check grid cell and neighboring grid cells.
Project high dimensional points into low dimensions.
Use grid hash function.

Implementing Johnson-Lindenstraus

Random vectors

Implementing Johnson-Lindenstraus

Random vectors have many bits

Implementing Johnson-Lindenstraus

Random vectors have many bits
Use random bit vectors: $\{-1,+1\}^{d}$ instead.

Implementing Johnson-Lindenstraus

Random vectors have many bits
Use random bit vectors: $\{-1,+1\}^{d}$ instead.
Almost orthogonal.

Implementing Johnson-Lindenstraus

Random vectors have many bits
Use random bit vectors: $\{-1,+1\}^{d}$ instead.
Almost orthogonal.
Project z.

Implementing Johnson-Lindenstraus

Random vectors have many bits
Use random bit vectors: $\{-1,+1\}^{d}$ instead.
Almost orthogonal.
Project z.
Coordinate for bit vector b.

Implementing Johnson-Lindenstraus

Random vectors have many bits
Use random bit vectors: $\{-1,+1\}^{d}$ instead.
Almost orthogonal.
Project z.
Coordinate for bit vector b.

$$
C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}
$$

Implementing Johnson-Lindenstraus

Random vectors have many bits
Use random bit vectors: $\{-1,+1\}^{d}$ instead.
Almost orthogonal.
Project z.
Coordinate for bit vector b.

$$
C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}
$$

$E\left[C_{l}^{2}\right]=$

Implementing Johnson-Lindenstraus

Random vectors have many bits
Use random bit vectors: $\{-1,+1\}^{d}$ instead.
Almost orthogonal.
Project z.
Coordinate for bit vector b.

$$
\begin{aligned}
& C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i} \\
& E\left[C_{l}^{2}\right]=E\left[\frac{1}{d} \sum_{i, j} b_{i} b_{j} z_{i} z_{j}\right]
\end{aligned}
$$

Implementing Johnson-Lindenstraus

Random vectors have many bits
Use random bit vectors: $\{-1,+1\}^{d}$ instead.
Almost orthogonal.
Project z.
Coordinate for bit vector b.

$$
\begin{aligned}
& C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i} \\
& E\left[C_{l}^{2}\right]=E\left[{ }_{d}^{1} \sum_{i, j} b_{i} b_{j} z_{i} z_{j}\right]=\frac{1}{d} \sum_{i, j} E\left[b_{i} b_{j}\right] z_{i} z_{j}=\frac{1}{d} \sum_{i} z_{i}^{2}
\end{aligned}
$$

Implementing Johnson-Lindenstraus

Random vectors have many bits
Use random bit vectors: $\{-1,+1\}^{d}$ instead.
Almost orthogonal.
Project z.
Coordinate for bit vector b.

$$
C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}
$$

$$
E\left[C_{l}^{2}\right]=E\left[\frac{1}{d} \sum_{i, j} b_{i} b_{j} z_{i} z_{j}\right]=\frac{1}{d} \sum_{i, j} E\left[b_{i} b_{j}\right] z_{i} z_{j}=\frac{1}{d} \sum_{i} z_{i}^{2}=\frac{1}{d}
$$

Implementing Johnson-Lindenstraus

Random vectors have many bits
Use random bit vectors: $\{-1,+1\}^{d}$ instead.
Almost orthogonal.
Project z.
Coordinate for bit vector b.

$$
C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}
$$

$$
E\left[C_{l}^{2}\right]=E\left[\frac{1}{d} \sum_{i, j} b_{i} b_{j} z_{i} z_{j}\right]=\frac{1}{d} \sum_{i, j} E\left[b_{i} b_{j}\right] z_{i} z_{j}=\frac{1}{d} \sum_{i} z_{i}^{2}=\frac{1}{d}
$$

Implementing Johnson-Lindenstraus

Random vectors have many bits
Use random bit vectors: $\{-1,+1\}^{d}$ instead.
Almost orthogonal.
Project z.
Coordinate for bit vector b.

$$
C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}
$$

$E\left[C_{l}^{2}\right]=E\left[\frac{1}{d} \sum_{i, j} b_{i} b_{j} z_{i} z_{j}\right]=\frac{1}{d} \sum_{i, j} E\left[b_{i} b_{j}\right] z_{i} z_{j}=\frac{1}{d} \sum_{i} z_{i}^{2}=\frac{1}{d}$
$E\left[\Sigma_{l} C_{l}^{2}\right]=\frac{k}{d}$

Binary Johnson-Lindenstrass

Project onto $[-1,+1]$ vectors.

Binary Johnson-Lindenstrass

Project onto $[-1,+1]$ vectors.

$$
E[C]=E\left[\Sigma_{l} C_{l}^{2}\right]=\frac{k}{d}
$$

Binary Johnson-Lindenstrass

Project onto $[-1,+1]$ vectors.

$$
E[C]=E\left[\Sigma_{l} C_{l}^{2}\right]=\frac{k}{d}
$$

Concentration?

