

Lagrange Multipliers.

Lagrange Multipliers.

Fast Solution of Laplacian Systems.

Find x, subject to

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Find x, subject to

 $f_i(x) \leq 0, i = 1, \dots m.$

Remember calculus (constrained optimization.)

Find x, subject to

 $f_i(x) \leq 0, i = 1, \dots m.$

Remember calculus (constrained optimization.)

Lagrangian:

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\lambda_i \ge 0$ - Lagrangian multiplier for inequality *i*.

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\lambda_i \ge 0$ - Lagrangian multiplier for inequality *i*.

For feasible solution *x*, $L(x, \lambda)$ is

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\lambda_i \ge 0$ - Lagrangian multiplier for inequality *i*.

For feasible solution *x*, $L(x, \lambda)$ is

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\lambda_i \ge 0$ - Lagrangian multiplier for inequality *i*.

For feasible solution x, $L(x, \lambda)$ is

(A) non-negative in expectation

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\lambda_i \ge 0$ - Lagrangian multiplier for inequality *i*.

For feasible solution x, $L(x, \lambda)$ is

- (A) non-negative in expectation
- (B) positive for any λ .

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\lambda_i \ge 0$ - Lagrangian multiplier for inequality *i*.

For feasible solution x, $L(x, \lambda)$ is

- (A) non-negative in expectation
- (B) positive for any λ .
- (C) non-positive for any valid λ .

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\lambda_i \ge 0$ - Lagrangian multiplier for inequality *i*.

For feasible solution x, $L(x, \lambda)$ is

- (A) non-negative in expectation
- (B) positive for any λ .
- (C) non-positive for any valid λ .

If $\exists \lambda \geq 0$, where $L(x,\lambda)$ is positive for all x

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\lambda_i \ge 0$ - Lagrangian multiplier for inequality *i*.

For feasible solution x, $L(x, \lambda)$ is

- (A) non-negative in expectation
- (B) positive for any λ .
- (C) non-positive for any valid λ .

If $\exists \lambda \geq 0$, where $L(x,\lambda)$ is positive for all x

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\lambda_i \ge 0$ - Lagrangian multiplier for inequality *i*.

For feasible solution x, $L(x, \lambda)$ is

- (A) non-negative in expectation
- (B) positive for any λ .
- (C) non-positive for any valid λ .

If $\exists \lambda \geq 0$, where $L(x,\lambda)$ is positive for all x

(A) there is no feasible x.

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\lambda_i \ge 0$ - Lagrangian multiplier for inequality *i*.

For feasible solution x, $L(x, \lambda)$ is

- (A) non-negative in expectation
- (B) positive for any λ .
- (C) non-positive for any valid λ .

If $\exists \lambda \geq 0$, where $L(x,\lambda)$ is positive for all x

- (A) there is no feasible x.
- (B) there is no x, λ with $L(x, \lambda) < 0$.

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

Lagrangian function:

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

Lagrangian function:

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x has value v

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x has value v f(x) = v and all $f_i(x) \le 0$

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x has value v f(x) = v and all $f_i(x) \le 0$ For all $\lambda \ge 0$ have $L(x,\lambda) \le v$

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x has value v f(x) = v and all $f_i(x) \le 0$ For all $\lambda \ge 0$ have $L(x,\lambda) \le v$ Maximizing λ , only positive λ_i when $f_i(x) = 0$

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x has value v f(x) = v and all $f_i(x) \le 0$ For all $\lambda \ge 0$ have $L(x,\lambda) \le v$ Maximizing λ , only positive λ_i when $f_i(x) = 0$ which implies $L(x,\lambda) \ge f(x)$

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x has value v f(x) = v and all $f_i(x) \le 0$ For all $\lambda \ge 0$ have $L(x,\lambda) \le v$ Maximizing λ , only positive λ_i when $f_i(x) = 0$ which implies $L(x,\lambda) \ge f(x) = v$

