Today.

Cuckoo hashing

Johnson-Lindenstrass.

Random subspace.

Method 1:

Pick unit v_{1}
v_{2} orthogonal to v_{1},
v_{k} orthogonal to previous vectors..
Method 2:
Choose k vectors v_{1}, v_{k}
Gram Schmidt orthonormalization of $k \times d$ matrix where rows are v_{i}. remove projection onto previous subspace.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$.
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space. Else bump y^{\prime} in $h_{i}(y)$. And so on
If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.
C_{ℓ} - event of cycle of length ℓ at a vertex.

$$
\begin{equation*}
\operatorname{Pr}\left[C_{\ell}\right] \leq\binom{ m}{\ell}\binom{n}{\ell}\left(\frac{\ell}{n}\right)^{2(\ell)} \leq\left(\frac{e^{2}}{8}\right)^{\ell} \tag{1}
\end{equation*}
$$

Probability that an insert hits a cycle of length $\ell \leq \frac{\ell}{n}\left(\frac{e^{2}}{8}\right)^{\ell}$
Rehash every $\Omega(n)$ inserts (if $\leq n / 8$ items in table.)
$O(1)$ time on average.

Projections

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_{1}, \ldots, v_{k} onto e_{1}, \ldots, e_{k}
$y_{i}=\left\langle v_{i} \mid x\right\rangle=\left\langle U v_{i} \mid U x\right\rangle=\left\langle e_{i} \mid U x\right\rangle=\left\langle e_{i} \mid z\right\rangle$
Inverse of U maps e_{i} to random vector v
$z=U x$ is uniformly distributed on d sphere for unit $x \in \mathbb{R}^{d}$.
y_{i} is i th coordinate of random vector z.

Johnson-Lindenstrass

Points: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$.
Random $k=\frac{c \log n}{\varepsilon^{2}}$ dimensional subspace.
Claim: with probability $1-\frac{1}{n^{c-2}}$,

$$
(1-\varepsilon) \sqrt{\frac{k}{d}}\left|x_{i}-x_{j}\right| \leq\left|y_{i}-y_{j}\right| \leq(1+\varepsilon) \sqrt{\frac{k}{d}}\left|x_{i}-x_{j}\right|
$$

"Projecting and scaling by $\sqrt{\frac{d}{k}}$ preserves all pairwise distances w/in factor of $1 \pm \varepsilon$."

Expected value of y_{i}.

Random projection: first k coordinates of random unit vector, z_{i}.
$E\left[\sum_{i \in[d]} z_{i}^{2}\right]=1$. Linearity of Expectation.
By symmetry, each z_{i} is identically distributed
$E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$. Linearity of Expectation.
Expected length is $\sqrt{\frac{k}{d}}$
Johnson-Lindenstrass: close to expectation.
k is large enough \rightarrow
$\approx(1 \pm \varepsilon) \sqrt{\frac{k}{d}}$ with decent probability.

Concentration Bounds.

Random point on the unit sphere. $E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$.

Sphere view: surface "far" from equator defined by e_{1}.
$\left|z_{1}\right| \geq \Delta$ if
$z \geq \Delta$ from equator of sphere
Point on " Δ-spherical cap".
\leq S.A. of sphere of radius $\sqrt{1-\Delta^{2}}$
$\propto r^{d}=\left(1-\Delta^{2}\right)^{d / 2}$
$\propto\left(1-\frac{t^{2}}{d}\right)^{d / 2} \approx e^{\frac{-t^{2}}{2}}$
Constant of \propto is unit sphere area.
$\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: $\{-1,+1\}^{d}$ instead.
Almost orthogonal.
Project z.
Coordinate for bit vector b.
$C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$E\left[C_{l}^{2}\right]=E\left[\frac{1}{d} \sum_{i, j} b_{i} b_{j} z_{i} z_{j}\right]=\frac{1}{d} \sum_{i, j} E\left[b_{i} b_{j}\right] z_{i} z_{j}=\frac{1}{d} \sum_{i} z_{i}^{2}=\frac{1}{d}$
$E\left[\Sigma_{l} C_{l}^{2}\right]=\frac{k}{d}$

Many coordinates.

Argued $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>(2 \log d) E\left[z_{i}^{2}\right]\right]$ is small.
Total Length? $z=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}\right)}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d / 2}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}=e^{-c \log n}=\frac{1}{n^{c}}$
Johnson-Lindenstraus: For n points, x_{1}, \ldots, x_{n}, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.
View one pair $x_{i}-x_{j}$ as vector.
Scale to unit.
Projection fails to preserve $\left|x_{i}-x_{j}\right|$
with probability $\leq \frac{1}{n^{c}}$
Scaled vector length also preserved.
$\leq n^{2}$ pairs plus union bound
\rightarrow prob any pair fails to be preserved with $\leq \frac{1}{n c-2}$
Binary Johnson-Lindenstrass

Project onto $[-1,+1]$ vectors.
$E[C]=E\left[\Sigma_{l} C_{l}^{2}\right]=\frac{k}{d}$
Concentration?

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Choose $k=\frac{c \log n}{\varepsilon^{2}}$.
\rightarrow failure probability $\leq 1 / n^{c}$.

Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images
Hash function $h(\cdot)$ s.t. $h\left(x_{i}\right)=h\left(x_{j}\right)$ if $d\left(x_{i}, x_{j}\right) \leq \delta$.
Low dimensions: grid cells give \sqrt{d}-approximation
Not quite a solution. Why?
Close to grid boundar
Find close points to x :
Check grid cell and neighboring grid cells.
Project high dimensional points into low dimensions.
Use grid hash function.

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of C^{2} ? Recall $C_{l}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$\operatorname{Var}(C) \leq\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):
Density $\propto e^{-t^{2} / 2}$ for t std deviations away.
So, assuming normality
$\sigma=\frac{\sqrt{2 k}}{d}, t=\frac{\varepsilon_{d}^{k}}{\frac{\sqrt{2 k}}{d}}=\varepsilon \sqrt{k} / \sqrt{2}$
Probability of failure roughly $\leq e^{-t^{2} / 2}$
$\rightarrow e^{\varepsilon^{2} k / 4}$
"Roughly normal." Chernoff, Berry-Esseen, Central Limit Theorems.

Summary

Cuckoo hashing.

Two hash functions. Few cycles in random sparse graph. Chaining works!
$O(\log n)$ dimensions give good approximation of distances

