

Gradient Descent.

 $\min f(x)$

 $\min f(x)$

 $f(y) \ge f(x) + (\nabla f(x))(y - x)$

 $\min f(x)$

$$f(y) \ge f(x) + (\nabla f(x))(y-x)$$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

 $\min f(x)$

$$f(y) \ge f(x) + (\nabla f(x))(y-x)$$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

One dimension: go left or right with a magnitude.

 $\min f(x)$

$$f(y) \ge f(x) + (\nabla f(x))(y-x)$$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

One dimension: go left or right with a magnitude.

What is α ?

 $\min f(x)$

$$f(y) \ge f(x) + (\nabla f(x))(y-x)$$
$$x_{k+1} = x_k - \alpha \nabla f(x).$$

One dimension: go left or right with a magnitude.

What is α ?

If function $100000x^2$.

 $\min f(x)$

$$f(y) \ge f(x) + (\nabla f(x))(y-x)$$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

One dimension: go left or right with a magnitude.

What is α ?

If function $100000x^2$.

Should α be small or big?

 $\min f(x)$

$$f(y) \ge f(x) + (\nabla f(x))(y-x)$$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

One dimension: go left or right with a magnitude.

What is α ?

If function $100000x^2$.

Should α be small or big? small!

 $\min f(x)$

$$f(y) \ge f(x) + (\nabla f(x))(y-x)$$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

One dimension: go left or right with a magnitude.

What is α ?

If function $100000x^2$.

Should α be small or big? small!

What do you want to do?

 $\min f(x)$

$$f(y) \ge f(x) + (\nabla f(x))(y-x)$$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

One dimension: go left or right with a magnitude.

What is α ?

If function $100000x^2$.

Should α be small or big? small!

What do you want to do?

Get close!

 $\min f(x)$

$$f(y) \ge f(x) + (\nabla f(x))(y - x)$$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

One dimension: go left or right with a magnitude.

What is α ?

If function $100000x^2$.

Should α be small or big? small!

What do you want to do?

Get close! $f(x) - f(x*) \leq \varepsilon$.

 $\min f(x)$

$$f(y) \ge f(x) + (\nabla f(x))(y-x)$$
$$x_{k+1} = x_k - \alpha \nabla f(x).$$

One dimension: go left or right with a magnitude.

What is α ?

If function $100000x^2$.

Should α be small or big? small!

What do you want to do?

Get close! $f(x) - f(x*) \leq \varepsilon$.

Depends on function.

Assume $\|\nabla f(x) - \nabla f(y)\| \le L \|(x - y)\|$ for any x, y.

Assume $\|\nabla f(x) - \nabla f(y)\| \le L \|(x - y)\|$ for any x, y. For $10000x^2$, what is *L*? Assume $\|\nabla f(x) - \nabla f(y)\| \le L \|(x - y)\|$ for any *x*, *y*. For 10000*x*², what is *L*? For 10*x*² + 1000000*x*, what is *L*? Assume $\|\nabla f(x) - \nabla f(y)\| \le L \|(x - y)\|$ for any x, y. For $10000x^2$, what is *L*? For $10x^2 + 100000x$, what is *L*? Intuitively, a bound on the second derivative.

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

$$x_{k+1} = x_k - \alpha \nabla I(x).$$

 $\nabla ()$

$$f(x_k) - f(x_*) \leq \frac{2L \|x_0 - x^*\|}{k}.$$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

$$f(x_k) - f(x_*) \leq \frac{2L\|x_0 - x^*\|}{k}.$$

Choose $\alpha = \frac{1}{L}$.

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

$$f(x_k) - f(x_k) \leq \frac{2L \|x_0 - x^*\|}{k}.$$

Choose
$$\alpha = \frac{1}{L}$$
.
 $x_{t+1} = x_t - \alpha \nabla f(x_t)$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

$$f(x_k) - f(x_k) \leq \frac{2L \|x_0 - x^*\|}{k}.$$

Choose
$$\alpha = \frac{1}{L}$$
.
 $x_{t+1} = x_t - \alpha \nabla f(x_t)$
Idea: $\nabla f(x_t)$.