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x has value v f(x) = v and all $f_i(x) \le 0$ For all $\lambda \ge 0$ have $L(x,\lambda) \le v$ Maximizing λ , only positive λ_i when $f_i(x) = 0$ which implies $L(x,\lambda) \ge f(x) = v$

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x has value v f(x) = v and all $f_i(x) \le 0$ For all $\lambda \ge 0$ have $L(x,\lambda) \le v$ Maximizing λ , only positive λ_i when $f_i(x) = 0$ which implies $L(x,\lambda) \ge f(x) = v$

If there is λ with $L(x,\lambda) \ge \alpha$ for all x

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x has value v f(x) = v and all $f_i(x) \le 0$ For all $\lambda \ge 0$ have $L(x,\lambda) \le v$ Maximizing λ , only positive λ_i when $f_i(x) = 0$ which implies $L(x,\lambda) \ge f(x) = v$

If there is λ with $L(x,\lambda) \ge \alpha$ for all x Optimum value of program is at least α

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x has value v f(x) = v and all $f_i(x) \le 0$ For all $\lambda \ge 0$ have $L(x,\lambda) \le v$ Maximizing λ , only positive λ_i when $f_i(x) = 0$ which implies $L(x,\lambda) \ge f(x) = v$

If there is λ with $L(x,\lambda) \ge \alpha$ for all xOptimum value of program is at least α

Primal problem:

x, that minimizes $L(x, \lambda)$ over all $\lambda \ge 0$.

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x has value v f(x) = v and all $f_i(x) \le 0$ For all $\lambda \ge 0$ have $L(x,\lambda) \le v$ Maximizing λ , only positive λ_i when $f_i(x) = 0$ which implies $L(x,\lambda) \ge f(x) = v$

If there is λ with $L(x,\lambda) \ge \alpha$ for all xOptimum value of program is at least α

Primal problem:

x, that minimizes $L(x, \lambda)$ over all $\lambda \ge 0$.

Dual problem:

 λ , that maximizes $L(x,\lambda)$ over all x.

Karash, Kuhn and Tucker Conditions.

Karash, Kuhn and Tucker Conditions.

$$\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$$

Karash, Kuhn and Tucker Conditions.

$$\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$$

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

Karash, Kuhn and Tucker Conditions.

$$\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$$

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

Local minima for feasible x^* .

Karash, Kuhn and Tucker Conditions.

$$\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$$

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

Local minima for feasible x^* .

There exist multipliers λ , where
Karash, Kuhn and Tucker Conditions.

$$\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$$

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

Local minima for feasible x^* .

There exist multipliers λ , where

 $\nabla f(x^*) + \sum_i \lambda_i \nabla f_i(x^*) = 0$

Karash, Kuhn and Tucker Conditions.

$$\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$$

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

Local minima for feasible x^* .

There exist multipliers λ , where

 $\nabla f(x^*) + \sum_i \lambda_i \nabla f_i(x^*) = 0$

Feasible primal, $f_i(x^*) \leq 0$, and feasible dual $\lambda_i \geq 0$.

Karash, Kuhn and Tucker Conditions.

$$\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$$

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

Local minima for feasible x^* .

There exist multipliers λ , where

 $\nabla f(x^*) + \sum_i \lambda_i \nabla f_i(x^*) = 0$

Feasible primal, $f_i(x^*) \leq 0$, and feasible dual $\lambda_i \geq 0$.

Complementary slackness: $\lambda_i f_i(x^*) = 0$.

Karash, Kuhn and Tucker Conditions.

$$\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$$

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

Local minima for feasible x^* .

There exist multipliers λ , where

 $\nabla f(x^*) + \sum_i \lambda_i \nabla f_i(x^*) = 0$

Feasible primal, $f_i(x^*) \leq 0$, and feasible dual $\lambda_i \geq 0$.

Complementary slackness: $\lambda_i f_i(x^*) = 0$.

Launched nonlinear programming!

Karash, Kuhn and Tucker Conditions.

$$\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$$

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

Local minima for feasible x^* .

