First order optimization.

min f(x)



First order optimization.
min f(x)
Convexity: f(x) + (VF(x)) - (y — x) < f(y).



First order optimization.
min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: [[V(f(x)) = V(f(y))ll < LIx =yl



First order optimization.
min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.



First order optimization.
min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.



First order optimization.
min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.

Gradient Descent:



First order optimization.
min f(x)
Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.
Gradient Descent:
Xtr1 = Xt — an(Xt)



First order optimization.
min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: [[V(f(x)) — V(f(y))l| < LIx =y
Vf(x) - gradient or subgradient.
Gradient Descent:
Xtr1 = Xt — O[Vf(Xt) ,
One bound: f(x;) — f(xpy1) > INAXIC,




First order optimization.
min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: [[V(f(x)) — V(f(y))l| < LIx =y
Vf(x) - gradient or subgradient.
Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)
One bound: f(x;) — f(x¢11) > M Lipschitz.



First order optimization.

min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).

Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)

One bound: f(x;) — f(xt41) > I | jpschitz.

“Mirror” Descent:



First order optimization.

min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).

Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)

One bound: f(x;) — f(xt41) > I | jpschitz.

“Mirror” Descent:
Xty1 = Xt — OéVf(X[)



First order optimization.

min f(x)
Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)

One bound: f(x;) — f(x¢11) > M Lipschitz.
“Mirror” Descent:

Xt+1 = Xy — aVF(x;) for “euclidean proximity function
Output: Average point.



First order optimization.
min f(x)
Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)
One bound: f(x;) — f(x¢11) > M Lipschitz.

“Mirror” Descent:

Xt+1 = Xy — aVf(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”



First order optimization.
min f(x)
Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)
One bound: f(x;) — f(x¢11) > M Lipschitz.

“Mirror” Descent:

Xt+1 = Xy — aVf(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”

>l V) + 55



First order optimization.

min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).

Lipschitz: [[V(f(x)) — V(f(y))l| < LIx =y
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)

One bound: f(x;) — f(x¢11) > M Lipschitz.

“Mirror” Descent:
Xt+1 = Xy — aVf(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”
5@l V)2 + #E.
No Lipschitz condition. Works for subgradients.



First order optimization.
min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)
One bound: f(x;) — f(x¢11) > M Lipschitz.

“Mirror” Descent:
Xt+1 = Xy — aVf(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”
> ol V)2 + 2.
No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.



First order optimization.
min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)
One bound: f(x;) — f(x¢11) > M Lipschitz.

“Mirror” Descent:
Xt+1 = Xy — aVf(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”
> ol V)2 + 2.
No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u) — w(x) = 32 (VI(xt))(x — u) — w(u).



First order optimization.
min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)
One bound: f(x;) — f(x¢11) > M Lipschitz.

“Mirror” Descent:
Xt+1 = Xy — aVf(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”
> o VH(x)|I2 + 242,
No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.
R(u) — w(x) = 3_,(VI(x))(x — u) — w(u).
What is w(x)?



First order optimization.

min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).

Lipschitz: [[V(f(x)) — V(f(y))l| < LIx =y
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)

One bound: f(x;) — f(x¢11) > M Lipschitz.

“Mirror” Descent:
Xt+1 = Xy — aVf(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”
@l VH(x)|2 + .
No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.
R(u) — w(x) = S(VF(x)) (x — u) — w(u).

What is w(x)? One option: Euclidean norm of x.



First order optimization.
min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)
One bound: f(x;) — f(x¢11) > M Lipschitz.

“Mirror” Descent:
Xt+1 = Xy — aVf(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”
> o VH(x)|I2 + 242,
No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.
R(u) — w(x) = 5_,(VI(x))(x — u) — w(u).
What is w(x)? One option: Euclidean norm of x.
Another, w(x) = >"; x;log x;.



First order optimization.
min f(x)

Convexity: f(x) + (VF(x)) - (y — x) < f(y).
Lipschitz: |V (f(x)) — V(f(y))Il < LIx -y
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtr1 = Xt — O[Vf(Xt)
One bound: f(x;) — f(x¢11) > M Lipschitz.

“Mirror” Descent:
Xt+1 = Xy — aVf(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”
@l VH(x)|2 + .
No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.
R(u) — w(x) = ,(VH(x))(x — 1) — w(u).
What is w(x)? One option: Euclidean norm of x.
Another, w(x) = 3", x;log x;. Get multiplicative weight update!!!!



Last time.

Gradient Descent:



Last time.

Gradient Descent:
Xtr1 = Xt — OéVf(X[)



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)

2
One bound: f(x;) — f(xt11) > I\Vf(LXr)H _



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.

“Mirror” Descent:



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.

“Mirror” Descent:
Xtr1 = Xt — Osz(Xt)



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.

“Mirror” Descent:
Xi+1 = Xy — aVF(x;) for “euclidean proximity function”
Output: Average point.



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.

“Mirror” Descent:

Xi+1 = Xy — aVF(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.

“Mirror” Descent:

Xi+1 = Xy — aVF(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”

Sl V()2 + 2.



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.

“Mirror” Descent:

Xi+1 = Xy — aVF(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”

Sl V()2 + 2.



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.

“Mirror” Descent:

Xi+1 = Xy — aVF(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”

S al VE(xe)||2 + e,
Accelerated Gradient Descent:



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.

“Mirror” Descent:

Xi+1 = Xy — aVF(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”

S al VE(xe)||2 + e,
Accelerated Gradient Descent:
X1 = X + OZ,'(X{ — Xt_1) - ﬁ/Vf(Xt).



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.

“Mirror” Descent:

Xi+1 = Xy — aVF(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”

S al VE(xe)||2 + e,
Accelerated Gradient Descent:

Xer1 = X + aj(Xt — Xe—1) — BiVI(X).
Momentum term: (x; — xt41) = > vV (fx;))-



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.

“Mirror” Descent:

Xi+1 = Xy — aVF(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”

S al VE(xe)||2 + e,
Accelerated Gradient Descent:
X1 = X + OZ,'(X{ — Xt_1) - ﬁ/Vf(Xt).

Momentum term: (x; — xt41) = > vV (fx;))-
where )", v; = 1.



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.