Binary Johnson-Lindenstrass

Project onto $[-1,+1]$ vectors.

$$
E[C]=E\left[\Sigma_{l} C_{l}^{2}\right]=\frac{k}{d}
$$

Concentration?

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Binary Johnson-Lindenstrass

Project onto $[-1,+1]$ vectors.

$$
E[C]=E\left[\Sigma_{l} C_{l}^{2}\right]=\frac{k}{d}
$$

Concentration?

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Choose $k=\frac{c \log n}{\varepsilon^{2}}$.

Binary Johnson-Lindenstrass

Project onto $[-1,+1]$ vectors.

$$
E[C]=E\left[\Sigma_{l} C_{l}^{2}\right]=\frac{k}{d}
$$

Concentration?

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Choose $k=\frac{c \log n}{\varepsilon^{2}}$.
\rightarrow failure probability $\leq 1 / n^{c}$.

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of $C^{2} ?$

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right)$

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2}$

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):
Density $\propto e^{-t^{2} / 2}$ for t std deviations away.

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):
Density $\propto e^{-t^{2} / 2}$ for t std deviations away.
So, assuming normality

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):
Density $\propto e^{-t^{2} / 2}$ for t std deviations away.
So, assuming normality

$$
\sigma=\frac{\sqrt{2 k}}{d}
$$

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):
Density $\propto e^{-t^{2} / 2}$ for t std deviations away.
So, assuming normality

$$
\sigma=\frac{\sqrt{2 k}}{d}, t=\frac{\varepsilon \frac{k}{d}}{\frac{\sqrt{2 k}}{d}}
$$

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):
Density $\propto e^{-t^{2} / 2}$ for t std deviations away.
So, assuming normality

$$
\sigma=\frac{\sqrt{2 k}}{d}, t=\frac{\varepsilon \frac{k}{d}}{\frac{\sqrt{2 k}}{d}}=\varepsilon \sqrt{k} / \sqrt{2} .
$$

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):
Density $\propto e^{-t^{2} / 2}$ for t std deviations away.
So, assuming normality

$$
\sigma=\frac{\sqrt{2 k}}{d}, t=\frac{\varepsilon \frac{k}{d}}{\frac{\sqrt{2 k}}{d}}=\varepsilon \sqrt{k} / \sqrt{2} .
$$

Probability of failure roughly $\leq e^{-t^{2} / 2}$

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):
Density $\propto e^{-t^{2} / 2}$ for t std deviations away.
So, assuming normality

$$
\sigma=\frac{\sqrt{2 k}}{d}, t=\frac{\varepsilon \frac{k}{d}}{\frac{\sqrt{2 k}}{d}}=\varepsilon \sqrt{k} / \sqrt{2} .
$$

Probability of failure roughly $\leq e^{-t^{2} / 2}$

$$
\rightarrow e^{\varepsilon^{2} k / 4}
$$

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):
Density $\propto e^{-t^{2} / 2}$ for t std deviations away.
So, assuming normality

$$
\sigma=\frac{\sqrt{2 k}}{d}, t=\frac{\varepsilon \frac{k}{d}}{\frac{\sqrt{2 k}}{d}}=\varepsilon \sqrt{k} / \sqrt{2} .
$$

Probability of failure roughly $\leq e^{-t^{2} / 2}$

$$
\rightarrow e^{\varepsilon^{2} k / 4}
$$

"Roughly normal."

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):
Density $\propto e^{-t^{2} / 2}$ for t std deviations away.
So, assuming normality

$$
\sigma=\frac{\sqrt{2 k}}{d}, t=\frac{\varepsilon \frac{k}{d}}{\frac{\sqrt{2 k}}{d}}=\varepsilon \sqrt{k} / \sqrt{2} .
$$

Probability of failure roughly $\leq e^{-t^{2} / 2}$

$$
\rightarrow e^{\varepsilon^{2} k / 4}
$$

"Roughly normal." Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):
Density $\propto e^{-t^{2} / 2}$ for t std deviations away.
So, assuming normality

$$
\sigma=\frac{\sqrt{2 k}}{d}, t=\frac{\varepsilon \frac{k}{d}}{\frac{\sqrt{2 k}}{d}}=\varepsilon \sqrt{k} / \sqrt{2} .
$$

Probability of failure roughly $\leq e^{-t^{2} / 2}$

$$
\rightarrow e^{\varepsilon^{2} k / 4}
$$

"Roughly normal." Chernoff, Berry-Esseen, Central Limit Theorems.

Summary

Cuckoo hashing.

Summary

Cuckoo hashing.
Two hash functions.

Summary

Cuckoo hashing.
Two hash functions. Few cycles in random sparse graph.

Summary

Cuckoo hashing.
Two hash functions. Few cycles in random sparse graph. Chaining works!

Summary

Cuckoo hashing.
Two hash functions. Few cycles in random sparse graph. Chaining works!

Johnson-Lindenstrass.

Summary

Cuckoo hashing.
Two hash functions. Few cycles in random sparse graph. Chaining works!

Johnson-Lindenstrass.
$O(\log n)$ dimensions give good approximation of distances.