There exist multipliers λ , where

 $\nabla f(x^*) + \sum_i \lambda_i \nabla f_i(x^*) = 0$

Feasible primal, $f_i(x^*) \leq 0$, and feasible dual $\lambda_i \geq 0$.

Complementary slackness: $\lambda_i f_i(x^*) = 0$.

Launched nonlinear programming! See paper.

Karash, Kuhn and Tucker Conditions.

$$\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$$

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

Local minima for feasible x^* .

There exist multipliers λ , where

 $\nabla f(x^*) + \sum_i \lambda_i \nabla f_i(x^*) = 0$

Feasible primal, $f_i(x^*) \leq 0$, and feasible dual $\lambda_i \geq 0$.

Complementary slackness: $\lambda_i f_i(x^*) = 0$.

Launched nonlinear programming! See paper.

$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$

$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$

Lagrangian (Dual):

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

 $L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$ Best λ ?

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

 $L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$ Best λ ?

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

 $L(\lambda, x) = -(\sum_{j} x_{j}(a_{j}\lambda - c_{j})) + b\lambda.$ Best λ ? max $b \cdot \lambda$

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

$$\begin{split} \mathcal{L}(\lambda, x) &= -(\sum_{j} x_{j}(a_{j}\lambda - c_{j})) + b\lambda. \\ \text{Best } \lambda? \\ \max b \cdot \lambda \text{ where } a_{j}\lambda &= c_{j}. \end{split}$$

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

$$\begin{split} \mathcal{L}(\lambda, x) &= -(\sum_{j} x_{j}(a_{j}\lambda - c_{j})) + b\lambda. \\ \text{Best } \lambda? \\ \max b \cdot \lambda \text{ where } a_{j}\lambda &= c_{j}. \\ \max b\lambda, \end{split}$$

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

$$\begin{split} \mathcal{L}(\lambda, x) &= -(\sum_{j} x_{j}(a_{j}\lambda - c_{j})) + b\lambda. \\ \text{Best } \lambda? \\ \max b \cdot \lambda \text{ where } a_{j}\lambda &= c_{j}. \\ \max b\lambda, \lambda^{T}A &= c, \end{split}$$

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

$$\begin{split} \mathcal{L}(\lambda, x) &= -(\sum_{j} x_{j}(a_{j}\lambda - c_{j})) + b\lambda. \\ \text{Best } \lambda? \\ \max b \cdot \lambda \text{ where } a_{j}\lambda &= c_{j}. \\ \max b\lambda, \lambda^{\mathsf{T}}A &= c, \lambda \geq 0 \end{split}$$

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

$$\begin{split} \mathcal{L}(\lambda, x) &= -(\sum_{j} x_{j}(a_{j}\lambda - c_{j})) + b\lambda. \\ \text{Best } \lambda? \\ \max b \cdot \lambda \text{ where } a_{j}\lambda &= c_{j}. \\ \max b\lambda, \lambda^{T}A &= c, \lambda \geq 0 \\ \text{Duals!} \end{split}$$

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

$$\begin{split} \mathcal{L}(\lambda, x) &= -(\sum_{j} x_{j}(a_{j}\lambda - c_{j})) + b\lambda. \\ \text{Best } \lambda? \\ \max b \cdot \lambda \text{ where } a_{j}\lambda &= c_{j}. \\ \max b\lambda, \lambda^{T}A &= c, \lambda \geq 0 \\ \text{Duals!} \\ \text{Note:} \end{split}$$

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ?

$$\max b \cdot \lambda$$
 where $a_j \lambda = c_j$.

$$\max b\lambda, \lambda^T A = c, \lambda \ge 0$$

Duals!

Note: Lagrange multipliers for equality constraints.

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ?

 $\max b \cdot \lambda$ where $a_j \lambda = c_j$.

$$\max b\lambda, \lambda^T A = c, \lambda \ge 0$$

Duals!

Note: Lagrange multipliers for equality constraints. Usually: v, and un-restricted.

min
$$c \cdot x$$

subject to $b_i - a_i \cdot x \le 0$, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ?

