
First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).

Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖

∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:

xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L .

Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:

xt+1 = xt − α∇f (xt) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt)

for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.

One bound: Total Difference from optimal or “regret.”∑
t α‖∇f (xt)‖2 + w(u)

T .
No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”

∑
t α‖∇f (xt)‖2 + w(u)

T .
No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.

Idea: average lower bound is average of linear lower bounds.
R(u)− w(x) =

∑
i (∇f (xt))(x − u)− w(u).

What is w(x)? One option: Euclidean norm of x .
Another, w(x) =

∑
i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).

What is w(x)? One option: Euclidean norm of x .
Another, w(x) =

∑
i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)?

One option: Euclidean norm of x .
Another, w(x) =

∑
i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi .

Get multiplicative weight update!!!!

First order optimization.
min f (x)

Convexity: f (x) + (∇f (x)) · (y − x) ≤ f (y).
Lipschitz: ‖∇(f (x))−∇(f (y))‖ ≤ L‖x − y‖
∇f (x) - gradient or subgradient.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.

R(u)− w(x) =
∑

i (∇f (xt))(x − u)− w(u).
What is w(x)? One option: Euclidean norm of x .

Another, w(x) =
∑

i xi log xi . Get multiplicative weight update!!!!

Last time.

Gradient Descent:

xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L .

Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:

xt+1 = xt − α∇f (xt) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt)

for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.

One bound: Total Difference from optimal or “regret.”∑
t α‖∇f (xt)‖2 + w(u)

T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”

∑
t α‖∇f (xt)‖2 + w(u)

T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:

xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).

where
∑

i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:

Benefit for gradient cancels some of regret term of MD.

Last time.

Gradient Descent:
xt+1 = xt − α∇f (xt)

One bound: f (xt)− f (xt+1) ≥ ‖∇f (xt)‖2

L . Lipschitz.

“Mirror” Descent:
xt+1 = xt − α∇f (xt) for “euclidean proximity function”

Output: Average point.
One bound: Total Difference from optimal or “regret.”∑

t α‖∇f (xt)‖2 + w(u)
T .

Accelerated Gradient Descent:
xt+1 = x + αi (xt − xt−1)− βi∇f (xt).

Momentum term: (xt − xt+1) =
∑

i νi∇(f(xi)).
where

∑
i νi = 1.

Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.
E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖.

Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.
E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.

‖y‖∗ = max‖x‖=1〈x , y〉.
For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.
E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.
E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.
E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?

‖x‖1 =
∑

i |xi |.
‖x‖∞ = maxi |xi |.

Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.
E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.
E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.

Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.
E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:

‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.
Gradient Step:

xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.
Lipschitz in `1, when optimizing

∑
i |xi |.

E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.
E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:

xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.
Lipschitz in `1, when optimizing

∑
i |xi |.

E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.
E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.

E.g. Max Flow or tolls.

Other scenarios.

Don’t you dual norm me!

Norm: ‖x‖. Dual Norm: ‖y‖∗.
‖y‖∗ = max‖x‖=1〈x , y〉.

For Euclidean norm, what is dual norm?

For `1 or hamming norm, what is dual norm?
‖x‖1 =

∑
i |xi |.

‖x‖∞ = maxi |xi |.
Can be Lipschitz in different norms:
‖∇f (x)−∇f (y)‖∗ = L‖x − y‖.

Gradient Step:
xt+1 = xt − αargmax|y|=1〈∇(f (x)), y〉.

Lipschitz in `1, when optimizing
∑

i |xi |.
E.g. Max Flow or tolls.

Next Topic

Streaming.

Frequent Items.

Next Topic

Streaming.

Frequent Items.

Streaming

Stream: x1,

x2, x3, , . . . xn

Resources: O(logc n) storage.

Today’s Goal: find frequent items.

Streaming

Stream: x1, x2,

x3, , . . . xn

Resources: O(logc n) storage.

Today’s Goal: find frequent items.

Streaming

Stream: x1, x2, x3,

, . . . xn

Resources: O(logc n) storage.

