Cuckoo hashing. Hashing with two choices: max load <i>O</i> (loglog <i>n</i>). Cuckoo hashing:	Johnson-Lindenstrass
Array. Two hash functions h_1 , h_2 . Insert x : place in $h_1(x)$ or $h_2(x)$ if space. Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1,2]$. Bump y, x : place y in $h_j(y)$ where $j \neq i$ if space. Else bump y' in $h_j(y)$. And so on. If go too long. Fail. Rehash entire hash table. Fails if cycle for insert.	Points: $x_1, \ldots, x_n \in \mathbb{R}^d$. Random $k = \frac{c \log n}{\varepsilon^2}$ dimensional subspace. Claim: with probability $1 - \frac{1}{n^{c-2}}$, $(1 - \varepsilon)\sqrt{\frac{k}{d}} x_i - x_j \le y_i - y_j \le (1 + \varepsilon)\sqrt{\frac{k}{d}} x_i - x_j $
C_{ℓ} - event of cycle of length ℓ at a vertex. $\Pr[C_{\ell}] \le {\binom{m}{\ell}} {\binom{n}{\ell}} {\binom{\ell}{n}}^{2(\ell)} \le {\binom{e^2}{8}}^{\ell} $ (1)	"Projecting and scaling by $\sqrt{\frac{d}{k}}$ preserves all pairwise distances w/in factor of 1 $\pm \varepsilon$."
Probability that an insert hits a cycle of length $\ell \leq \frac{\ell}{n} \left(\frac{e^2}{8}\right)^{\ell}$ Rehash every $\Omega(n)$ inserts (if $\leq n/8$ items in table.) O(1) time on average.	
Projections.	Expected value of y_i .
Project <i>x</i> into subspace spanned by v_1, v_2, \dots, v_k . $y_1 = x \cdot v_1, y_2 = x \cdot, v_2, \dots, y_k = x \cdot v_k$ Projection: (y_1, \dots, y_k) . Have: Arbitrary vector, random <i>k</i> -dimensional subspace. View As: Random vector, standard basis for <i>k</i> dimensions. Orthogonal <i>U</i> - rotates v_1, \dots, v_k onto e_1, \dots, e_k $y_i = \langle v_i x \rangle = \langle Uv_i Ux \rangle = \langle e_i Ux \rangle = \langle e_i z \rangle$ Inverse of <i>U</i> maps e_i to random vector v_i $z = Ux$ is uniformly distributed on <i>d</i> sphere for unit $x \in \mathbb{R}^d$. y_i is <i>i</i> th coordinate of random vector <i>z</i> .	Random projection: first <i>k</i> coordinates of random unit vector, <i>z_i</i> . $E[\sum_{i \in [d]} z_i^2] = 1$. Linearity of Expectation. By symmetry, each <i>z_i</i> is identically distributed. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$. Linearity of Expectation. Expected length is $\sqrt{\frac{k}{d}}$. Johnson-Lindenstrass: close to expectation. <i>k</i> is large enough \rightarrow $\approx (1 \pm \varepsilon) \sqrt{\frac{k}{d}}$ with decent probability.
	Cuckoo hashing: Array. Two hash functions h_1, h_2 . Insert x : place in $h_1(x)$ or $h_2(x)$ if space. Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1, 2]$. Bump y, x : place y in $h_i(y)$ where $j \neq i$ if space. Else bump y' in $h_i(y)$. And so on. If go too long. Fail. Rehash entire hash table. Fails if cycle for insert. C_ℓ - event of cycle of length ℓ at a vertex. $\Pr[C_\ell] \leq {\binom{m}{\ell}} {\binom{n}{\ell}} {\binom{\ell}{\ell}} {\binom{2^{\ell}}{\ell}} \leq {\binom{e^2}{8}}^\ell \qquad (1)$ Probability that an insert hits a cycle of length $\ell \leq \frac{\ell}{n} {\binom{e^2}{8}}^\ell$ Rehash every $\Omega(n)$ inserts (if $\leq n/8$ items in table.) O(1) time on average. $\Pr[oet x \text{ into subspace spanned by } v_1, v_2, \dots, v_k.$ $y_1 = x \cdot v_1, y_2 = x, v_2, \dots, y_k = x \cdot v_k$ Projections: Have: Arbitrary vector, random k-dimensional subspace. View As: Random vector, standard basis for k dimensions. Orthogonal U - rotates v_1, \dots, v_k onto e_1, \dots, e_k $y_i = \langle v_i x \rangle = \langle Uv_i Ux \rangle = \langle e_i Ux \rangle = \langle e_i z \rangle$ Inverse of U maps e_i to random vector v_i $z = Ux$ is uniformly distributed on d sphere for unit $x \in \mathbb{R}^d$.


```
Many coordinates.

Argued Pr[any z_i^2 > (2 \log d) E[z_i^2]] is small.

Total Length? z = \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2}.

\Pr[\left|\sqrt{(z_1^2 + z_2^2 + \cdots + z_k^2)} - \sqrt{\frac{k}{d}}\right| > t] \le e^{-t^2 d/2}

Substituting t = \varepsilon \sqrt{\frac{k}{d}}, k = \frac{c \log n}{\varepsilon^2}.

\Pr[\left|\sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}}\right| > \varepsilon \sqrt{\frac{k}{d}}] \le e^{-\varepsilon^2 k} = e^{-c \log n} = \frac{1}{n^2}

Johnson-Lindenstraus: For n points, x_1, \dots, x_n, all distances

preserved to within 1 \pm \varepsilon under \sqrt{\frac{k}{d}}-scaled projection above.

View one pair x_i - x_j as vector.

Scale to unit.

Projection fails to preserve |x_i - x_j|

with probability \le \frac{1}{n^2}

Scaled vector length also preserved.
```

```
\leq n^2 pairs plus union bound \rightarrow prob any pair fails to be preserved with \leq \frac{1}{n^{c-2}}.
```