 $\max b \cdot \lambda$ where $a_j \lambda = c_j$.

$$\max b\lambda, \lambda^T A = c, \lambda \ge 0$$

Duals!

Note: Lagrange multipliers for equality constraints. Usually: v, and un-restricted. In this case, x for lagrangian of Dual.

Ax = b

Ax = b

Find x.

Ax = b

Find x.

Gaussian elimination: $O(n^3)$

Ax = b

Find x.

Gaussian elimination: $O(n^3)$

Ax = b

Find x.

Gaussian elimination: $O(n^3)$ $O(n^{2.36...})$ with fast matrix multiplication.

Ax = b

Find x.

Gaussian elimination: $O(n^3)$ $O(n^{2.36...})$ with fast matrix multiplication.

Iterative Methods: $O(nm \log \frac{1}{\varepsilon})$ to ε approximate.

Ax = b

Find x.

Gaussian elimination: $O(n^3)$ $O(n^{2.36...})$ with fast matrix multiplication.

Iterative Methods: $O(nm \log \frac{1}{\varepsilon})$ to ε approximate. For today: where *m* is sum of nonzeros in matrix.

Ax = b

Find x.

Gaussian elimination: $O(n^3)$ $O(n^{2.36...})$ with fast matrix multiplication.

Iterative Methods: $O(nm \log \frac{1}{\varepsilon})$ to ε approximate. For today: where *m* is sum of nonzeros in matrix. For positive semidefinite matrix.

Ax = b

Find x.

Gaussian elimination: $O(n^3)$ $O(n^{2.36...})$ with fast matrix multiplication.

Iterative Methods: $O(nm \log \frac{1}{\varepsilon})$ to ε approximate. For today: where *m* is sum of nonzeros in matrix. For positive semidefinite matrix.

Today: $\tilde{O}(m)$ for Laplacian matrices.

Ax = b

Find x.

Gaussian elimination: $O(n^3)$ $O(n^{2.36...})$ with fast matrix multiplication.

Iterative Methods: $O(nm \log \frac{1}{\varepsilon})$ to ε approximate. For today: where *m* is sum of nonzeros in matrix. For positive semidefinite matrix.

Today: $\tilde{O}(m)$ for Laplacian matrices. Laplacian: dI - A where A is adjacency matrix of a graph.
Linear Systems

Ax = b

Find x.

Gaussian elimination: $O(n^3)$ $O(n^{2.36...})$ with fast matrix multiplication.

Iterative Methods: $O(nm \log \frac{1}{\varepsilon})$ to ε approximate. For today: where *m* is sum of nonzeros in matrix. For positive semidefinite matrix.

Today: $\tilde{O}(m)$ for Laplacian matrices. Laplacian: dI - A where A is adjacency matrix of a graph. \rightarrow symmetric diagonally dominant matrices by reduction.

A graph G = (V, E).

A graph G = (V, E). Circuit: nodes V, resistors E, value 1 (for today.)

```
A graph G = (V, E).
Circuit: nodes V, resistors E, value 1 (for today.)
Given \chi : V \to \Re
Find flow that routes \chi and minimizes
\sum_e f(e)^2.
```

A graph G = (V, E). Circuit: nodes V, resistors E, value 1 (for today.) Given $\chi : V \to \Re$ Find flow that routes χ and minimizes $\sum_e f(e)^2$. +1 -1

```
A graph G = (V, E).

Circuit: nodes V, resistors E, value 1 (for today.)

Given \chi : V \to \Re

Find flow that routes \chi and minimizes

\sum_e f(e)^2.

+1

-1
```

Claim: Minimizer is electrical flow.

```
A graph G = (V, E).

Circuit: nodes V, resistors E, value 1 (for today.)

Given \chi : V \to \Re

Find flow that routes \chi and minimizes

\sum_e f(e)^2.

+1

-1
```

Claim: Minimizer is electrical flow.

Flow corresponds to flow induced by a set of potentials.

Given G = (V, E), arbitrarily orient edges.