“Mirror” Descent:

Xi+1 = Xy — aVF(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”

S al VE(xe)||2 + e,
Accelerated Gradient Descent:
X1 = X + OZ,'(X{ — Xt_1) - ﬁ/Vf(Xt).

Momentum term: (x; — xt41) = > vV (fx;))-
where )", v; = 1.

Mirror Descent point!



Last time.

Gradient Descent:

Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(xts1) > Y00 | jpschitz.
“Mirror” Descent:

Xi+1 = Xy — aVF(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”

>l VE(x) 2 + 2.
Accelerated Gradient Descent:
Xty1 = X+ OZ,'(X{ — Xt_1) - ﬂ/Vf(Xt).

Momentum term: (x; — xt41) = > vV (fx;))-
where )", v; = 1.

Mirror Descent point!
Idea of Analysis:



Last time.

Gradient Descent:
Xtr1 = Xt — CYVf(X[)
One bound: f(x;) — f(Xi41) > M Lipschitz.

“Mirror” Descent:

Xi+1 = Xy — aVF(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”

>l VE(x) 2 + 2.
Accelerated Gradient Descent:
Xty1 = X+ OZ,'(X{ — Xt_1) - ﬂ/Vf(Xt).

Momentum term: (x; — xt41) = > vV (fx;))-
where )", v; = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.



Other scenarios.

Don’t you dual norm me!



Other scenarios.

Don’t you dual norm me!
Norm: || x||.



Other scenarios.

Don’t you dual norm me!
Norm: || x||. Dual Norm: ||y/|..



Other scenarios.

Don’t you dual norm me!
Norm: || x||. Dual Norm: ||y/|..

Yl = maxx=1(X, ¥).



Other scenarios.

Don’t you dual norm me!
Norm: || x||. Dual Norm: ||y/|..

Yl = maxx=1(X, ¥).
For Euclidean norm, what is dual norm?



Other scenarios.

Don’t you dual norm me!
Norm: || x||. Dual Norm: ||y/|..
Y1l = max)x=1(X,y).
For Euclidean norm, what is dual norm?

For ¢4 or hamming norm, what is dual norm?



Other scenarios.

Don’t you dual norm me!
Norm: || x||. Dual Norm: ||y/|..
Y1l = max)x=1(X,y).
For Euclidean norm, what is dual norm?

For ¢4 or hamming norm, what is dual norm?

x4 = 325 Xl



Other scenarios.

Don’t you dual norm me!
Norm: || x||. Dual Norm: ||y/|..
Y1l = max)x=1(X,y).
For Euclidean norm, what is dual norm?

For ¢4 or hamming norm, what is dual norm?

x4 = 325 1l

IX|loo = max; |X]|.



Other scenarios.

Don’t you dual norm me!
Norm: || x||. Dual Norm: ||y/|..
Y1l = max)x=1(X,y).
For Euclidean norm, what is dual norm?

For ¢4 or hamming norm, what is dual norm?

x4 = 325 1l

IX|loo = max; |X]|.

Can be Lipschitz in different norms:



Other scenarios.

Don’t you dual norm me!
Norm: || x||. Dual Norm: ||y/|..
Y1l = max)x=1(X,y).
For Euclidean norm, what is dual norm?

For ¢4 or hamming norm, what is dual norm?

x4 = 325 1l

IX|loo = max; |X]|.

Can be Lipschitz in different norms:
IVE(x) = VIl = Lllx = y-



Other scenarios.

Don’t you dual norm me!
Norm: || x||. Dual Norm: ||y/|..
Y1l = max)x=1(X,y).
For Euclidean norm, what is dual norm?

For ¢4 or hamming norm, what is dual norm?

x4 = 325 1l

IX|loo = max; |X]|.

Can be Lipschitz in different norms:
IVE(x) = VIl = Lllx = y-

Gradient Step:



Other scenarios.

Don’t you dual norm me!
Norm: || x||. Dual Norm: ||y/|..
Y1l = max)x=1(X,y).
For Euclidean norm, what is dual norm?

For ¢4 or hamming norm, what is dual norm?

x4 = 325 1l

IX|loo = max; |X]|.

Can be Lipschitz in different norms:
IVE(x) = VIl = Lllx = y-

Gradient Step:
X1 = Xt — aargmax|y=1(V(f(x)),y).



Other scenarios.

Don’t you dual norm me!
Norm: ||x||. Dual Norm: ||y||«.
Y1l = max)x=1(X,y).
For Euclidean norm, what is dual norm?

For ¢4 or hamming norm, what is dual norm?

x4 = 325 1l

IX|loo = max; |X]|.

Can be Lipschitz in different norms:
IVE(x) = VIl = Lllx = y-

Gradient Step:
X1 = Xt — aargmax|y=1(V(f(x)),y).

Lipschitz in £1, when optimizing >, | xi|.



Other scenarios.

Don’t you dual norm me!
Norm: ||x||. Dual Norm: ||y||«.
Y1l = max)x=1(X,y).
For Euclidean norm, what is dual norm?

For ¢4 or hamming norm, what is dual norm?

x4 = 325 1l

[X[loe = max; [Xi|.
Can be Lipschitz in different norms:
IVE(x) = VIl = Lllx = y-
Gradient Step:
Xty1 = Xt — cargmax|y|—1(V(f(x)),y).
Lipschitz in £1, when optimizing >, | xi|.
E.g. Max Flow or tolls.



Next Topic

Streaming.



Next Topic

Streaming.
Frequent Items.



Streaming

Stream: Xy,



Streaming

Stream: x4, xo,



Streaming

Stream: xq, X2, X3,



Streaming

Stream: xq, X2, X3, , ... Xp



Streaming

Stream: xq, X2, X3, , ... Xp

Resources: O(log® n) storage.



Streaming

Stream: xq, X2, X3, , ... Xp
Resources: O(log® n) storage.
Today’s Goal: find frequent items.



Frequent ltems: deterministic.

Additive ¢ error.



Frequent ltems: deterministic.

Additive ¢ error.
Accurate count for k + 1th item?



Frequent ltems: deterministic.

Additive ¢ error.
Accurate count for k + 1th item?
Yes?



Frequent ltems: deterministic.

Additive ¢ error.
Accurate count for k + 1th item?

Yes?
No?



