
Today

Load balancing.

Balls in Bins.

Power of two choices.

Cuckoo hashing.

Today

Load balancing.

Balls in Bins.

Power of two choices.

Cuckoo hashing.

Today

Load balancing.

Balls in Bins.

Power of two choices.

Cuckoo hashing.

Today

Load balancing.

Balls in Bins.

Power of two choices.

Cuckoo hashing.

(n
k

)k
≤
(

n
k

)
≤ nk

k !
≤
(ne

k

)k

(n
k

)
= n(n−1)···(n−k+1)

k(k−1)·1 = n
k ·

n−1
k−1 · · ·

n−k+1
1 ≥ n

k ·
n
k · · ·

n
k

n(n−1) · · ·(n−k + 1)≤ nk

k !≥
(

k
e

)k

(n
k

)k
≤
(

n
k

)
≤ nk

k !
≤
(ne

k

)k

(n
k

)
= n(n−1)···(n−k+1)

k(k−1)·1

= n
k ·

n−1
k−1 · · ·

n−k+1
1 ≥ n

k ·
n
k · · ·

n
k

n(n−1) · · ·(n−k + 1)≤ nk

k !≥
(

k
e

)k

(n
k

)k
≤
(

n
k

)
≤ nk

k !
≤
(ne

k

)k

(n
k

)
= n(n−1)···(n−k+1)

k(k−1)·1 = n
k ·

n−1
k−1 · · ·

n−k+1
1

≥ n
k ·

n
k · · ·

n
k

n(n−1) · · ·(n−k + 1)≤ nk

k !≥
(

k
e

)k

(n
k

)k
≤
(

n
k

)
≤ nk

k !
≤
(ne

k

)k

(n
k

)
= n(n−1)···(n−k+1)

k(k−1)·1 = n
k ·

n−1
k−1 · · ·

n−k+1
1 ≥ n

k ·
n
k · · ·

n
k

n(n−1) · · ·(n−k + 1)≤ nk

k !≥
(

k
e

)k

(n
k

)k
≤
(

n
k

)
≤ nk

k !
≤
(ne

k

)k

(n
k

)
= n(n−1)···(n−k+1)

k(k−1)·1 = n
k ·

n−1
k−1 · · ·

n−k+1
1 ≥ n

k ·
n
k · · ·

n
k

n(n−1) · · ·(n−k + 1)≤ nk

k !≥
(

k
e

)k

(n
k

)k
≤
(

n
k

)
≤ nk

k !
≤
(ne

k

)k

(n
k

)
= n(n−1)···(n−k+1)

k(k−1)·1 = n
k ·

n−1
k−1 · · ·

n−k+1
1 ≥ n

k ·
n
k · · ·

n
k

n(n−1) · · ·(n−k + 1)≤ nk

k !≥
(

k
e

)k

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin:

load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1

!

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized!

Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random?

Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load

1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n.

Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today.

c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Balls in bins.
For each of n balls, choose random bin:

Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k

and
(n

k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2

= 1
n → max load ≤ k w.p. ≥ 1− 1

n
k !≥ n2 for k = 2e logn (Recall k !≥ (k

e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n

→ max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.

Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.

(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower?

Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes?

No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No?

Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?

√
logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn?

O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn)

! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) !

! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! !

! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! !

!

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better!

Old bound is exponential of new bound.

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.

picks least loaded.
View as graph.

Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.

Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.

Each ball is edge.
Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:

Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.

If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .

neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,

and so on!
No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.

No connected component of size X and no cycles
=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:

Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.

Average induced degree is small. (E.g.: cycle degree 2)
Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Connected Component.

Claim: Component size in n vertex, n
8 edge random graph is O(logn)

w/ prob. ≥ 1− 1
nc .

pause
Proof: Size k component, C, contains ≥ k −1 edges.

Pr[|C| ≥ k]≤
(

n
k

)(
n/8

k −1

)(
k
n

)2(k−1)

(1)

Possible C. Which edges. Prob. both endpoints inside C.

Pr[|C| ≥ k] ≤ n
k

(
n
k

)(
n/8
k

)(
k
n

)2k

≤ n
k

(ne
k

)k (ne
8k

)k
(

k
n

)2k

=
n
k

(
e2

8

)k

≤ n
k

(0.93)k(2)

Choose k =−(c + 1) log.93 n make probability ≤ 1/nc .

