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Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ ) < 0.
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Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ )≤ v
Maximizing λ , only positive λi when fi (x) = 0

which implies L(x ,λ )≥ f (x) = v

If there is λ with L(x ,λ )≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ ) over all x .
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Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

L(x ,λ ) = f (x) + ∑
m
i=1 λi fi (x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗) + ∑i λi∇fi (x∗) = 0

Feasible primal, fi (x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi (x∗) = 0.

Launched nonlinear programming! See paper.
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Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj )) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.
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Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)
O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: Õ(m) for Laplacian matrices.
Laplacian: dI−A where A is adjacency matrix of a graph.
→ symmetric diagonally dominant matrices by reduction.
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Today: Õ(m) for Laplacian matrices.
Laplacian: dI−A where A is adjacency matrix of a graph.
→ symmetric diagonally dominant matrices by reduction.



Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)

O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.
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Electrical Flow: a detour.

A graph G = (V ,E).

Circuit: nodes V , resistors E , value 1 (for today.)

Given χ : V →ℜ

Find flow that routes χ and minimizes
∑e f (e)2.

+1 -1

Claim: Minimizer is electrical flow.

Flow corresponds to flow induced by a set of potentials.
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Some Matrices.

Given G = (V ,E), arbitrarily orient edges.

Bv ,e =


−1 e = (u,v)

1 e = (v ,u)

0 otherwise
Lu,v =


d u = v
−1 (u,v) ∈ E
0 otherwise

a

b

c

d

B
a b c d

(a,b) 1 -1 0 0
(a,c) 1 0 -1 0
(c,d) 0 0 1 -1
(d,b) 0 -1 0 1
(b,c) 0 1 -1 1

L
a b c d

a 2 -1 -1 0
b -1 2 0 -1
c -1 -1 3 -1
d -1 -1 -1 3

Fun facts: f ∈ℜ|E |

[BT f ]u = ∑e=(u,v) fe−∑e=(v ,u) fe
BT B = L
[Bx ]e=(u,v) = xu−xv

xT Lx = ∑e=(u,v)(xu−xv )2
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Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f ) = ∑e f (e)2 + 2φT (χ−BT f )

Lagrangian Dual: Find φ that maximizes minf L(φ , f ).

Given φ , minimize L(φ , f )? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv ) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv )2 to be small.
Minimize Squared Potential differences!
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Why did we take dual?

Dual problem:

Find φ that maximizes ...
maxφ 2φ χ−φLφ

Take the derivative:
Lφ −χ

Lφ = χ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible φ , f ,

Primal value: |f |2.
Dual value: 2φ χ−φT Lφ

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.
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Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv )/(lT (u,v) + 1)

(lT (u,v) path length in T )
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log( n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !
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Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ )2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!
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Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f )

Duality Gap: ∑e 6∈T ∑e ∆ce (f )2

Total distance from optimal is cycle violations!
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Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f )2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !
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→ Õ(m) time! ! !

! ! ! ! ! ! ! ! !



Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f )2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...
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Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.

Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.
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Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.
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SDD-matrices.
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See you ...

Tuesday.


