Today

Load balancing.

Balls in Bins.

Power of two choices.

Cuckoo hashing.

Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

 $Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]$

From Union Bound: $Pr[\cup_i A_i] \leq \sum_i Pr[A_i]$

$$Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \quad \text{and} \quad \binom{n}{k} \text{ subsets } S.$$

$$Pr[X_i \ge k] \quad \le \quad \binom{n}{k} \left(\frac{1}{n}\right)^k \\ \leq \quad \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$$

Choose k, so that $Pr[X_i \ge k] \le \frac{1}{n^2}$.

$$Pr[any X_i \ge k] \le n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow max load \le k \text{ w.p. } \ge 1 - \frac{1}{n}$$

 $k! \ge n^2$ for $k = 2e\log n$ (Recall $k! \ge (\frac{k}{n})^k$.)

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$. Much better than n.

Actually Max load is $\Theta(\log n / \log \log n)$ w.h.p.

(W.h.p. - means with probability at least $1 - O(1/n^c)$ for today.)

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \frac{n^k}{k!} \le \left(\frac{ne}{k}\right)^k$$
$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdot 1} = \frac{n}{k} \cdot \frac{n-1}{k-1} \cdots \frac{n-k+1}{1} \ge \frac{n}{k} \cdot \frac{n}{k} \cdots \frac{n}{k}$$
$$n(n-1)\cdots(n-k+1) \le n^k$$

Power of two...

 $k! \ge \left(\frac{k}{e}\right)^k$

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

 $\log n/2$? $\sqrt{\log n}$? $O(\log \log n)$?

 $O(\log \log n)!!!!$

Exponentially better! Old bound is exponential of new bound.

Simplest..

Load balance: *m* balls in *n* bins.

For simplicity: *n* balls in *n* bins.

Round robin: load 1!

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability $> 1 - \delta$?

 $\delta = \frac{1}{p^c}$ for today. c is 1 or 2.

Analysis.

n/8 balls in n bins.

Each ball chooses two bins at random.

picks least loaded.

View as graph.

Bin is vertex.

Each ball is edge.

Analysis Intuition:

Add edge, add one to lower endpoint's "count."

Max load is max vertices count.

If max count is k.

neighbors with counts $\geq k-1, k-2, k-3, \dots$

and so on!

No cycles and max-load $k \to \geq 2^{k/2}$ nodes in tree.

No connected component of size X and no cycles

 \implies max load $O(\log X)$.

Will show:

Max conn. comp is $O(\log n)$ w.h.p.

Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Connected Component.

Claim: Component size in n vertex, $\frac{n}{8}$ edge random graph is $O(\log n)$

w/ prob. $\geq 1 - \frac{1}{n^c}$.

pause

Proof: Size k component, C, contains $\geq k-1$ edges.

$$\Pr[|C| \ge k] \le \binom{n}{k} \binom{n/8}{k-1} \left(\frac{k}{n}\right)^{2(k-1)} \tag{1}$$

Possible C. Which edges. Prob. both endpoints inside C.

$$\begin{aligned} \Pr[|C| \geq k] &\leq \frac{n}{k} \binom{n}{k} \binom{n/8}{k} \left(\frac{k}{n}\right)^{2k} \\ &\leq \frac{n}{k} \left(\frac{ne}{k}\right)^k \left(\frac{ne}{8k}\right)^k \left(\frac{k}{n}\right)^{2k} = \frac{n}{k} \left(\frac{e^2}{8}\right)^k \leq \frac{n}{k} (0.93)^{\frac{n}{2}} (2) \end{aligned}$$

Choose $k = -(c+1)\log_{.93} n$ make probability $\leq 1/n^c$.

Power of two choices.

Max load: log X where X is max component size.

X is $O(\log n)$ with high probability.

Max load is $O(\log \log n)$.

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with probability $\geq 1 - O(\frac{1}{2\sigma})$.

Proof: Induced degree ≥ 8

 \rightarrow 4k internal edges for subset of size k.

$$\Pr[\text{dense } S] \leq \binom{n}{k} \binom{n/8}{4k} \left(\frac{k}{n}\right)^{8k} \leq \left(\frac{e^{1.25}}{32}\right)^{4k} \left(\frac{k}{n}\right)^{3k} \leq \left(\frac{k}{n}\right)^{3k}$$

Starts at $1/n^3$, decreasing till $k \le n/8$ (at least) \rightarrow Total $O(1/n^2)$.

Cuckoo hashing.

Hashing with two choices: $\max load O(log log n)$.

Cuckoo hashing:

Array. Two hash functions h_1 , h_2 .

Insert x: place in $h_1(x)$ or $h_2(x)$ if space. Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1,2]$.

Bump y, x: place y in $h_i(y)$ where $i \neq i$ if space.

Else bump y' in $h_i(y)$.

If go too long. Fail. Rehash entire hash table.

Fails if cycle for insert.

 C_ℓ - event of cycle of length ℓ at a vertex.

$$\Pr[C_{\ell}] \le \binom{m}{\ell} \binom{n}{\ell} \left(\frac{\ell}{n}\right)^{2(\ell)} \le \left(\frac{e^2}{8}\right)^{\ell} \tag{3}$$

Probability that an insert hits a cycle of length $\ell \leq \frac{\ell}{n} \left(\frac{\varrho^2}{8}\right)^{\ell}$

Rehash every $\Omega(n)$ inserts (if $\leq n/8$ items in table.) O(1) time on average.

Removal Process! Random Graph: Com

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree \leq 16 nodes

and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:

Average induced degree 8 \rightarrow half nodes w/degree \leq 16.

→ half nodes removed in each iteration.

 $\rightarrow \log X$ iterations to remove all nodes.

Claim: Max load is $O(\log \log n)$ w.h.p.

Recall edge corresponds to ball.

Height of ball, h_i , is load of bin when it is placed in bin.

Corresponding edge removed in iteration r_i .

Property: $h_i \leq 16r_i$.

Case $r_i = 1$ - only 16 balls incident to bin $\rightarrow h_i \le 16$.

Induction: Previous removed edges(ball) induce load $\leq 16(r_i - 1)$.

+16 edges/balls this iteration.

 $\rightarrow h_i \leq 16r_i$.

Sum up

Balls in bins: $\Theta(\log n / \log \log n)$ load.

Power of two: $\Theta(\log \log n)$.

Cuckoo hashing.