Frequent ltems: deterministic.

Additive ¢ error.
Accurate count for k + 1th item?

Yes?
No?
k + 1st most frequent item occurs < 75



Frequent ltems: deterministic.

Additive ¢ error.

Accurate count for k + 1th item?
Yes?

No?

k + 1st most frequent item occurs < 75
Off by 100%.



Frequent ltems: deterministic.

Additive ¢ error.

Accurate count for k + 1th item?

Yes?

No?

k + 1st most frequent item occurs < 75
Off by 100%. 0 estimate is fine.



Frequent ltems: deterministic.

Additive ¢ error.

Accurate count for k + 1th item?

Yes?

No?

k + 1st most frequent item occurs < 75
Off by 100%. 0 estimate is fine.



Frequent ltems: deterministic.

Additive ¢ error.

Accurate count for k + 1th item?

Yes?

No?

k + 1st most frequent item occurs < 75

Off by 100%. 0 estimate is fine.
No item more frequent than 27



Frequent ltems: deterministic.

Additive ¢ error.
Accurate count for k + 1th item?

Yes?

No?

k + 1st most frequent item occurs < 75
Off by 100%. 0 estimate is fine.

No item more frequent than 27
0 estimate is fine.



Frequent ltems: deterministic.

Additive ¢ error.

Accurate count for k + 1th item?

Yes?

No?

k + 1st most frequent item occurs < 75
Off by 100%. 0 estimate is fine.

No item more frequent than 27
0 estimate is fine.

Only reasonable for frequent items.



Deteministic Algorithm.

Alg:



Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.



Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If x; € S increment x;’s counter.



Deteministic Algorithm.

Alg:

) Set, S, of k counters, initially 0.
) If x; € S increment x;’s counter.
)

(1
(2
@) Ifx ¢S



Deteministic Algorithm.

Alg:

) Set, S, of k counters, initially 0.
) If x; € S increment x;’s counter.
YIfx; & S

If S has space, add x; to S w/value 1.

(1
(2
(3



Deteministic Algorithm.

Alg:
) Set, S, of k counters, initially 0.
) If x; € S increment x;’s counter.
YIfx; & S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

(1
(2
(3



Deteministic Algorithm.

Alg:
) Set, S, of k counters, initially 0.
) If x; € S increment x;’s counter.
YIfx; & S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

(1
(2
(3



Deteministic Algorithm.

Alg:
) Set, S, of k counters, initially 0.
) If x; € S increment x;’s counter.
YIfx; & S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

(1
(2
(3

State: k=3

Stream



Deteministic Algorithm.

Alg:
) Set, S, of k counters, initially 0.
) If x; € S increment x;’s counter.
YIfx; & S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

(1
(2
(3

State: k=3

Stream

[(1, 1]

1,
Previous State

[



Deteministic Algorithm.

Alg:
) Set, S, of k counters, initially 0.
) If x; € S increment x;’s counter.
YIfx; & S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

(1
(2
(3

Example:
State: k=3
Stream
[(13 1) - _(2a1)]
1,2

Previous State

[(1.1)]



Deteministic Algorithm.

Alg:
) Set, S, of k counters, initially 0.
) If x; € S increment x;’s counter.
YIfx; & S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

(1
(2
(3

Example:
State: k=3
Stream
[(131) - _(231) - _(3a1)]
1,2,3

Previous State

[(1,1) = =(2,1)]



Deteministic Algorithm.

Alg:
) Set, S, of k counters, initially 0.
) If x; € S increment x;’s counter.
YIfx; & S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

(1
(2
(3

Example:
State: k=3
Stream
[(132) - _(23 1) - _(Sa 1)]
1,2,3,1

Previous State

[(1,1) = =(2,1) = =(3,1)]



Deteministic Algorithm.

Alg:
) Set, S, of k counters, initially 0.
) If x; € S increment x;’s counter.
YIfx; & S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

(1
(2
(3

Example:
State: k=3
Stream
[(1 ) 2) - _(23 2) - _(Sa 1)]
1,2,3,1,2

Previous State

[(1,2) = =(2,1) = =(3,1)]



Deteministic Algorithm.

Alg:
) Set, S, of k counters, initially 0.
) If x; € S increment x;’s counter.
YIfx; & S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

(1
(2
(3

Example:
State: k=3
Stream
[(1 ) 1) - _(23 1) - —(3,0)]
1,2,3,1,2,4

Previous State

[(1,2) = =(2,2) = =(3,1)]



Deteministic Algorithm.

Alg:
) Set, S, of k counters, initially 0.
) If x; € S increment x;’s counter.
YIfx; & S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

(1
(2
(3

State: k=3

Stream



Deterministic Algorithm.
Alg:



Deterministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.



Deterministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If x; € Sincrement x;’s counter.



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.
(2) If x; € Sincrement x;’s counter.
B)Ifx; &S



Deterministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If x; € Sincrement x;’s counter.
B Ifx &8
If S has space, add x; to S w/value 1.



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

@) Ifx ¢S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

@) Ifx ¢S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.
Underestimate



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.
Underestimate clearly.



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.
Underestimate clearly.



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.
Underestimate clearly.
Increment once when see an item, might decrement.



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T?



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n?



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k?



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k? k?



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k? k?

decrement k counters on each decrement.



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items.



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
nitems. n total incrementing.



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
nitems. n total incrementing.

= T< 4



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
nitems. n total incrementing.
= T< 4
Off by at most 7



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
nitems. n total incrementing.
= T< 4
Off by at most 7

Space?



Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Sincrement x;’s counter.

B Ifx &8
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
nitems. n total incrementing.
= T< 4
Off by at most 7

Space?O(klog n)



Turnstile Model and Randomization

Stream: ..., (i,¢c),. ..



Turnstile Model and Randomization

Stream: ..., (i,¢c),. ..
item i, count ¢; (possibly negative.)



Turnstile Model and Randomization

Stream: ..., (i,¢c),. ..
item i, count ¢; (possibly negative.)
Positive total for each item!



Turnstile Model and Randomization

Stream: ..., (i,¢c),. ..
item i, count ¢; (possibly negative.)
Positive total for each item!

Estimate frequency of item: f; = " ¢;.