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

$$f(x_k) - f(x_k) \leq \frac{2L \|x_0 - x^*\|}{k}.$$

Choose
$$\alpha = \frac{1}{L}$$
.
 $x_{t+1} = x_t - \alpha \nabla f(x_t)$
Idea: $\nabla f(x_t)$.
 $|\nabla f(x_{t+1}) - \nabla f(x_t)| \le L ||x_{t+1} - x_t||^2$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

$$f(x_k)-f(x_*) \leq \frac{2L\|x_0-x^*\|}{k}.$$

Choose
$$\alpha = \frac{1}{L}$$
.
 $x_{t+1} = x_t - \alpha \nabla f(x_t)$
Idea: $\nabla f(x_t)$.
 $|\nabla f(x_{t+1}) - \nabla f(x_t)| \le L ||x_{t+1} - x_t||^2 \le L(\frac{1}{2L}) \nabla f(x_{t+1})$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

$$f(x_k) - f(x_k) \leq \frac{2L \|x_0 - x^*\|}{k}.$$

Choose
$$\alpha = \frac{1}{L}$$
.
 $x_{t+1} = x_t - \alpha \nabla f(x_t)$
Idea: $\nabla f(x_t)$.
 $|\nabla f(x_{t+1}) - \nabla f(x_t)| \le L ||x_{t+1} - x_t||^2 \le L(\frac{1}{2L}) \nabla f(x_{t+1}) \le \frac{1}{2} \nabla f(x_{t+1})$.

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

$$f(x_k) - f(x_k) \le \frac{2L \|x_0 - x^*\|}{k}.$$

Choose
$$\alpha = \frac{1}{L}$$
.
 $x_{t+1} = x_t - \alpha \nabla f(x_t)$
Idea: $\nabla f(x_t)$.
 $|\nabla f(x_{t+1}) - \nabla f(x_t)| \le L ||x_{t+1} - x_t||^2 \le L(\frac{1}{2L}) \nabla f(x_{t+1}) \le \frac{1}{2} \nabla f(x_{t+1})$.
For $\nabla f(y) > \nabla f(x_t)/2$, for all $y \in [x_t, x_{t+1}]$.

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

$$f(x_k) - f(x_*) \le \frac{2L \|x_0 - x^*\|}{k}$$

Choose $\alpha = \frac{1}{L}$. $x_{t+1} = x_t - \alpha \nabla f(x_t)$ Idea: $\nabla f(x_t)$. $|\nabla f(x_{t+1}) - \nabla f(x_t)| \le L ||x_{t+1} - x_t||^2 \le L(\frac{1}{2L}) \nabla f(x_{t+1}) \le \frac{1}{2} \nabla f(x_{t+1})$. For $\nabla f(y) > \nabla f(x_t)/2$, for all $y \in [x_t, x_{t+1}]$. Thus, the function decreases by $||\nabla f(x_t)||^2/4L$.

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

Down by $\|\nabla f(x_t)\|^2/4L$: $f(x_{t+1}) \le f(x_t) - \|\nabla f(x_t)\|^2/4L$.

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

Down by $\|\nabla f(x_t)\|^2/4L$: $f(x_{t+1}) \le f(x_t) - \|\nabla f(x_t)\|^2/4L$. Convexity: $f(y) \ge f(x) + (\nabla f(x))(y-x)$ or $f(y) \ge f(x) - (\nabla f(x))(x-y)$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

Down by $\|\nabla f(x_t)\|^2 / 4L$: $f(x_{t+1}) \le f(x_t) - \|\nabla f(x_t)\|^2 / 4L$. Convexity: $f(y) \ge f(x) + (\nabla f(x))(y-x)$ or $f(y) \ge f(x) - (\nabla f(x))(x-y)$ $\|\nabla f(x)\| \ge \frac{f(x) - f(x^*)}{\|x-x^*\|}$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

Down by $\|\nabla f(x_t)\|^2 / 4L$: $f(x_{t+1}) \le f(x_t) - \|\nabla f(x_t)\|^2 / 4L$. Convexity: $f(y) \ge f(x) + (\nabla f(x))(y-x)$ or $f(y) \ge f(x) - (\nabla f(x))(x-y)$ $\|\nabla f(x)\| \ge \frac{f(x) - f(x_*)}{\|x - x_*\|} \implies f(x_{t+1}) \le f(x_t) - \frac{1}{4L} \left(\frac{f(x_t) - f(x_*)}{\|x_t - x^*\|}\right)^2$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