Today’s Goal: find frequent items.

Streaming

Stream: x1, x2, x3, , . . . xn

Resources: O(logc n) storage.

Today’s Goal: find frequent items.

Streaming

Stream: x1, x2, x3, , . . . xn

Resources: O(logc n) storage.

Today’s Goal: find frequent items.

Streaming

Stream: x1, x2, x3, , . . . xn

Resources: O(logc n) storage.

Today’s Goal: find frequent items.

Frequent Items: deterministic.

Additive n
k error.

Accurate count for k + 1th item?

Yes?
No?
k + 1st most frequent item occurs < n

k+1
Off by 100%. 0 estimate is fine.

No item more frequent than n
k ?

0 estimate is fine.

Only reasonable for frequent items.

Frequent Items: deterministic.

Additive n
k error.

Accurate count for k + 1th item?

Yes?
No?
k + 1st most frequent item occurs < n

k+1
Off by 100%. 0 estimate is fine.

No item more frequent than n
k ?

0 estimate is fine.

Only reasonable for frequent items.

Frequent Items: deterministic.

Additive n
k error.

Accurate count for k + 1th item?

Yes?

No?
k + 1st most frequent item occurs < n

k+1
Off by 100%. 0 estimate is fine.

No item more frequent than n
k ?

0 estimate is fine.

Only reasonable for frequent items.

Frequent Items: deterministic.

Additive n
k error.

Accurate count for k + 1th item?

Yes?
No?

k + 1st most frequent item occurs < n
k+1

Off by 100%. 0 estimate is fine.
No item more frequent than n

k ?
0 estimate is fine.

Only reasonable for frequent items.

Frequent Items: deterministic.

Additive n
k error.

Accurate count for k + 1th item?

Yes?
No?
k + 1st most frequent item occurs < n

k+1

Off by 100%. 0 estimate is fine.
No item more frequent than n

k ?
0 estimate is fine.

Only reasonable for frequent items.

Frequent Items: deterministic.

Additive n
k error.

Accurate count for k + 1th item?

Yes?
No?
k + 1st most frequent item occurs < n

k+1
Off by 100%.

0 estimate is fine.
No item more frequent than n

k ?
0 estimate is fine.

Only reasonable for frequent items.

Frequent Items: deterministic.

Additive n
k error.

Accurate count for k + 1th item?

Yes?
No?
k + 1st most frequent item occurs < n

k+1
Off by 100%. 0 estimate is fine.

No item more frequent than n
k ?

0 estimate is fine.

Only reasonable for frequent items.

Frequent Items: deterministic.

Additive n
k error.

Accurate count for k + 1th item?

Yes?
No?
k + 1st most frequent item occurs < n

k+1
Off by 100%. 0 estimate is fine.

No item more frequent than n
k ?

0 estimate is fine.

Only reasonable for frequent items.

Frequent Items: deterministic.

Additive n
k error.

Accurate count for k + 1th item?

Yes?
No?
k + 1st most frequent item occurs < n

k+1
Off by 100%. 0 estimate is fine.

No item more frequent than n
k ?

0 estimate is fine.

Only reasonable for frequent items.

Frequent Items: deterministic.

Additive n
k error.

Accurate count for k + 1th item?

Yes?
No?
k + 1st most frequent item occurs < n

k+1
Off by 100%. 0 estimate is fine.

No item more frequent than n
k ?

0 estimate is fine.

Only reasonable for frequent items.

Frequent Items: deterministic.

Additive n
k error.

Accurate count for k + 1th item?

Yes?
No?
k + 1st most frequent item occurs < n

k+1
Off by 100%. 0 estimate is fine.

No item more frequent than n
k ?

0 estimate is fine.

Only reasonable for frequent items.

Deteministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,11,2,3,1,21,2,3,1,2,4

1,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.

(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,11,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.

(3) If xi 6∈ S
If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,11,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,11,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.

Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,11,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,11,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,11,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,11,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,

1,21,2,31,2,3,11,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,

1,2

1,2,31,2,3,11,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,2

1,2,3

1,2,3,11,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,3

1,2,3,1

1,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,1

1,2,3,1,2

1,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,11,2,3,1,2

1,2,3,1,2,4

1,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,11,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deterministic Algorithm.
Alg:

(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.

(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.

(3) If xi 6∈ S
If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.

Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.

otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate

clearly.
Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.
Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ?

n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ? n?

n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ? n? n/k?

k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ? n? n/k? k?

decrement k counters on each decrement.

Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting

n items. n total incrementing.
=⇒ T ≤ n

k .
Off by at most n

k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items.

n total incrementing.
=⇒ T ≤ n

k .
Off by at most n

k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?

O(k log n)

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.

=⇒ T ≤ n
k .

Off by at most n
k

Space?O(k log n)

Turnstile Model and Randomization

Stream: . . . , (i , ci), . . .

item i , count ci (possibly negative.)
Positive total for each item!

Estimate frequency of item: fj =
∑

cj .

|f |1 =
∑

j |fj | Smaller than
∑

i |ci |.
Approximation:

Additive ε|f |1 with probability 1− δ
Space O(1

ε log 1
δ log n).

Turnstile Model and Randomization

Stream: . . . , (i , ci), . . .
item i , count ci (possibly negative.)

Positive total for each item!

Estimate frequency of item: fj =
∑

cj .

|f |1 =
∑

j |fj | Smaller than
∑

i |ci |.
Approximation:

Additive ε|f |1 with probability 1− δ
Space O(1

ε log 1
δ log n).

Turnstile Model and Randomization

Stream: . . . , (i , ci), . . .
item i , count ci (possibly negative.)

Positive total for each item!

Estimate frequency of item: fj =
∑

cj .

|f |1 =
∑

j |fj | Smaller than
∑

i |ci |.
Approximation:

Additive ε|f |1 with probability 1− δ
Space O(1

ε log 1
δ log n).

Turnstile Model and Randomization

Stream: . . . , (i , ci), . . .
item i , count ci (possibly negative.)

Positive total for each item!

Estimate frequency of item: fj =
∑

cj .

|f |1 =
∑

j |fj | Smaller than
∑

i |ci |.
Approximation:

Additive ε|f |1 with probability 1− δ
Space O(1

ε log 1
δ log n).

Turnstile Model and Randomization

Stream: . . . , (i , ci), . . .
item i , count ci (possibly negative.)

Positive total for each item!

Estimate frequency of item: fj =
∑

cj .

|f |1 =
∑

j |fj |

Smaller than
∑

i |ci |.
Approximation:

Additive ε|f |1 with probability 1− δ
Space O(1

ε log 1
δ log n).

Turnstile Model and Randomization

Stream: . . . , (i , ci), . . .
item i , count ci (possibly negative.)

Positive total for each item!

Estimate frequency of item: fj =
∑

cj .

|f |1 =
∑

j |fj | Smaller than
∑

i |ci |.

Approximation:

Additive ε|f |1 with probability 1− δ
Space O(1

ε log 1
δ log n).

Turnstile Model and Randomization

Stream: . . . , (i , ci), . . .
item i , count ci (possibly negative.)

Positive total for each item!

Estimate frequency of item: fj =
∑

cj .

|f |1 =
∑

j |fj | Smaller than
∑

i |ci |.

Approximation:

Additive ε|f |1 with probability 1− δ
Space O(1

ε log 1
δ log n).

Turnstile Model and Randomization

Stream: . . . , (i , ci), . . .
item i , count ci (possibly negative.)

Positive total for each item!

Estimate frequency of item: fj =
∑

cj .

|f |1 =
∑

j |fj | Smaller than
∑

i |ci |.
Approximation:

Additive ε|f |1 with probability 1− δ
Space O(1

ε log 1
δ log n).

Turnstile Model and Randomization

Stream: . . . , (i , ci), . . .
item i , count ci (possibly negative.)

Positive total for each item!