Turnstile Model and Randomization

Stream: ..., (i,¢c),. ..
item i, count ¢; (possibly negative.)
Positive total for each item!

Estimate frequency of item: f; = " ¢;.

[fls =225 1l



Turnstile Model and Randomization

Stream: ..., (i,¢c),. ..
item i, count ¢; (possibly negative.)
Positive total for each item!

Estimate frequency of item: f; = " ¢;.
[fli =321l Smaller than >, [cjl.



Turnstile Model and Randomization

Stream: ..., (i,¢c),. ..
item i, count ¢; (possibly negative.)
Positive total for each item!

Estimate frequency of item: f; = " ¢;.
[fli =321l Smaller than >, [cjl.



Turnstile Model and Randomization

Stream: ..., (i,¢c),. ..
item i, count ¢; (possibly negative.)
Positive total for each item!

Estimate frequency of item: f; = " ¢;.
[fli =321l Smaller than >, [cjl.
Approximation:



Turnstile Model and Randomization

Stream: ..., (i,¢c),. ..
item /i, count ¢; (possibly negative.)
Positive total for each item!

Estimate frequency of item: f; = " ¢;.
[fli =321l Smaller than >, [cjl.
Approximation:

Additive e|f| with probability 1 — ¢



Turnstile Model and Randomization

Stream: ..., (i,¢c),. ..
item /i, count ¢; (possibly negative.)
Positive total for each item!

Estimate frequency of item: f; = " ¢;.
[fli =321l Smaller than >, [cjl.
Approximation:
Additive e|f| with probability 1 — ¢
Space O(1 log 1 log n).



Count Min Sketch

Sketch



Count Min Sketch

Sketch — Summary of stream.



Count Min Sketch

Sketch — Summary of stream.
(1) t arrays, A[i], of k counters.



Count Min Sketch

Sketch — Summary of stream.

(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.



Count Min Sketch

Sketch — Summary of stream.

(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),



Count Min Sketch

Sketch — Summary of stream.

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Allih()] += ¢



Count Min Sketch

Sketch — Summary of stream.

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllh()] += c.
(8) Item j estimate: min; A[i][h;(f)].



Count Min Sketch

Sketch — Summary of stream.

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllh()] += c.
(8) Item j estimate: min; A[i][h;(f)].

Intuition:|f|1/k other “counts” in same bucket.



Count Min Sketch

Sketch — Summary of stream.

(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Allhi()] - += ¢
(8) Item j estimate: min; A[i][h;(f)].
Intuition:|f|1/k other “counts” in same bucket.

— Additive |f|1/k error on average for each of t arrays.



Count Min Sketch

Sketch — Summary of stream.

(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Allhi()] - += ¢
(8) Item j estimate: min; A[i][h;(f)].
Intuition:|f|1/k other “counts” in same bucket.

— Additive |f|1/k error on average for each of t arrays.



Count Min Sketch

Sketch — Summary of stream.

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllh()] += c.
(8) Item j estimate: min; A[i][h;(f)].

Intuition:|f|1/k other “counts” in same bucket.

— Additive |f|1/k error on average for each of t arrays.

Why t buckets?



Count Min Sketch

Sketch — Summary of stream.

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllh()] += c.
(8) Item j estimate: min; A[i][h;(f)].

Intuition:|f|1/k other “counts” in same bucket.

— Additive |f|1/k error on average for each of t arrays.

Why t buckets? To get high probability.



Count min sketch:analysis
(1) t arrays, A[i], of k counters.



Count min sketch:analysis

(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
AllThi()]+ = -



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Allh()l+ = ¢
(3) Item j estimate: min; A[i][h;(})].



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Allh()l+ = ¢
(3) Item j estimate: min; A[i][h;(})].



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Allh()l+ = ¢
(3) Item j estimate: min; A[i][h;(})].

Al1][h(j)] = fi + X, where X is a random variable.



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Alilhi()]+ = ¢
(3) Item j estimate: min; A[i][h;(})].
Al1][h(j)] = fi + X, where X is a random variable.

Y; - item hi (i) = hy (j)



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Alilhi()]+ = ¢
(3) Item j estimate: min; A[i][h;(})].
Al1][h(j)] = fi + X, where X is a random variable.

Y; - item hy (i) = hy(j)
X =2 Yif;



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Alilhi()]+ = ¢
(3) Item j estimate: min; A[i][h;(})].
Al1][h(j)] = fi + X, where X is a random variable.

Y; - item hy (i) = hy(j)
X =2 Yif;



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Alilhi()]+ = ¢
(3) Item j estimate: min; A[i][h;(})].
Al1][h(j)] = fi + X, where X is a random variable.

Y; - item hy (i) = hy(j)
X =2 Yif;

E[X]



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Alilhi()]+ = ¢
(3) Item j estimate: min; A[i][h;(})].
Al1][h(j)] = fi + X, where X is a random variable.

Y; - item hy (i) = hy(j)
X =2 Yif;

E[X] = ¥, E[Vilf



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Alilhi()]+ = ¢
(3) Item j estimate: min; A[i][h;(})].
Al1][h(j)] = fi + X, where X is a random variable.

Y; - item hy (i) = hy(j)
X =2 Yif;

EX) = X, EDVlf = X, 1



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Alilhi()]+ = ¢
(3) Item j estimate: min; A[i][h;(})].
Al1][h(j)] = fi + X, where X is a random variable.

Y; - item hy (i) = hi(j)
X =2 Yifi

EIX) = 5 ELVfi= 5, 1 = 1



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Allh()l+ = ¢
(3) Item j estimate: min; A[i][h;(})].

Al1][h;(j)] = f + X, where X is a random variable.
Y; - item hy (i) = hi(j)
X =2 Yif
E[X] = ¥, EIVilf = X2 ki = ¢t
Markov: Pr[X > 2%] <!



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Alilhi()]+ = ¢
(3) Item j estimate: min; A[i][h;(})].
Al1][h(j)] = fi + X, where X is a random variable.
Y; - item hi (i) = h(j)
X =2 Yif;

EIX) = 5, ELVlfi= 5, 1 =

Markov: PriX > 2!i] < 1
Exercise: proof of Markov.