Down by $\|\nabla f(x_t)\|^2 / 4L$: $f(x_{t+1}) \le f(x_t) - \|\nabla f(x_t)\|^2 / 4L$. Convexity: $f(y) \ge f(x) + (\nabla f(x))(y-x)$ or $f(y) \ge f(x) - (\nabla f(x))(x-y)$ $\|\nabla f(x)\| \ge \frac{f(x) - f(x_*)}{\|x - x_*\|} \implies f(x_{t+1}) \le f(x_t) - \frac{1}{4L} \left(\frac{f(x_t) - f(x_*)}{\|x_t - x^*\|}\right)^2$ Let $|f(x_t) - f(x_*)| \in [\Delta, 2\Delta]$ for $t \in [0, k]$

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

Down by $\|\nabla f(x_t)\|^2 / 4L$: $f(x_{t+1}) \le f(x_t) - \|\nabla f(x_t)\|^2 / 4L$. Convexity: $f(y) \ge f(x) + (\nabla f(x))(y - x)$ or $f(y) \ge f(x) - (\nabla f(x))(x - y)$ $\|\nabla f(x)\| \ge \frac{f(x) - f(x_*)}{\|x - x_*\|} \implies f(x_{t+1}) \le f(x_t) - \frac{1}{4L} \left(\frac{f(x_t) - f(x_*)}{\|x_t - x^*\|}\right)^2$ Let $|f(x_t) - f(x_*)| \in [\Delta, 2\Delta]$ for $t \in [0, k]$ $f(x_k) \le f(x_0) - \frac{k}{4L} \left(\frac{\Delta}{\|x_t - x^*\|}\right)^2$.

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

Down by $\|\nabla f(x_t)\|^2/4L$: $f(x_{t+1}) < f(x_t) - \|\nabla f(x_t)\|^2/4L$. Convexity: $f(y) \ge f(x) + (\nabla f(x))(y-x)$ or $f(y) \ge f(x) - (\nabla f(x))(x-y)$ $\|\nabla f(x)\| \ge \frac{f(x) - f(x*)}{\|x - x*\|} \implies f(x_{t+1}) \le f(x_t) - \frac{1}{4L} \left(\frac{f(x_t) - f(x*)}{\|x_t - x^*\|}\right)^2$ Let $|f(x_t) - f(x_*)| \in [\Delta, 2\Delta]$ for $t \in [0, k]$ $f(x_k) \leq f(x_0) - \frac{k}{4L} \left(\frac{\Delta}{\|x_t - x^*\|}\right)^2.$

Choose $k = (\frac{4L||x_t - x^*||^2}{2})$, makes contradiction: below 0

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

Down by $\|\nabla f(x_t)\|^2 / 4L$: $f(x_{t+1}) \le f(x_t) - \|\nabla f(x_t)\|^2 / 4L$. Convexity: $f(y) \ge f(x) + (\nabla f(x))(y - x)$ or $f(y) \ge f(x) - (\nabla f(x))(x - y)$ $\|\nabla f(x)\| \ge \frac{f(x) - f(x_*)}{\|x - x_*\|} \implies f(x_{t+1}) \le f(x_t) - \frac{1}{4L} \left(\frac{f(x_t) - f(x_*)}{\|x_t - x^*\|}\right)^2$ Let $|f(x_t) - f(x_*)| \in [\Delta, 2\Delta]$ for $t \in [0, k]$ $f(x_k) \le f(x_0) - \frac{k}{4L} \left(\frac{\Delta}{\|x_t - x^*\|^2}\right)^2$. Choose $k = (\frac{4L\|x_t - x^*\|^2}{\lambda})$, makes contradiction: below 0

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$

Can't be in range for whole time.

