
Today

Gradient Descent.

Minimizing a convex function.

min f (x)

f (y)≥ f (x) + (∇f (x))(y −x)

xk+1 = xk −α∇f (x).

One dimension: go left or right with a magnitude.

What is α?

If function 100000x2.

Should α be small or big? small!

What do you want to do?

Get close! f (x)− f (x∗)≤ ε.

Depends on function.

Assume ‖∇f (x)−∇f (y)‖ ≤ L‖(x−y)‖ for any x ,y .

For 10000x2, what is L?

For 10x2 + 1000000x , what is L?

Intuitively, a bound on the second derivative.

Convergence.

xk+1 = xk −α∇f (x).

f (xk )− f (x∗)≤ 2L‖x0−x∗‖
k

.

Choose α = 1
L .

xt+1 = xt −α∇f (xt )
Idea: ∇f (xt ).

|∇f (xt+1)−∇f (xt )| ≤ L‖xt+1−xt‖2 ≤ L( 1
2L )∇f (xt+1)≤ 1

2 ∇f (xt+1).

For ∇f (y) > ∇f (xt )/2, for all y ∈ [xt ,xt+1].

Thus, the function decreases by ‖∇f (xt )‖2/4L.

Convergence

xk+1 = xk −α∇f (x).

Down by ‖∇f (xt )‖2/4L: f (xt+1)≤ f (xt )−‖∇f (xt )‖2/4L.

Convexity: f (y)≥ f (x) + (∇f (x))(y −x) or f (y)≥ f (x)− (∇f (x))(x−y)

‖∇f (x)‖ ≥ f (x)−f (x∗)
‖x−x∗‖ =⇒ f (xt+1)≤ f (xt )− 1

4L

(
f (xt )−f (x∗)
‖xt−x∗‖

)2

Let |f (xt )− f (x∗)| ∈ [∆,2∆] for t ∈ [0,k ]

f (xk )≤ f (x0)− k
4L

(
∆

‖xt−x∗‖

)2
.

Choose k = ( 4L‖xt−x∗‖2
∆ ), makes contradiction: below 0

Can’t be in range for whole time.
=⇒ Error halves in k iterations.

Geometric in ∆, so for arbitrary ε: k = O(( L‖xt−x∗‖2
ε ).

Another Proof

∇f Lipchitz with constant L =⇒
f (y)≤ f (x) + ∇f (x)(y −x) + L

2‖y −x‖2 all x ,y .

The last term comes from integrating L‖y −x‖ along y −x .

Plugging in y = xt+1 = xt −α∇f (x).

f (xt+1)≤ f (xt )−
(

1− Lα
2

)
α‖∇f (x)‖2.

For α = 1/L, using convexity: f (x∗) + ∇f (xt )(xt −x∗)≥ f (xt )

f (xt+1)≤ f (x∗) + ∇f (xt )(xt −x∗)− 1
2L‖∇f (xt )‖2

≤ f (x∗) + 1
α (xt −x∗(x−x∗)− 1

2L‖∇f (xt )‖2
= f (x∗) + 1

2α (‖xt −x∗‖2−‖xt+1−x∗|2)

= f (x∗) + L
2 (‖xt −x∗‖2−‖xt+1−x∗|2)



Convergence.

Sum over iterations.

∑k
t=1(f (xt )− f (x∗))≤ L

2 (‖x0−x∗‖2−‖xk −x∗‖2)

≤ L
2 (‖x0−x∗‖2).

Since f (xt ) is nonincreasing.

f (xk )− f (x∗)≤ 1
k ∑k

t=1(f (xt )− f (x∗)≤ L‖x0−x∗‖2
2k .

Strong Convexity
Strong (strictly) Convexity: f (x)−m‖x‖2 is convex for some m > 0.

f (x) = 5x? f (x) = 5x2? f (x) = 5x3?

f (x ,y) = x2 + y2? f (x ,y) = 5x + 6y?

If f (x) is twice differentiable.

∇2f (x)�mI for all x .

Hessian: ∇2f (x) is matrix of ∂ f (x)
∂xi ∂xj

evaluated at x .

Hessian for f (x ,y) = x2 + y2.
[
2 0
0 2

]

Strictly convex with m = 2.

Hessian for f (x ,y) = x2 + xy + y2.
[
2 1
1 2

]

Strictly convex with m = 1.

Strong Convexity

Strong (strictly) Convexity: f (x)−m‖x‖2 is convex for some m > 0.

If f (x) is twice differentiable.

∇2f (x)�mI for all x .

Sharper lower bound than from convexity.

f (y)≥ f (x) + ∇f (x)(y −x) + ( m
2 ‖y −x‖)2 all x ,y .

Gradient descent: xt+1 = xt −α∇f (x) with α = 2
m+L gets

f (xk )− f (x∗)≤ ck L
2‖x0−x∗‖2 by Lipschitz.

c = (1−O(m/L)).

Convergence.

xt+1 = xt −α∇f (x).

α = 1
2L .

From before

∇(f (x))≥ f (x)−f (x∗)+ m
2 ‖x∗−x‖2

‖x−x∗‖ ≥ m
2 ‖x∗−x‖.

Goes down by α
2 ‖∇f (xt )‖2

α m
2 ‖x ∗−x‖2 in each step.

f (x)− f (x∗) is at most L
2‖x∗−x‖2.

So decreases by (1−Θ( m2

L2 )) in each step.

Better analysis: (1−Θ(m/L)) fraction in each step.

Next time.

Accelerated Gradient Descent.