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Alilhi()]+ = ¢
(3) Item j estimate: min; A[i][h;(})].
Al1][h(j)] = fi + X, where X is a random variable.
Y; - item hi (i) = h(j)
X =2 Yif;

EIX) = 5, ELVlfi= 5, 1 =

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Allh()l+ = ¢
(3) Item j estimate: min; A[i][h;(})].

AN[hi()] = £ + X, where X is a random variable.
Y; - item hy (i) = hy(j)

X =3 Yif;
E[X] = ¥, EIVilf = X2 ki = ¢t

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.



Count min sketch:analysis

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllhi()]+ = -
(3) Item j estimate: min; A[i][h;(})].

A[][h()] = f; + X, where X is a random variable.
Y; - item hy (i) = hi(j)

X = Z,‘ Yif;
E[X] = ¥, EIVilf = X2 ki = ¢t

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.
PrX > 21t in all t trials]



Count min sketch:analysis

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllhi()]+ = -
(3) Item j estimate: min; A[i][h;(})].

A[][h()] = f; + X, where X is a random variable.
Y; - item hy (i) = hi(j)

X = Z,‘ Yif;
E[X] = ¥, EIVilf = X2 ki = ¢t

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

PriX > 201 in all t trials] < (3)!



Count min sketch:analysis

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllhi()]+ = -
(3) Item j estimate: min; A[i][h;(})].

A[][h()] = f; + X, where X is a random variable.
Y; - item hy (i) = hi(j)

X = Z,‘ Yif;
E[X] = ¥, EIVilf = X2 ki = ¢t

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

PriX > 2l in all t trials] < (3)!
< 5 whent=log 1.



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Allh()l+ = ¢
(3) Item j estimate: min; A[i][h;(})].

A[][h()] = f; + X, where X is a random variable.
Y; - item hy (i) = hi(j)

X = Z,‘ Yif;
E[X] = ¥, EIVilf = X2 ki = ¢t

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

PriX > 2l in all t trials] < (3)!
< 5 whent=log 1.

Error ¢|f|q if



Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),
Allh()l+ = ¢
(3) Item j estimate: min; A[i][h;(})].

A[][h()] = f; + X, where X is a random variable.
Y; - item hy (i) = hi(j)

X = Z,‘ Yif;
E[X] = ¥, EIVilf = X2 ki = ¢t

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

PriX > 2l in all t trials] < (3)!
< 5 whent=log 1.

Error e|f|; if e = 2.



Count min sketch:analysis

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllhi()]+ = -
(3) Item j estimate: min; A[i][h;(})].

A[][h()] = f; + X, where X is a random variable.
Y; - item hy (i) = hi(j)

X = Z,‘ Yif;
E[X] = ¥, EIVilf = X2 ki = ¢t

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

PriX > 2l in all t trials] < (3)!
< 5 whent=log 1.

Error e|f|; if e = 2.

Space?



Count min sketch:analysis

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllhi()]+ = -
(3) Item j estimate: min; A[i][h;(})].

A[][h()] = f; + X, where X is a random variable.
Y; - item hy (i) = hi(j)

X = Z,‘ Yif;
E[X] = ¥, EIVilf = X2 ki = ¢t

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

PriX > 2l in all t trials] < (3)!
< 5 whent=log 1.

Error e|f|; if e = 2.

Space? O(k



Count min sketch:analysis

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllhi()]+ = -
(3) Item j estimate: min; A[i][h;(})].

Al1][h(j)] = fi + X, where X is a random variable.
Y,‘ - item h1(l) = h1 (j)

X =3, Yif;
E[X] Z/E[Y]f_Z/k :T1

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

PriX > 2l in all t trials] < (3)!
<dwhent= Iog%.

Error ¢|f|1 if e
Space? O(klog

= k\



Count min sketch:analysis

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllhi()]+ = -
(3) Item j estimate: min; A[i][h;(})].

A[][h()] = f; + X, where X is a random variable.
Y; - item hy (i) = hi(j)

X = Z,‘ Yif;
E[X] = ¥, EIVilf = X2 ki = ¢t

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

PriX > 2l in all t trials] < (3)!
< 5 whent=log 1.

Error e|f|; if e = 2.

Space? O(klog } log n)



Count min sketch:analysis

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllhi()]+ = -
(3) Item j estimate: min; A[i][h;(})].

A[][h()] = f; + X, where X is a random variable.
Y; - item hy (i) = hi(j)

X = Z,‘ Yif;
E[X] = ¥, EIVilf = X2 ki = ¢t

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

PriX > 2l in all t trials] < (3)!
< 5 whent=log 1.

Error e|f|; if e = 2.

Space? O(klog logn)  O(1log }



Count min sketch:analysis

(1) t arrays, A[i], of k counters.

hy, ..., hy from 2-wise ind. family.
(2) Process elt (J, ¢;),

Alllhi()]+ = -
(3) Item j estimate: min; A[i][h;(})].

A[][h()] = f; + X, where X is a random variable.
Y; - item hy (i) = hi(j)

X = Z,‘ Yif;
E[X] = ¥, EIVilf = X2 ki = ¢t

Markov: PriX > 2!i] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

PriX > 2l in all t trials] < (3)!
< 5 whent=log 1.

Error e|f|; if e = 2.

Space? O(klog ;logn)  O(%log 1 log n)



Count sketch.

Error in terms of |f|o = />, f2.



Count sketch.

Error in terms of |f|o = />, f2.

< |fle < [fh.



Count sketch.

Error in terms of |f|o = />, f2.

f
T <|flo < [fhs.

Could be much better.



Count sketch.

Error in terms of |f|o = />, f2.

f
T <|flo < [fhs.

Could be much better. E.g., uniform frequency



Count sketch.

Error in terms of |f|o = />, f2.

< |fle < [fh.

Could be much better. E.g., uniform frequency 172 = |f|,



Count sketch.

Error in terms of |f|o = />, f2.

< |fle < [fh.

Could be much better. E.g., uniform frequency 172 = |f|,

Alg:



Count sketch.

Error in terms of |f|o = />, f2.

< |fle < [fh.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:
(1) t arrays, A[i]:



Count sketch.

Error in terms of |f|o = />, f2.

< |fle < [fh.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [K]



Count sketch.

Error in terms of |f|o = />, f2.

