
First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt )

One bound: f (xt )− f (xt+1) ≥ ‖∇f (xt )‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt ) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt )‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt ))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!
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Last time.

Gradient Descent:

xt+1 = xt − α∇f (xt )
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Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt )‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt ).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi )).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.
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Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.
E.g. Max Flow or tolls.
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Deteministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,11,2,3,1,21,2,3,1,2,4

1,2,3,1,2,4/stream7

State: k = 3
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[(1,2)−−(2,2)−−(3,0)]/stream7
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Deterministic Algorithm.
Alg:

(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)
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item i , count ci (possibly negative.)
Positive total for each item!

Estimate frequency of item: fj =
∑

cj .

|f |1 =
∑

j |fj | Smaller than
∑

i |ci |.
Approximation:

Additive ε|f |1 with probability 1− δ
Space O( 1

ε log 1
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Count Min Sketch

Sketch

– Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj ),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.



Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj ),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.



Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj ),

A[i][hi (j)] += cj .
(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.



Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj ),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.



Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj ),

A[i][hi (j)] += cj .
(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.



Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj ),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.



Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj ),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.



Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj ),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.



Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj ),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.



Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj ),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.



Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj ),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets?

To get high probability.



Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj ),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.



Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj ),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X ] =
∑

i E [Yi ]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k ] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ ( 1
2 )t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O( 1

ε log 1
δ log n)
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Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k ]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj )
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!
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Analysis
(1) · · ·

gi : U → [−1,+1],hi : U → [k ]
(2) Elt (j , cj )

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi ] = 0 Var(Yi ) =

f 2
i
k .

E [X ] = 0 Expected drift is 0!
Var [X ] =

∑
i∈[m] Var(Yi ) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)
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See you on Thurday.