 \implies Error halves in k iterations.

$$x_{k+1} = x_k - \alpha \nabla f(x).$$

Down by $\|\nabla f(x_t)\|^2 / 4L$: $f(x_{t+1}) \le f(x_t) - \|\nabla f(x_t)\|^2 / 4L$. Convexity: $f(y) \ge f(x) + (\nabla f(x))(y - x)$ or $f(y) \ge f(x) - (\nabla f(x))(x - y)$ $\|\nabla f(x)\| \ge \frac{f(x) - f(x_*)}{\|x - x_*\|} \implies f(x_{t+1}) \le f(x_t) - \frac{1}{4L} \left(\frac{f(x_t) - f(x_*)}{\|x_t - x^*\|}\right)^2$ Let $|f(x_t) - f(x_*)| \in [\Delta, 2\Delta]$ for $t \in [0, k]$ $f(x_k) \le f(x_0) - \frac{k}{4L} \left(\frac{\Delta}{\|x_t - x^*\|^2}\right)^2$.

Choose $k = (\frac{4L||x_t - x^*||^2}{\Delta})$, makes contradiction: below 0

Can't be in range for whole time.

 \implies Error halves in *k* iterations.

Geometric in Δ , so for arbitrary ε : $k = O((\frac{L||x_t - x^*||^2}{\varepsilon}))$.

 ∇f Lipchitz with constant $L \Longrightarrow$

 ∇f Lipchitz with constant $L \Longrightarrow$

$$f(y) \le f(x) + \nabla f(x)(y-x) + \frac{L}{2} ||y-x||^2 \text{ all } x, y.$$

 ∇f Lipchitz with constant $L \Longrightarrow$

$$f(y) \le f(x) + \nabla f(x)(y-x) + \frac{L}{2} ||y-x||^2$$
 all x, y .

The last term comes from integrating L||y - x|| along y - x.

 ∇f Lipchitz with constant $L \Longrightarrow$

$$f(y) \leq f(x) + \nabla f(x)(y-x) + \frac{L}{2} \|y-x\|^2 \text{ all } x, y.$$

The last term comes from integrating L||y - x|| along y - x.

Plugging in $y = x_{t+1} = x_t - \alpha \nabla f(x)$.

 ∇f Lipchitz with constant $L \Longrightarrow$

$$f(y) \leq f(x) + \nabla f(x)(y-x) + \frac{L}{2} \|y-x\|^2 \text{ all } x, y.$$

The last term comes from integrating L||y - x|| along y - x.

Plugging in $y = x_{t+1} = x_t - \alpha \nabla f(x)$.

$$f(x_{t+1}) \leq f(x_t) - \left(1 - \frac{L\alpha}{2}\right) \alpha \|\nabla f(x)\|^2.$$

 ∇f Lipchitz with constant $L \Longrightarrow$

$$f(y) \leq f(x) + \nabla f(x)(y-x) + \frac{L}{2} \|y-x\|^2 \text{ all } x, y.$$

The last term comes from integrating L||y-x|| along y-x.

Plugging in $y = x_{t+1} = x_t - \alpha \nabla f(x)$.

$$f(x_{t+1}) \leq f(x_t) - \left(1 - \frac{L\alpha}{2}\right) \alpha \|\nabla f(x)\|^2.$$

For $\alpha = 1/L$, using convexity: $f(x_*) + \nabla f(x_t)(x_t - x^*) \ge f(x_t)$

 ∇f Lipchitz with constant $L \Longrightarrow$

$$f(y) \le f(x) + \nabla f(x)(y-x) + \frac{L}{2} ||y-x||^2 \text{ all } x, y.$$

The last term comes from integrating L||y - x|| along y - x.

Plugging in $y = x_{t+1} = x_t - \alpha \nabla f(x)$.

$$f(x_{t+1}) \leq f(x_t) - \left(1 - \frac{L\alpha}{2}\right) \alpha \|\nabla f(x)\|^2.$$

For $\alpha = 1/L$, using convexity: $f(x_*) + \nabla f(x_t)(x_t - x^*) \ge f(x_t)$ $f(x_{t+1}) \le f(x^*) + \nabla f(x_t)(x_t - x^*) - \frac{1}{2L} \|\nabla f(x_t)\|^2$

 ∇f Lipchitz with constant $L \Longrightarrow$

$$f(y) \le f(x) + \nabla f(x)(y-x) + \frac{L}{2} ||y-x||^2 \text{ all } x, y.$$

The last term comes from integrating L||y - x|| along y - x.

