
Today.

Cuckoo hashing.

Johnson-Lindenstrass.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hj (y). And so on.

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.
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Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Johnson-Lindenstrass

Points: x1, . . . ,xn ∈ Rd .

Random k = c logn
ε2 dimensional subspace.

Claim: with probability 1− 1
nc−2 ,

(1− ε)

√
k
d
|xi −xj | ≤ |yi −yj | ≤ (1 + ε)

√
k
d
|xi −xj |

“Projecting and scaling by
√

d
k preserves all pairwise distances w/in

factor of 1± ε.”

Random subspace.

Method 1:
Pick unit v1 ,

v2 orthogonal to v1,
. . .
vk orthogonal to previous vectors...

Method 2:
Choose k vectors v1, . . . ,vk

Gram Schmidt orthonormalization of k×d matrix where rows are vi .
remove projection onto previous subspace.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk ).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Expected value of yi .

Random projection: first k coordinates of random unit vector, zi .

E [∑i∈[d ] z2
i ] = 1. Linearity of Expectation.

By symmetry, each zi is identically distributed.

E [∑i∈[k ] z2
i ] = k

d . Linearity of Expectation.

Expected length is
√

k
d .

Johnson-Lindenstrass: close to expectation.
k is large enough→
≈ (1± ε)

√
k
d with decent probability.



Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k ] z2

i ] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
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Constant of ∝ is unit sphere area.

Pr[any z2
i > (2logd)E [z2

i ]] is small.

Many coordinates.
Argued Pr[any z2

i > (2logd)E [z2
i ]] is small.

Total Length? z =
√

z2
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2 + · · ·z2
k .
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Substituting t = ε
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d , k = c logn

ε2 .
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Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function h(·) s.t. h(xi ) = h(xj ) if d(xi ,xj )≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution. Why?

Close to grid boundary.
Find close points to x :

Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Cl = 1√

d ∑i bizi

E [C2
l ] = E [ 1

d ∑i ,j bibjzizj ] = 1
d ∑i ,j E [bibj ]zizj = 1

d ∑i z2
i = 1

d

E [∑l C2
l ] = k

d

Binary Johnson-Lindenstrass

Project onto [−1,+1] vectors.

E [C] = E [∑l C2
l ] = k

d

Concentration?

Pr
[
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d
| ≥ ε

k
d

]
≤ e−ε2k

Choose k = c logn
ε2 .

→ failure probability ≤ 1/nc .

Analysis Idea.
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Variance of C2? Recall Cl = 1√
d ∑i bizi
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Roughly normal (gaussian):
Density ∝ e−t2/2 for t std deviations away.

So, assuming normality

σ =
√
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d , t =

ε k
d√
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= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.



Summary

Cuckoo hashing.

Two hash functions. Few cycles in random sparse graph.
Chaining works!

Johnson-Lindenstrass.
O(logn) dimensions give good approximation of distances.


