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Lagrangian Dual.

Find x, subject to
fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y, A;fi(x)
A; > 0 - Lagrangian multiplier for inequality /.
For feasible solution x, L(x,A) is
(A) non-negative in expectation
(B) positive for any A.
(C) non-positive for any valid 7.

If 34 > 0, where L(x, 1) is positive for all x

(A) there is no feasible x.
(B) thereis no x,A with L(x,1) < 0.
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Lagrangian function:
L(x,A) = f(x) + X2 Aifi(x)

If (primal) x has value v f(x) = v and all fi(x) <0
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If there is A with L(x,4) > o for all x
Optimum value of program is at least

Primal problem:
x, that minimizes L(x,A) over all A > 0.

Dual problem:
A, that maximizes L(x,A) over all x.
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Linear Program.
mincx,Ax > b

min  c-Xx

subjectto b;—a;-x <0, i=1,..

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).
or
L(A,x) = —(¥; x;(ajA — ¢;)) + bA.
Best 1?
maxb-A where giA = ¢;.

maxbA, ATA=c,A >0
Duals!
Note: Lagrange multipliers for equality constraints.
Usually: v, and un-restricted.
In this case, x for lagrangian of Dual.
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Linear Systems

Ax=0>b
Find x.

Gaussian elimination: O(n®)
O(n?38-) with fast matrix multiplication.

Iterative Methods: O(nmlog %) to € approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: O(m) for Laplacian matrices.
Laplacian: d/ — A where A is adjacency matrix of a graph.
— symmetric diagonally dominant matrices by reduction.
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Electrical Flow: a detour.

Agraph G=(V,E).
Circuit: nodes V, resistors E, value 1 (for today.)

Giveny:V—%xX
Find flow that routes y and minimizes
Yef(e).
+1 -1

Claim: Minimizer is electrical flow.

Flow corresponds to flow induced by a set of potentials.
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Some Matrices.

Given G = (V,E), arbitrarily orient edges.

-1 e=(uv)
BV.e - 1 e= (V, U)
0 otherwise

(o

O c
0

oo L
1
—

OO = =0
'
—_

Fun facts: f € RIE|
[BTf]u = ):e:(u,v) fe - Ze:(v,u) fe
B'B=1L
[Bx]e:(uAv) = Xu— Xy
XTLx = Yo (uv)(Xu—Xv)?

—_

-1
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Luv=<-1 (uv)eE
0 otherwise
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Given G, x, x L1
Minimize |f|> subjectto BT f = y.
Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.
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— f(e)=(¢u—¢y) Potential differences!!!
Matrix Form: f = B¢ Again, flows should be potential differences.
Dual problem: Find ¢ that maximizes ...
maxy 29Ty — ¢ L¢
Note: want ¢ " Lo = Y o(¢y — ¢,)? to be small.
Minimize Squared Potential differences!
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Why did we take dual?

Dual problem:

Find ¢ that maximizes ...
maxy 29y — Lo

Take the derivative:
Lo—x

Lo = x at optimal point!

Optimal potential is solution to a Laplacian linear system.
Also useful for convergence.
Algorithm maintains feasible ¢, f,

Primal value: |f|?.
Dual value: 29y — o7 Lo

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.
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How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m+/log n) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.



See you ...

Tuesday.