Binary Johnson-Lindenstrass

Project onto [-1,+1] vectors. $E[C] = E[\sum_{l} C_{l}^{2}] = \frac{k}{d}$ Concentration?

$$\Pr\left[|C - \frac{k}{d}| \ge \varepsilon \frac{k}{d}\right] \le e^{-\varepsilon^2 t}$$

Choose $k = \frac{c \log n}{c^2}$. \rightarrow failure probability $< 1/n^c$.

Locality Preserving Hashing

```
Find nearby points in high dimensional space.
Points could be images!
```

Hash function $h(\cdot)$ s.t. $h(x_i) = h(x_j)$ if $d(x_i, x_j) \le \delta$.

Low dimensions: grid cells give \sqrt{d} -approximation. Not quite a solution. Why? Close to grid boundary. Find close points to x: Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Analysis Idea.

$$\Pr\left[|\mathcal{C} - \frac{k}{d}| \ge \varepsilon \frac{k}{d}\right] \le e^{-\varepsilon^2 k}$$

Variance of C^2 ? Recall $C_l = \frac{1}{\sqrt{d}} \sum_i b_i z_i$ $Var(C) \leq \left(\frac{k}{d^2}\right) (\sum_i z_i^4 + 4\sum_{i,j} z_i^2 z_j^2) \leq \left(\frac{k}{d^2}\right) 2(\sum_i z_i^2)^2 \leq \frac{2k}{d^2}$. Roughly normal (gaussian): Density $\propto e^{-t^2/2}$ for *t* std deviations away. So, assuming normality $\sigma = \frac{\sqrt{2k}}{d}, t = \frac{e\frac{k}{d}}{\sqrt{2d}} = e\sqrt{k}/\sqrt{2}$. Probability of failure roughly $\leq e^{-t^2/2}$ $\rightarrow e^{e^2k/4}$ "Roughly normal." Chernoff, Berry-Esseen, Central Limit Theorems.

Summary

Cuckoo hashing.

Two hash functions. Few cycles in random sparse graph. Chaining works!

Johnson-Lindenstrass. $O(\log n)$ dimensions give good approximation of distances.