Plugging in $y = x_{t+1} = x_t - \alpha \nabla f(x)$.

$$f(x_{t+1}) \leq f(x_t) - \left(1 - \frac{L\alpha}{2}\right) \alpha \|\nabla f(x)\|^2.$$

For $\alpha = 1/L$, using convexity: $f(x_*) + \nabla f(x_t)(x_t - x^*) \ge f(x_t)$ $f(x_{t+1}) \le f(x^*) + \nabla f(x_t)(x_t - x^*) - \frac{1}{2L} \|\nabla f(x_t)\|^2$ $\le f(x^*) + \frac{1}{\alpha}(x_t - x^*(x - x^*) - \frac{1}{2L} \|\nabla f(x_t)\|^2$

 ∇f Lipchitz with constant $L \Longrightarrow$

$$f(y) \le f(x) + \nabla f(x)(y-x) + \frac{L}{2} ||y-x||^2 \text{ all } x, y.$$

The last term comes from integrating L||y-x|| along y-x.

Plugging in $y = x_{t+1} = x_t - \alpha \nabla f(x)$.

$$f(x_{t+1}) \leq f(x_t) - \left(1 - \frac{L\alpha}{2}\right) \alpha \|\nabla f(x)\|^2.$$

For $\alpha = 1/L$, using convexity: $f(x_*) + \nabla f(x_t)(x_t - x^*) \ge f(x_t)$ $f(x_{t+1}) \le f(x^*) + \nabla f(x_t)(x_t - x^*) - \frac{1}{2L} \|\nabla f(x_t)\|^2$ $\le f(x^*) + \frac{1}{\alpha}(x_t - x^*(x - x^*) - \frac{1}{2L} \|\nabla f(x_t)\|^2$ $= f(x^*) + \frac{1}{2\alpha}(\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2)$ $= f(x^*) + \frac{1}{2}(\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2)$

Sum over iterations.

Sum over iterations.

$$\sum_{t=1}^{k} (f(x_t) - f(x^*)) \leq \frac{L}{2} (\|x_0 - x^*\|^2 - \|x_k - x^*\|^2)$$

Sum over iterations.

$$\begin{array}{l} \sum_{t=1}^{k} (f(x_t) - f(x^*)) \leq \frac{L}{2} (\|x_0 - x^*\|^2 - \|x_k - x^*\|^2) \\ \leq \frac{L}{2} (\|x_0 - x^*\|^2). \end{array}$$

Sum over iterations.

$$\begin{split} \sum_{t=1}^k (f(x_t) - f(x^*)) &\leq \frac{L}{2} (\|x_0 - x^*\|^2 - \|x_k - x^*\|^2) \\ &\leq \frac{L}{2} (\|x_0 - x^*\|^2). \end{split}$$

Since $f(x_t)$ is nonincreasing.

Sum over iterations.

$$\begin{split} \sum_{t=1}^k (f(x_t) - f(x^*)) &\leq \frac{L}{2} (\|x_0 - x^*\|^2 - \|x_k - x^*\|^2) \\ &\leq \frac{L}{2} (\|x_0 - x^*\|^2). \end{split}$$

Since $f(x_t)$ is nonincreasing.

$$f(x_k) - f(x^*) \leq \frac{1}{k} \sum_{t=1}^k (f(x_t) - f(x^*) \leq \frac{L \|x_0 - x^*\|^2}{2k}.$$

Strong (strictly) Convexity: $f(x) - m||x||^2$ is convex for some m > 0.

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

$$f(x) = 5x?$$

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

f(x) = 5x? $f(x) = 5x^2$?

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

f(x) = 5x? $f(x) = 5x^2$? $f(x) = 5x^3$?