< |fle < [fh.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [K]
t hash functions g; : U — [—1,+1]



Count sketch.

Error in terms of |f|o = />, f2.

< |fle < [fh.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [K]
t hash functions g; : U — [—1,+1]

(2) Elt (j, ¢)



Count sketch.

Error in terms of |f|o = />, f2.

f
T <|flo < [fhs.

Could be much better. E.g., uniform frequency % = |f|

Alg:

(1) t arrays, A[i]:

t hash functions h; : U — [K]

t hash functions g; : U — [—1,+1]
(2) Elt (/, ¢)

AlNPG)] = AlTA(D] + gili) g



Count sketch.

Error in terms of |f|o = />, f2.

f
T <|flo < [fhs.

Could be much better. E.g., uniform frequency % = |f|

Alg:
(1) t arrays, A[i]:
t hash functions h; : U — [K]
t hash functions g; : U — [—1,+1]
(2) Elt (/, ¢)
AlNPG)] = AN + 9i(i) G
(3) Item j estimate: median of g;(j)A[/][hi(J)]-



Count sketch.

Error in terms of |f|o = />, f2.

T <l < Ifl1.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [k]
t hash functions g; : U — [—1,+1]
(2) Elt (j, ¢)
ALNTAG)] = ARG + gi)e;
(3) Item j estimate: median of g;(j)A[/][hi(J)]-

Buckets contains signed count



Count sketch.

Error in terms of |f|o = />, f2.

T <l < Ifl1.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [k]
t hash functions g; : U — [—1,+1]
(2) Elt (j, ¢)
ALNTAG)] = ARG + gi)e;
(3) Item j estimate: median of g;(j)A[/][hi(J)]-

Buckets contains signed count (estimate cancels sign.)



Count sketch.

Error in terms of |f|o = />, f2.

T <l < Ifl1.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [k]
t hash functions g; : U — [—1,+1]
(2) Elt (. ¢)
ANTAG)] = AlilTh()] + gili)g;
(3) Item j estimate: median of g;(j)A[/][hi(J)]-
Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!



Count sketch.

Error in terms of |f|o = />, f2.

T <l < Ifl1.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [k]
t hash functions g; : U — [—1,+1]
(2) Elt (. ¢)
ANTAG)] = AlilTh()] + gili)g;
(3) Item j estimate: median of g;(j)A[/][hi(J)]-
Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight!



Count sketch.

Error in terms of |f|o = />, f2.

T <l < Ifl1.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [k]
t hash functions g; : U — [—1,+1]
(2) Elt (. ¢)
ANTAG)] = AlilTh()] + gili)g;
(3) Item j estimate: median of g;(j)A[/][hi(J)]-
Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)



Count sketch.

Error in terms of |f|o = />, f2.

T <l < Ifl1.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [k]
t hash functions g; : U — [—1,+1]
(2) Elt (. ¢)
ANTAG)] = AlilTh()] + gili)g;
(3) Item j estimate: median of g;(j)A[/][hi(J)]-
Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?



Count sketch.

Error in terms of |f|o = />, f2.

T <l < Ifl1.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [k]
t hash functions g; : U — [—1,+1]
(2) Elt (j, ¢)
ALNTAG)] = ARG + gi)e;
(3) Item j estimate: median of g;(j)A[/][hi(J)]-

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?
No!



Count sketch.

Error in terms of |f|o = />, f2.

T <l < Ifl1.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [k]
t hash functions g; : U — [—1,+1]
(2) Elt (j, ¢)
ALNTAG)] = ARG + gi)e;
(3) Item j estimate: median of g;(j)A[/][hi(J)]-

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?
No! Median!



Count sketch.

Error in terms of |f|o = />, f2.

T <l < Ifl1.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [k]
t hash functions g; : U — [—1,+1]
(2) Elt (j, ¢)
ALNTAG)] = ARG + gi)e;
(3) Item j estimate: median of g;(j)A[/][hi(J)]-

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?
No! Median! Two ideas!



Count sketch.

Error in terms of |f|o = />, f2.

T <l < Ifl1.

Could be much better. E.g., uniform frequency 172 = |f|,
Alg:

(1) t arrays, A[i]:
t hash functions h; : U — [k]
t hash functions g; : U — [—1,+1]
(2) Elt (j, ¢)
ALNTAG)] = ARG + gi)e;
(3) Item j estimate: median of g;(j)A[/][hi(J)]-

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?
No! Median! Two ideas! One simple algorithm!



Analysis
(a)---



Analysis
(1) gi:U—[~1,41],h: U— [K]
(2) Elt (j, ¢)



Analysis
(1) ---gi:U—=[-1,41],h: U— [K]
(2) Elt (/, ¢))
AlNAG)] = Alil[hi(D] + giti) g



Analysis
() g U= [=1, 41, h: U—[K]
(2) Elt (/. )

AIIAG)] = AL G + gt
(8) Item j estimate: median of g;()A[/][hi(})]-



Analysis
() g U= [=1, 41, h: U—[K]
(2) Elt (/. )

AIIAG)] = AL G + gt
(8) Item j estimate: median of g;()A[/][hi(})]-



Analysis
(1)---gi:U—=[-1,+1],h : U — [K]
(2) Elt (/. 6))
ATAG)] = ARG + g
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice:



Analysis
(1)---gi:U—=[-1,+1],h : U — [K]
(2) Elt (,¢)
AlNAG)] = ANThOD] + 9i)g
(8) Item j estimate: median of g;()A[/][hi(})]-

Notice: A[1][h ()] = g1(j)f + X



Analysis
(1)---gi:U—=[-1,+1],h : U — [K]
(2) Elt (,¢)
AlNAG)] = ANThOD] + 9i)g
(8) Item j estimate: median of g;()A[/][hi(})]-

Notice: A[1][h ()] = g1(j)f + X



Analysis
() g U= [=1, 41, h: U—[K]
(2) Elt (/. )

AIIAG)] = AL G + gt
(8) Item j estimate: median of g;()A[/][hi(})]-

Notice: A[1][h1(j)] = g1(j)f; + X
X=3Y



Analysis
(1)---gi:U—=[-1,+1],h : U — [K]
(2) Elt (,¢)
AlNTAG)] = AlTH()] + 9ili)g; ,
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1(j)] = g1(/)fi + X
X=3Y
Y; = £f;if item hy (i) = hi(j)