Fun facts: $\mathbf{f} \in \mathfrak{R}^{|E|}$

Given G = (V, E), arbitrarily orient edges.

Fun facts: $\mathbf{f} \in \mathfrak{R}^{|E|}$ $[B^T f]_u = \sum_{e=(u,v)} f_e - \sum_{e=(v,u)} f_e$

$$B_{v,e} = \begin{cases} -1 & e = (u,v) \\ 1 & e = (v,u) \\ 0 & \text{otherwise} \end{cases} \qquad L_{u,v} = \begin{cases} d & u = v \\ -1 & (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$B & L \\ \hline (a,b) & 1 & -1 & 0 & 0 \\ (a,c) & 1 & 0 & -1 & 0 \\ (c,d) & 0 & 0 & 1 & -1 \\ (b,c) & 0 & 1 & -1 & 1 \end{cases} \qquad L & \frac{a & b & c & d}{a & 2 & -1 & -1 & 0 \\ b & -1 & 2 & 0 & -1 \\ c & -1 & -1 & 3 & -1 \\ d & -1 & -1 & -1 & 3 \end{cases}$$

Fun facts:
$$\mathbf{f} \in \mathfrak{R}^{|E|}$$

 $[B^T f]_u = \sum_{e=(u,v)} f_e - \sum_{e=(v,u)} f_e$
 $B^T B = L$

Fun facts:
$$\mathbf{f} \in \mathfrak{R}^{|E|}$$

 $[B^T f]_u = \sum_{e=(u,v)} f_e - \sum_{e=(v,u)} f_e$
 $B^T B = L$
 $[Bx]_{e=(u,v)} = x_u - x_v$

$$B_{v,e} = \begin{cases} -1 & e = (u,v) \\ 1 & e = (v,u) \\ 0 & \text{otherwise} \end{cases} \qquad L_{u,v} = \begin{cases} d & u = v \\ -1 & (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$B & L \\ \hline (a,b) & 1 & -1 & 0 & 0 \\ (a,c) & 1 & 0 & -1 & 0 \\ (c,d) & 0 & 0 & 1 & -1 \\ (b,c) & 0 & 1 & -1 & 1 \end{cases} \qquad L & \frac{a & b & c & d}{a & 2 & -1 & -1 & 0 \\ b & -1 & 2 & 0 & -1 \\ c & -1 & -1 & 3 & -1 \\ d & -1 & -1 & -1 & 3 \end{cases}$$

Fun facts:
$$\mathbf{f} \in \mathfrak{R}^{|E|}$$

 $[B^T f]_u = \sum_{e=(u,v)} f_e - \sum_{e=(v,u)} f_e$
 $B^T B = L$
 $[Bx]_{e=(u,v)} = x_u - x_v$
 $x^T Lx = \sum_{e=(u,v)} (x_u - x_v)^2$

Given $G, \chi, \chi \perp 1$

Given $G, \chi, \chi \perp 1$

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$.

```
Given G, \chi, \chi \perp 1
Minimize |f|^2 subject to B^T f = \chi.
Lagrangian:
```

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual:

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T(\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$.

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes $\min_f L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$?

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$? Calculus.

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$? Calculus.

For
$$e = (u, v)$$

2 $f(e) + 2(\phi_v - \phi_u) = 0$

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$? Calculus.

For e = (u, v) $2f(e) + 2(\phi_v - \phi_u) = 0$ (Minimum when partial derivatives = 0.)

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$? Calculus. For e = (u, v)

 $2f(e) + 2(\phi_v - \phi_u) = 0$ (Minimum when partial derivatives = 0.) $\rightarrow f(e) = (\phi_u - \phi_v)$

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$? Calculus. For e = (u, v)

 $2f(e) + 2(\phi_v - \phi_u) = 0$ (Minimum when partial derivatives = 0.)

 $\rightarrow f(e) = (\phi_u - \phi_v)$ Potential differences!!!