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

$$f(x) = 5x? f(x) = 5x^2? f(x) = 5x^3?$$

$$f(x, y) = x^2 + y^2?$$

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

$$f(x) = 5x? \ f(x) = 5x^2? \ f(x) = 5x^3?$$

$$f(x,y) = x^2 + y^2? \ f(x,y) = 5x + 6y?$$

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

$$f(x) = 5x? f(x) = 5x^2? f(x) = 5x^3?$$

$$f(x,y) = x^2 + y^2? f(x,y) = 5x + 6y?$$

If f(x) is twice differentiable.

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

$$f(x) = 5x? \ f(x) = 5x^2? \ f(x) = 5x^3?$$

$$f(x,y) = x^2 + y^2? \ f(x,y) = 5x + 6y?$$

If f(x) is twice differentiable.

 $\nabla^2 f(x) \succeq mI$ for all x.

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

$$f(x) = 5x? \ f(x) = 5x^2? \ f(x) = 5x^3?$$

$$f(x,y) = x^2 + y^2? \ f(x,y) = 5x + 6y?$$

If f(x) is twice differentiable.

 $\nabla^2 f(x) \succeq mI$ for all x.

Hessian: $\nabla^2 f(x)$ is matrix of $\frac{\partial f(x)}{\partial x_i \partial x_j}$ evaluated at *x*.

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

$$f(x) = 5x? \ f(x) = 5x^2? \ f(x) = 5x^3?$$

$$f(x,y) = x^2 + y^2? \ f(x,y) = 5x + 6y?$$

If f(x) is twice differentiable.

 $\nabla^2 f(x) \succeq mI$ for all x.

Hessian: $\nabla^2 f(x)$ is matrix of $\frac{\partial f(x)}{\partial x_i \partial x_j}$ evaluated at *x*.

Hessian for $f(x, y) = x^2 + y^2$.

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

$$f(x) = 5x? \ f(x) = 5x^2? \ f(x) = 5x^3?$$

$$f(x,y) = x^2 + y^2? \ f(x,y) = 5x + 6y?$$

If f(x) is twice differentiable.

 $\nabla^2 f(x) \succeq mI$ for all x.

Hessian: $\nabla^2 f(x)$ is matrix of $\frac{\partial f(x)}{\partial x_i \partial x_j}$ evaluated at *x*.

Hessian for $f(x, y) = x^2 + y^2$.

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Strictly convex with m = 2.

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

$$f(x) = 5x? \ f(x) = 5x^2? \ f(x) = 5x^3?$$

$$f(x,y) = x^2 + y^2? \ f(x,y) = 5x + 6y?$$

If f(x) is twice differentiable.

 $\nabla^2 f(x) \succeq mI$ for all x.

Hessian: $\nabla^2 f(x)$ is matrix of $\frac{\partial f(x)}{\partial x_i \partial x_j}$ evaluated at *x*.

Hessian for $f(x, y) = x^2 + y^2$.

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Strictly convex with m = 2.

Hessian for $f(x, y) = x^2 + xy + y^2$.

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Strictly convex with m = 1.

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0. If f(x) is twice differentiable.

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0. If f(x) is twice differentiable. $\nabla^2 f(x) \succeq mI$ for all x.

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

If f(x) is twice differentiable.

 $\nabla^2 f(x) \succeq mI$ for all x.

Sharper lower bound than from convexity.

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

If f(x) is twice differentiable.

 $\nabla^2 f(x) \succeq mI$ for all x.

Sharper lower bound than from convexity.

$$f(y) \ge f(x) + \nabla f(x)(y-x) + (\frac{m}{2}||y-x||)^2$$
 all x, y .

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

If f(x) is twice differentiable.

 $\nabla^2 f(x) \succeq mI$ for all x.

Sharper lower bound than from convexity.

$$f(y) \ge f(x) + \nabla f(x)(y-x) + (\frac{m}{2}||y-x||)^2$$
 all x, y .

Gradient descent: $x_{t+1} = x_t - \alpha \nabla f(x)$ with $\alpha = \frac{2}{m+L}$ gets

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

If f(x) is twice differentiable.

 $\nabla^2 f(x) \succeq mI$ for all x.

Sharper lower bound than from convexity.

$$f(y) \ge f(x) + \nabla f(x)(y-x) + (\frac{m}{2}||y-x||)^2$$
 all x, y .

