Today

Load balancing.

Balls in Bins.

Power of two choices.
Cuckoo hashing

Balls in bins

For each of n balls, choose random bin: X_{i} balls in bin i
$\operatorname{Pr}\left[X_{i} \geq k\right] \leq \sum_{S \subseteq[n],|S|=k} \operatorname{Pr}[$ balls in S chooses bin $i]$
From Union Bound: $\operatorname{Pr}\left[\cup_{i} A_{i}\right] \leq \sum_{i} \operatorname{Pr}\left[A_{i}\right]$
$\operatorname{Pr}[$ balls in S chooses bin $i]=\left(\frac{1}{n}\right)^{k}$ and $\binom{n}{k}$ subsets S.

$$
\begin{aligned}
\operatorname{Pr}\left[X_{i} \geq k\right] & \leq\binom{ n}{k}\left(\frac{1}{n}\right)^{k} \\
& \leq \frac{n^{k}}{k!}\left(\frac{1}{n}\right)^{k}=\frac{1}{k!}
\end{aligned}
$$

Choose k, so that $\operatorname{Pr}\left[X_{i} \geq k\right] \leq \frac{1}{n^{2}}$.
$\operatorname{Pr}\left[\right.$ any $\left.X_{i} \geq k\right] \leq n \times \frac{1}{n^{2}}=\frac{1}{n} \rightarrow \max$ load $\leq k$ w.p. $\geq 1-\frac{1}{n}$
$k!\geq n^{2}$ for $k=2 e \log n$ (Recall $k!\geq\left(\frac{k}{e}\right)^{k}$.)
Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1-\frac{1}{n}$.
Much better than n.
Actually Max load is $\Theta(\log n / \log \log n)$ w.h.p.
(W.h.p. - means with probability at least $1-O\left(1 / n^{c}\right)$ for today.)

n balls in n bins.

Choose two bins, pick least loaded
still distributed, but a bit less than not looking
Is max load lower? Yes? No? Yes
How much lower?
$\log n / 2 ? \sqrt{\log n} ? O(\log \log n) ?$
$O(\log \log n)!!!!$
Exponentially better! Old bound is exponential of new bound

Simplest..

Load balance: m balls in n bins
For simplicity: n balls in n bins
Round robin: load 1 !
Centralized! Not so good
Uniformly at random? Average load 1.
Max load?
n. Uh Oh!

Max load with probability $\geq 1-\delta$?
$\delta=\frac{1}{n^{c}}$ for today. c is 1 or 2 .

Analysis.

$n / 8$ balls in n bins.
Each ball chooses two bins at random.
picks least loaded
picks least lo
Bin is vertex
Each ball is.
Analysis Intuition.
Add edge add one to lower endpoint's "count"
Max load is max vertices count.
If max count is k.
neighbors with counts $\geq k-1, k-2, k-3, \ldots$. and so on!

No cycles and max-load $k \rightarrow \geq 2^{k / 2}$ nodes in tree
No connected component of size X and no cycles
\Longrightarrow max $\operatorname{load} O(\log X)$.

Will show:

Max conn. comp is $O(\log n)$ w.h.p.
Average induced degree is small. (E.g.: cycle degree 2) Extend tree intuition

Connected Component.

Claim: Component size in n vertex, $\frac{n}{8}$ edge random graph is $O(\log n)$ w/ prob. $\geq 1-\frac{1}{n^{c}}$.

Proof: Size k component, C, contains $\geq k-1$ edges.

$$
\begin{equation*}
\operatorname{Pr}[|C| \geq k] \leq\binom{ n}{k}\binom{n / 8}{k-1}\left(\frac{k}{n}\right)^{2(k-} \tag{1}
\end{equation*}
$$

Possible C. Which edges. Prob. both endpoints inside C.

$$
\begin{aligned}
\operatorname{Pr}[|C| \geq k] & \leq \frac{n}{k}\binom{n}{k}\binom{n / 8}{k}\left(\frac{k}{n}\right)^{2 k} \\
& \leq \frac{n}{k}\left(\frac{n e}{k}\right)^{k}\left(\frac{n e}{8 k}\right)^{k}\left(\frac{k}{n}\right)^{2 k}=\frac{n}{k}\left(\frac{e^{2}}{8}\right)^{k} \leq \frac{n}{k}(0.93)^{k}(2)
\end{aligned}
$$

Choose $k=-(c+1) \log _{93} n$ make probability $\leq 1 / n^{c}$.

Power of two choices

Max load: $\log X$ where X is max component size.
X is $O(\log n)$ with high probability.
Max load is $O(\log \log n)$.

Not dense.

Induced degree of node on subset, S, is degree of internal edges

Induced degree of nodes in blue subset is 2 , not 5 !
Claim: Average induced degree on any subset of nodes is ≤ 8 with probability $\geq 1-O\left(\frac{1}{n^{2}}\right)$

Proof: Induced degree ≥ 8
$\rightarrow 4 k$ internal edges for subset of size k.

$$
\operatorname{Pr}[\text { dense } S] \leq\binom{ n}{k}\binom{n / 8}{4 k}\left(\frac{k}{n}\right)^{8 k} \leq\left(\frac{e^{1.25}}{32}\right)^{4 k}\left(\frac{k}{n}\right)^{3 k} \leq\left(\frac{k}{n}\right)^{3 k}
$$

Starts at $1 / n^{3}$, decreasing till $k \leq n / 8$ (at least) \rightarrow Total $O\left(1 / n^{2}\right)$.

Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$
Cuckoo hashing:
Array. Two hash functions h_{1}, h_{2}.
Insert x : place in $h_{1}(x)$ or $h_{2}(x)$ if space.
Else bump elt y in $h_{i}(x)$ u.a.r. for $i \in[1,2]$
Bump y, x : place y in $h_{j}(y)$ where $j \neq i$ if space.
Else bump y^{\prime} in $h_{i}(y)$.
If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert
C_{ℓ} - event of cycle of length ℓ at a vertex.

$$
\begin{equation*}
\operatorname{Pr}\left[C_{\ell}\right] \leq\binom{ m}{\ell}\binom{n}{\ell}\left(\frac{\ell}{n}\right)^{2(\ell)} \leq\left(\frac{e^{2}}{8}\right)^{\ell} \tag{3}
\end{equation*}
$$

Probability that an insert hits a cycle of length $\ell \leq \frac{\ell}{n}\left(\frac{e^{2}}{8}\right)^{\ell}$
Rehash every $\Omega(n)$ inserts (if $\leq n / 8$ items in table.) $O(1)$ time on average.

Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree
is 8 w.h.p.
Process: Remove degree <16 nodes
and incident edges. Repeat.
Claim: $O(\log X)$ iterations where X is max component size
For any connected component
Average induced degree $8 \rightarrow$ half nodes w/degree ≤ 16
\rightarrow half nodes removed in each iteration
$\rightarrow \log X$ iterations to remove all nodes.
Claim: Max load is $O(\log \log n)$ w.h.p.
Recall edge corresponds to ball. Height of ball, h_{i}, is load of bin when it is placed in bin Corresponding edge removed in iteration r_{i}
Property: $h_{i} \leq 16 r_{i}$.
Case $r_{i}=1$ - only 16 balls incident to bin $\rightarrow h_{i} \leq 16$
Induction: Previous removed edges(ball) induce load $\leq 16\left(r_{i}-1\right)$ +16 edges/balls this iteration.
$\rightarrow h_{i} \leq 16 r_{i}$
Sum up

Balls in bins: $\Theta(\log n / \log \log n)$ load
Power of two: $\Theta(\log \log n)$
Cuckoo hashing