Connected Component.

Claim: Component size in n vertex, n
8 edge random graph is O(logn)

w/ prob. ≥ 1− 1
nc .

pause
Proof: Size k component, C, contains ≥ k −1 edges.

Pr[|C| ≥ k]≤
(

n
k

)(
n/8

k −1

)(
k
n

)2(k−1)

(1)

Possible C.

Which edges. Prob. both endpoints inside C.

Pr[|C| ≥ k] ≤ n
k

(
n
k

)(
n/8
k

)(
k
n

)2k

≤ n
k

(ne
k

)k (ne
8k

)k
(

k
n

)2k

=
n
k

(
e2

8

)k

≤ n
k

(0.93)k(2)

Choose k =−(c + 1) log.93 n make probability ≤ 1/nc .

Connected Component.

Claim: Component size in n vertex, n
8 edge random graph is O(logn)

w/ prob. ≥ 1− 1
nc .

pause
Proof: Size k component, C, contains ≥ k −1 edges.

Pr[|C| ≥ k]≤
(

n
k

)(
n/8

k −1

)(
k
n

)2(k−1)

(1)

Possible C. Which edges.

Prob. both endpoints inside C.

Pr[|C| ≥ k] ≤ n
k

(
n
k

)(
n/8
k

)(
k
n

)2k

≤ n
k

(ne
k

)k (ne
8k

)k
(

k
n

)2k

=
n
k

(
e2

8

)k

≤ n
k

(0.93)k(2)

Choose k =−(c + 1) log.93 n make probability ≤ 1/nc .

Connected Component.

Claim: Component size in n vertex, n
8 edge random graph is O(logn)

w/ prob. ≥ 1− 1
nc .

pause
Proof: Size k component, C, contains ≥ k −1 edges.

Pr[|C| ≥ k]≤
(

n
k

)(
n/8

k −1

)(
k
n

)2(k−1)

(1)

Possible C. Which edges. Prob. both endpoints inside C.

Pr[|C| ≥ k] ≤ n
k

(
n
k

)(
n/8
k

)(
k
n

)2k

≤ n
k

(ne
k

)k (ne
8k

)k
(

k
n

)2k

=
n
k

(
e2

8

)k

≤ n
k

(0.93)k(2)

Choose k =−(c + 1) log.93 n make probability ≤ 1/nc .

Connected Component.

Claim: Component size in n vertex, n
8 edge random graph is O(logn)

w/ prob. ≥ 1− 1
nc .

pause
Proof: Size k component, C, contains ≥ k −1 edges.

Pr[|C| ≥ k]≤
(

n
k

)(
n/8

k −1

)(
k
n

)2(k−1)

(1)

Possible C. Which edges. Prob. both endpoints inside C.

Pr[|C| ≥ k] ≤ n
k

(
n
k

)(
n/8
k

)(
k
n

)2k

≤ n
k

(ne
k

)k (ne
8k

)k
(

k
n

)2k

=
n
k

(
e2

8

)k

≤ n
k

(0.93)k(2)

Choose k =−(c + 1) log.93 n make probability ≤ 1/nc .

Connected Component.

Claim: Component size in n vertex, n
8 edge random graph is O(logn)

w/ prob. ≥ 1− 1
nc .

pause
Proof: Size k component, C, contains ≥ k −1 edges.

Pr[|C| ≥ k]≤
(

n
k

)(
n/8

k −1

)(
k
n

)2(k−1)

(1)

Possible C. Which edges. Prob. both endpoints inside C.

Pr[|C| ≥ k] ≤ n
k

(
n
k

)(
n/8
k

)(
k
n

)2k

≤ n
k

(ne
k

)k (ne
8k

)k
(

k
n

)2k

=
n
k

(
e2

8

)k

≤ n
k

(0.93)k(2)

Choose k =−(c + 1) log.93 n make probability ≤ 1/nc .

Connected Component.

Claim: Component size in n vertex, n
8 edge random graph is O(logn)

w/ prob. ≥ 1− 1
nc .

pause
Proof: Size k component, C, contains ≥ k −1 edges.