Gradient descent: $x_{t+1} = x_t - \alpha \nabla f(x)$ with $\alpha = \frac{2}{m+L}$ gets

 $f(x_k) - f(x^*) \le c^k \frac{L}{2} ||x_0 - x^*||^2$ by Lipschitz.

Strong (strictly) Convexity: $f(x) - m ||x||^2$ is convex for some m > 0.

If f(x) is twice differentiable.

 $\nabla^2 f(x) \succeq mI$ for all x.

Sharper lower bound than from convexity.

$$f(y) \ge f(x) + \nabla f(x)(y-x) + (\frac{m}{2} \|y-x\|)^2 \text{ all } x, y.$$

Gradient descent: $x_{t+1} = x_t - \alpha \nabla f(x)$ with $\alpha = \frac{2}{m+L}$ gets

$$f(x_k) - f(x^*) \le c^k \frac{L}{2} ||x_0 - x^*||^2$$
 by Lipschitz.
 $c = (1 - O(m/L)).$

$$x_{t+1} = x_t - \alpha \nabla f(x).$$

$$x_{t+1} = x_t - \alpha \nabla f(x).$$
$$\alpha = \frac{1}{2L}.$$

$$x_{t+1} = x_t - \alpha \nabla f(x).$$

$$\alpha = \frac{1}{2L}.$$

From before

$$x_{t+1} = x_t - \alpha \nabla f(x).$$

$$\alpha = \frac{1}{2L}.$$

From before

$$abla(f(x)) \geq rac{f(x)-f(x^*)+rac{m}{2}\|x^*-x\|^2}{\|x-x^*\|} \geq rac{m}{2}\|x^*-x\|.$$

$$x_{t+1} = x_t - \alpha \nabla f(x).$$
$$\alpha = \frac{1}{2L}.$$

From before

$$abla(f(x)) \geq rac{f(x)-f(x^*)+rac{m}{2}\|x^*-x\|^2}{\|x-x^*\|} \geq rac{m}{2}\|x^*-x\|.$$

Goes down by $\frac{\alpha}{2} \|\nabla f(x_t)\|^2$

$$x_{t+1} = x_t - \alpha \nabla f(x).$$
$$\alpha = \frac{1}{2I}.$$

From before

$$abla(f(x)) \geq rac{f(x)-f(x^*)+rac{m}{2}\|x^*-x\|^2}{\|x-x^*\|} \geq rac{m}{2}\|x^*-x\|.$$

Goes down by $\frac{\alpha}{2} \|\nabla f(x_t)\|^2$

 $lpha rac{m}{2} \|x * - x\|^2$ in each step.

$$x_{t+1} = x_t - \alpha \nabla f(x).$$
$$\alpha = \frac{1}{2t}.$$

From before

$$abla(f(x)) \geq rac{f(x) - f(x^*) + rac{m}{2} \|x^* - x\|^2}{\|x - x^*\|} \geq rac{m}{2} \|x^* - x\|.$$

Goes down by $\frac{\alpha}{2} \|\nabla f(x_t)\|^2$

 $lpha rac{m}{2} \|x * - x\|^2$ in each step.

$$f(x) - f(x^*)$$
 is at most $\frac{L}{2} ||x^* - x||^2$.
So decreases by $(1 - \Theta(\frac{m^2}{L^2}))$ in each step.

$$x_{t+1} = x_t - \alpha \nabla f(x).$$
$$\alpha = \frac{1}{2t}.$$

From before

$$abla(f(x)) \geq rac{f(x) - f(x^*) + rac{m}{2} \|x^* - x\|^2}{\|x - x^*\|} \geq rac{m}{2} \|x^* - x\|.$$

Goes down by $\frac{\alpha}{2} \|\nabla f(x_t)\|^2$

 $\alpha \frac{m}{2} \|x * - x\|^2$ in each step.

$$f(x) - f(x^*)$$
 is at most $\frac{L}{2} ||x^* - x||^2$.
So decreases by $(1 - \Theta(\frac{m^2}{L^2}))$ in each step.
Better analysis: $(1 - \Theta(m/L))$ fraction in each step.

Next time.

Accelerated Gradient Descent.