Analysis
(1)---gi:U—=[-1,+1],h : U — [K]
(2) Elt (/, G)
AlNTAG)] = AlTH()] + 9ili)g;
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1(j)] = g1(/)fi + X
X=3Y
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise



Analysis
(1)---gi:U—=[-1,+1],h : U — [K]
(2) Elt (/, G)
AlNTAG)] = AlTH()] + 9ili)g;
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1(j)] = g1(/)fi + X
X=3Y
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y] =0



Analysis
(1)---gi:U—=[-1,+1],h : U — [K]
2) Elt (j. ¢})
AT = AT + git) g
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1(j)] = 91(j)fi + X
X=3Y
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y)] =0 Var(Y;) = %



Analysis
(1)---gi:U—=[-1,+1],h : U — [K]
2) Elt (j. ¢})
AT = AT + git) g
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1(j)] = 91(j)fi + X
X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y)] =0 Var(Y;) = %
EX]=0



Analysis
(1) - g:U—=[-1,+1],hi : U— [K]
2) Elt (j.5)
AliTh()] = AT + gi(i) g
(3) Item j estimate: median of g;(j)A[/][hi(j)]-
Notice: A[1][h1(j)] = 91(j)fi + X
X=3Y
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y)] =0 Var(Y;) = %
E[X]=0 Expected drift is 0!



Analysis
(1) - g:U—=[-1,+1],hi : U— [K]
2) Elt (j. ¢})
AT = AT + git) g
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1(j)] = 91(j)fi + X
X=3Y
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y)] =0 Var(Y;) = %
E[X] =0 Expected drift is 0!
Var[X] = > icim Var(Yi)



Analysis
(1)---gi:U—=[-1,+1],h : U— [K]
2) Elt (j.5)
AliTh()] = AT + gi(i) g
(3) Item j estimate: median of g;(j)A[/][hi(j)]-
Notice: A[1][h1(j)] = 91(j)fi + X
X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y)] =0 Var(Y;) = %
E[X]=0 Expected drift is 0!
Var(X] = Yiem Var(¥) =



Analysis
(1) gi:U—=[-1,+1],h: U— [K]
2) Elt (j.5)
AT = AT + git) g
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1(j)] = 91(j)fi + X
X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y)] =0 Var(Y;) = %
E[X] =0 Expected drift is 0!
Var[X] = Yieim Var(v) = 2§ = 1



Analysis
(1) gi: U= [=1,+1],h: U—[K]
(2) Elt (j, ¢;)

AlNTAG)] = AlTH()] + 9ili)g;
(8) Item j estimate: median of g;()A[/][hi(})]-

Notice: A[1][1 (/)] = g1(/)f; + X

X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise

E[V] =0 Var(Y}) = £.
E[X] =0 Expected drift is 0!
2 2
Var[X] = ¥, Var(Yi) = s, 8= 1

Cheybshev: Pr[|X — u| > A] < %{)z



Analysis
() g U= [=1, 41, h: U—[K]
(2) Elt (/. )

AlNTAG)] = AlTH()] + 9ili)g;
(8) Item j estimate: median of g;()A[/][hi(})]-

Notice: A[1][h1(j)] = g1(j)f; + X

X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y] =0 Var(Y)) = £.
E[X]=0 Expected drift is 0!
VarlX] = X jcim Var(Yy) = ¥, § = 1

Cheybshev: Pr[|X — u| > A] < %{)z
Choose k = 5:



Analysis
() g U= [=1, 41, h: U—[K]
(2) Elt (/. )

AlNTAG)] = AlTH()] + 9ili)g;
(8) Item j estimate: median of g;()A[/][hi(})]-

Notice: A[1][h1(j)] = g1(j)f; + X

X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y] =0 Var(Y)) = £.
E[X]=0 Expected drift is 0!
VarlX] = X jcim Var(Yy) = ¥, § = 1

Cheybshev: Pr[|X — u| > A] < %{)z
Choose k = &: Pr{|X| > c[fl.]



Analysis
(1) ---gi:U—=[-1,41],h: U— [K]
2) Elt (j, ¢)

AlNTAG)] = AlTH()] + 9ili)g;
(8) Item j estimate: median of g;()A[/][hi(})]-

Notice: A[1][h1(j)] = g1(j)f; + X

X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y] =0 Var(Y)) = £.
E[X] =0 Expected drift is 0!
Var[X] = Yjeqm Var(Yy) = 30, 5 = 12

Cheybshev: Pr[\X pl > A] < Y
Choose k = 4: Pr[|X| > €|f|s] < I

2|f|2



Analysis
(1)---gi:U—=[-1,+1],h : U — [K]
(2) Elt (/. 6))
AlNTAG)] = AlTH()] + 9ili)g;
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1(j)] = 91(j)fi + X

X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y] =0 Var(Y)) = £.

E[X]=0 Expected drift is 0!

VarlX] = X jcim Var(Yy) = ¥, § = 1

Cheybshev: Pr[|X — u| > A] < %{)z

2 2)£12
Choose k = %: Pr{|X| > e|flo] < Zerf < <[l
‘ M = e




Analysis
(1)---gi:U—=[-1,+1],h : U — [K]
(2) Elt (/. 6))
AlNTAG)] = AlTH()] + 9ili)g;
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1(j)] = 91(j)fi + X

X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y] =0 Var(Y)) = £.

E[X]=0 Expected drift is 0!

VarlX] = X jcim Var(Yy) = ¥, § = 1

Cheybshev: Pr[|X — u| > A] < %{)z

2 2)¢12
Choose k = 4: Pr[|X| > e|f|s] < 2tk < <Il/2 <
¢ 2R = 3

FNEN



Analysis
(1) g U= [-1,+1]h:U—[K
(2) Elt (j, ¢)
AT = AT + git) g
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1())] = 91(/)fi + X
X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y)] =0 Var(Y;) = %.
E[X]=0 Expected drift is 0!
2 2
Var[X] = Sieqm Var(¥) = ;% = ¢
Cheybshev: Pr|X — | > A] < ¥1X°
Choose k = 4: Pr{|X| > d|fls] < I/ < it <
2 2
Each trial is close with probability 3/4.