Pr[|C| ≥ k]≤
(

n
k

)(
n/8

k −1

)(
k
n

)2(k−1)

(1)

Possible C. Which edges. Prob. both endpoints inside C.

Pr[|C| ≥ k] ≤ n
k

(
n
k

)(
n/8
k

)(
k
n

)2k

≤ n
k

(ne
k

)k (ne
8k

)k
(

k
n

)2k

=
n
k

(
e2

8

)k

≤ n
k

(0.93)k(2)

Choose k =−(c + 1) log.93 n make probability ≤ 1/nc .

Connected Component.

Claim: Component size in n vertex, n
8 edge random graph is O(logn)

w/ prob. ≥ 1− 1
nc .

pause
Proof: Size k component, C, contains ≥ k −1 edges.

Pr[|C| ≥ k]≤
(

n
k

)(
n/8

k −1

)(
k
n

)2(k−1)

(1)

Possible C. Which edges. Prob. both endpoints inside C.

Pr[|C| ≥ k] ≤ n
k

(
n
k

)(
n/8
k

)(
k
n

)2k

≤ n
k

(ne
k

)k (ne
8k

)k
(

k
n

)2k

=
n
k

(
e2

8

)k

≤ n
k

(0.93)k(2)

Choose k =−(c + 1) log.93 n make probability ≤ 1/nc .

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8
→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3, decreasing till k ≤ n/8 (at least)
→ Total O(1/n2).

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8
→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3, decreasing till k ≤ n/8 (at least)
→ Total O(1/n2).

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2,

not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8
→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3, decreasing till k ≤ n/8 (at least)
→ Total O(1/n2).

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8
→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3, decreasing till k ≤ n/8 (at least)
→ Total O(1/n2).

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8
→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3, decreasing till k ≤ n/8 (at least)
→ Total O(1/n2).

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8

→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3, decreasing till k ≤ n/8 (at least)
→ Total O(1/n2).

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8

→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3, decreasing till k ≤ n/8 (at least)
→ Total O(1/n2).

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8
→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3, decreasing till k ≤ n/8 (at least)
→ Total O(1/n2).

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8
→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3, decreasing till k ≤ n/8 (at least)
→ Total O(1/n2).

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8
→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3,

decreasing till k ≤ n/8 (at least)
→ Total O(1/n2).

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8
→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3, decreasing till k ≤ n/8 (at least)

→ Total O(1/n2).

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8
→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3, decreasing till k ≤ n/8 (at least)
→ Total O(1/n2).

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process:

Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes

and incident edges. Repeat.
Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges.

Repeat.
Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:

Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8

→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.

→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.

→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.

Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.

Corresponding edge removed in iteration ri .
Property: hi ≤ 16ri .

Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .

Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1

- only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin

→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction:

Previous removed edges(ball) induce load ≤ 16(ri −1).
+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.

→ hi ≤ 16ri .

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Power of two choices.

Max load: logX where X is max component size.

X is O(logn) with high probability.

Max load is O(log logn).

Power of two choices.

Max load: logX where X is max component size.

X is O(logn) with high probability.

Max load is O(log logn).

Power of two choices.

Max load: logX where X is max component size.

X is O(logn) with high probability.

Max load is O(log logn).

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:

Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array.

Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.

Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].
Bump y ,x : place y in hj (y) where j 6= i if space.

Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.

Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long.

Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail.

Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.

Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`

Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)

O(1) time on average.

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r. for i ∈ [1,2].

Bump y ,x : place y in hj (y) where j 6= i if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C` - event of cycle of length ` at a vertex.

Pr[C`]≤
(

m
`

)(
n
`

)(
`

n

)2(`)

≤
(

e2

8

)`

(3)

Probability that an insert hits a cycle of length ` ≤ `
n

(
e2

8

)`
Rehash every Ω(n) inserts (if ≤ n/8 items in table.)
O(1) time on average.

Sum up

Balls in bins: Θ(logn/ log logn) load.

Power of two: Θ(log logn).

Cuckoo hashing.

Sum up

Balls in bins: Θ(logn/ log logn) load.

Power of two: Θ(log logn).

Cuckoo hashing.

Sum up

Balls in bins: Θ(logn/ log logn) load.

Power of two: Θ(log logn).

Cuckoo hashing.

See you on Thursday...