Estimate frequency of item: fj =
∑

cj .

|f |1 =
∑

j |fj | Smaller than
∑

i |ci |.
Approximation:

Additive ε|f |1 with probability 1− δ

Space O(1
ε log 1

δ log n).

Turnstile Model and Randomization

Stream: . . . , (i , ci), . . .
item i , count ci (possibly negative.)

Positive total for each item!

Estimate frequency of item: fj =
∑

cj .

|f |1 =
∑

j |fj | Smaller than
∑

i |ci |.
Approximation:

Additive ε|f |1 with probability 1− δ
Space O(1

ε log 1
δ log n).

Count Min Sketch

Sketch

– Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)] += cj .
(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj),

A[i][hi (j)] += cj .
(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets?

To get high probability.

Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj),
A[i][hi (j)] += cj .

(3) Item j estimate: mini A[i][hi (j)].

Intuition:|f |1/k other “counts” in same bucket.

→ Additive |f |1/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j , cj),
A[i][hi (j)]+ = cj .

(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .

(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)

X =
∑

i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X]

=
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi

=
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi

= |f |1
k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov.

(All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials]

≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if

ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space?

O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k

log 1
δ log n) O(1

ε log 1
δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ

log n) O(1
ε log 1

δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n)

O(1
ε log 1

δ log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ

log n)

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j , cj),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X =

∑
i Yi fi

E [X] =
∑

i E [Yi]fi =
∑

i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k] ≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ (1
2)t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ log n) O(1

ε log 1
δ log n)

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better.

E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency

|f |1√
n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:

t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]

t hash functions gi : U → [−1,+1]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count

(estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!

Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight!

(Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No!

Median! Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median!

Two ideas! One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas!

One simple algorithm!

Count sketch.
Error in terms of |f |2 =

√∑
i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2

Alg:

(1) t arrays, A[i]:
t hash functions hi : U → [k]
t hash functions gi : U → [−1,+1]

(2) Elt (j , cj)
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Analysis
(1) · · ·

gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice:

A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi

Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j)

Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise

E [Yi] = 0 Var(Yi) =
f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0

Var(Yi) =
f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0

Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!

Var [X] =
∑

i∈[m] Var(Yi) =
∑

i
f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi)

=
∑

i
f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k

=
|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 :

Pr [|X | > ε|f |2] ≤ |f |
2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2]

≤ |f |
2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22

≤ ε2|f |22/4
ε2|f |22

≤ 1
4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22

≤ 1
4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.

If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!

Exists t = Θ(log 1
δ) where ≥ 1

2 are correct with probability ≥ 1− δ
Total Space: O(

log 1
δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ)

where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2

log n)

Analysis
(1) · · · gi : U → [−1,+1],hi : U → [k]
(2) Elt (j , cj)

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X =
∑

i Yi
Yi = ±fi if item h1(i) = h1(j) Yi = 0, otherwise
E [Yi] = 0 Var(Yi) =

f 2
i
k .

E [X] = 0 Expected drift is 0!
Var [X] =

∑
i∈[m] Var(Yi) =

∑
i

f 2
i
k =

|f |22
k

Cheybshev: Pr [|X − µ| > ∆] ≤ Var(X)2

∆2

Choose k = 4
ε2 : Pr [|X | > ε|f |2] ≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ) where ≥ 1
2 are correct with probability ≥ 1− δ

Total Space: O(
log 1

δ

ε2 log n)

Sum up

Deterministic:

stream has items
Count within additive n

k
O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

Sum up

Deterministic:
stream has items

Count within additive n
k

O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k

O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k log n) space.

Within εn with O(1
ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:

stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts

Count within additive ε|f |1
with probability at least 1− δ

O(
log n log 1

δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ

O(
log n log 1

δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:

stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:
stream has ± counts

Count within additive ε|f |2
with probability at least 1− δ

O(
log n log 1

δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ

O(
log n log 1

δ

ε2).

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k log n) space.
Within εn with O(1

ε log n) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1− δ
O(

log n log 1
δ

ε).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1− δ
O(

log n log 1
δ

ε2).

See you on Thurday.