FNEN




Analysis

(1) gi:U—=[=1,4+1]h: U— [K]
() Elt(j, c)
Alil[h()] = Al Ai()] + gi) g

(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1(j)] = 91(j)fi + X
X=3Y

Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise

E[Y)] =0 Var(Y;) = %.
E[X]=0 Expected drift is 0!

2 2
VarlX] = ieim Var(¥) = ¥, % = 152
Cheybshev: Pr[|X — u| > A] < VaA& >
Choose k = 4: Pr|X| > ¢|f|2] < ';'lef/lzk < 66';";‘44
2 2

Each trial is close with probability 3/4.
If > half tosses close, median is close!

<

FNEN



Analysis

(1) gi:U—=[-1,+1],h: U— [K]
(2) Elt (/. 6))
AT = AT + git) g
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1(j)] = 91(j)fi + X
X=3Y
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y] =0 Var(Y)) = £.
E[X] =0 Expected drift is 0!
Var[X] = Yieim Var(v) = 2§ = 1

Cheybshev: Pr[|X — u| > A] < %{)z
Choose k = 4: Pr{|X| > e|flo] < /b < £l

e|f = e|f3
Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = ©(log 1)

<

FNEN



Analysis
(1) g U= [-1,+1]h:U—[K
(2) Elt (j, ¢)
AT = AT + git) g
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1())] = 91(/)fi + X
X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y)] =0 Var(Y;) = %.
E[X]=0 Expected drift is 0!
2 2
Var[X] = Sieqm Var(¥) = ;% = ¢
Cheybshev: Pr[|X — u| > A] < VaA& >
Choose k = %: Pr{|X| > e|fls] < ez < Sl <
2 2
Each trial is close with probability 3/4.

If > half tosses close, median is close!
Exists t = ©(log 1) where > 1 are correct with probability > 1 — &

FNEN



Analysis
(1) g U= [-1,+1]h:U—[K
(2) Elt (j, ¢)
AT = AT + git) g
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1())] = 91(/)fi + X
X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y)] =0 Var(Y;) = %.
E[X]=0 Expected drift is 0!
2 2
Var[X] = Sieqm Var(¥) = ;% = ¢
Cheybshev: Pr[|X — u| > A] < VaA& >
Choose k = %: Pr{|X| > e|fls] < ez < Sl <
2 2
Each trial is close with probability 3/4.

If > half tosses close, median is close!
Exists t = ©(log 1) where > 1 are correct with probability > 1 — &

Total Space: O( '°§Z%

FNEN




Analysis
(1) g U= [-1,+1]h:U—[K
(2) Elt (j, ¢)
AT = AT + git) g
(8) Item j estimate: median of g;()A[/][hi(})]-
Notice: A[1][h1())] = 91(/)fi + X
X=%,Y,
Y; = tf; if item hy(i) = h1(j) Y; = 0, otherwise
E[Y)] =0 Var(Y;) = %.
E[X]=0 Expected drift is 0!
2 2
Var[X] = Sieqm Var(¥) = ;% = ¢
Cheybshev: Pr[|X — u| > A] < VaA& >
Choose k = %: Pr{|X| > e|fls] < ez < Sl <
2 2
Each trial is close with probability 3/4.

If > half tosses close, median is close!
Exists t = ©(log 1) where > 1 are correct with probability > 1 — &

FNEN

Total Space: O( '°§Z% log n)




Sum up

Deterministic:



Sum up

Deterministic:
stream has items



Sum up

Deterministic:
stream has items
Count within additive g



Sum up

Deterministic:
stream has items
Count within additive 7
O(k log n) space.



Sum up

Deterministic:
stream has items
Count within additive 7
O(k log n) space.
Within en with O(* log n) space.



Sum up

Deterministic:
stream has items
Count within additive 7
O(k log n) space.
Within en with O(* log n) space.

Count Min:



Sum up

Deterministic:
stream has items
Count within additive 7
O(k log n) space.
Within en with O(* log n) space.

Count Min:
stream has 4 counts



Sum up

Deterministic:

stream has items

Count within additive 7

O(k log n) space.

Within en with O(* log n) space.
Count Min:

stream has 4 counts
Count within additive ¢|f|



Sum up

Deterministic:
stream has items
Count within additive 7
O(k log n) space.
Within en with O(* log n) space.

Count Min:
stream has =+ counts
Count within additive ¢|f|
with probability at least 1 — §



Sum up

Deterministic:

stream has items

Count within additive 7

O(k log n) space.

Within en with O(* log n) space.
Count Min:

stream has =+ counts

Count within additive ¢|f|

with probability at least 1 — §

O( log nelog 1 )



Sum up

Deterministic:

stream has items

Count within additive 7

O(k log n) space.

Within en with O(* log n) space.
Count Min:

stream has 4 counts

Count within additive ¢|f|

with probability at least 1 — §

o( log nlog £ ).

Count Sketch:



Sum up

Deterministic:

stream has items

Count within additive 7

O(k log n) space.

Within en with O(* log n) space.
Count Min:

stream has 4 counts

Count within additive ¢|f|

with probability at least 1 — §
o( log nlog £ ).

Count Sketch:
stream has &+ counts



Sum up

Deterministic:

stream has items

Count within additive 7

O(k log n) space.

Within en with O(* log n) space.
Count Min:

stream has 4 counts

Count within additive ¢|f|

with probability at least 1 — §

o( log nlog £ ).

Count Sketch:

stream has &+ counts
Count within additive €|f|,



Sum up

Deterministic:
stream has items
Count within additive 7
O(k log n) space.
Within en with O(* log n) space.

Count Min:
stream has =+ counts
Count within additive ¢|f|
with probability at least 1 — §

o( log nelog 1 ).
Count Sketch:
stream has &+ counts

Count within additive €|f|,
with probability at least 1 — §



Sum up

Deterministic:
stream has items
Count within additive 7
O(k log n) space.
Within en with O(* log n) space.
Count Min:
stream has 4 counts
Count within additive ¢|f|
with probability at least 1 — §
O( log nlog £ )
Count Sketch:
stream has &+ counts
Count within additive €|f|,
with probability at least 1 — §
O(emeos ).



See you on Thurday.