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$? Calculus. For e = (u, v)D(f(x) + Q(x) - f(x)) = Q(Minimum when partial derivations)

 $2f(e) + 2(\phi_v - \phi_u) = 0$ (Minimum when partial derivatives = 0.)

 $\rightarrow f(e) = (\phi_u - \phi_v)$ Potential differences!!!

Matrix Form: $f = B\phi$

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$? Calculus. For e = (u, v)

 $2f(e) + 2(\phi_v - \phi_u) = 0$ (Minimum when partial derivatives = 0.)

 $\rightarrow f(e) = (\phi_u - \phi_v)$ Potential differences!!!

Matrix Form: $f = B\phi$ Again, flows should be potential differences.

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$? Calculus. For e = (u, v)

 $2f(e) + 2(\phi_v - \phi_u) = 0$ (Minimum when partial derivatives = 0.)

 $\rightarrow f(e) = (\phi_u - \phi_v)$ Potential differences!!!

Matrix Form: $f = B\phi$ Again, flows should be potential differences. Dual problem:

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$? Calculus.

For e = (u, v) $2f(e) + 2(\phi_v - \phi_u) = 0$ (Minimum when partial derivatives = 0.) $\rightarrow f(e) = (\phi_u - \phi_v)$ Potential differences!!! Matrix Form: $f = B\phi$ Again, flows should be potential differences. Dual problem: Find ϕ that maximizes ...

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$? Calculus.

For e = (u, v) $2f(e) + 2(\phi_v - \phi_u) = 0$ (Minimum when partial derivatives = 0.) $\rightarrow f(e) = (\phi_u - \phi_v)$ Potential differences!!! Matrix Form: $f = B\phi$ Again, flows should be potential differences. Dual problem: Find ϕ that maximizes ... $\max_{\phi} 2\phi^T \chi - \phi^T L\phi$

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$? Calculus.

For e = (u, v) $2f(e) + 2(\phi_v - \phi_u) = 0$ (Minimum when partial derivatives = 0.) $\rightarrow f(e) = (\phi_u - \phi_v)$ Potential differences!!! Matrix Form: $f = B\phi$ Again, flows should be potential differences. Dual problem: Find ϕ that maximizes ... $\max_{\phi} 2\phi^T \chi - \phi^T L\phi$ Note: want $\phi^T L\phi = \sum_e (\phi_u - \phi_v)^2$ to be small.

Given $G, \chi, \chi \perp 1$ Minimize $|f|^2$ subject to $B^T f = \chi$. Lagrangian: $L(\phi, f) = \sum_e f(e)^2 + 2\phi^T (\chi - B^T f)$ Lagrangian Dual: Find ϕ that maximizes min_f $L(\phi, f)$. Given ϕ , minimize $L(\phi, f)$? Calculus.

For e = (u, v) $2f(e) + 2(\phi_v - \phi_u) = 0$ (Minimum when partial derivatives = 0.) $\rightarrow f(e) = (\phi_u - \phi_v)$ Potential differences!!! Matrix Form: $f = B\phi$ Again, flows should be potential differences. Dual problem: Find ϕ that maximizes ... $\max_{\phi} 2\phi^T \chi - \phi^T L\phi$

Note: want $\phi^T L \phi = \sum_e (\phi_u - \phi_v)^2$ to be small. Minimize Squared Potential differences!
Dual problem:

Dual problem: Find ϕ that maximizes ... max_{ϕ} 2 $\phi \chi - \phi L \phi$

Dual problem: Find ϕ that maximizes ... max_{ϕ} 2 $\phi \chi - \phi L \phi$

Take the derivative:

Dual problem: Find ϕ that maximizes ... $\max_{\phi} 2\phi \chi - \phi L\phi$

Take the derivative: $\int d \phi = \frac{1}{2}$

 $L\phi - \chi$

Dual problem: Find ϕ that maximizes ... max_{ϕ} 2 $\phi \chi - \phi L \phi$ Take the derivative:

 $L\phi - \chi$ $L\phi = \chi$ at optimal point!

Dual problem: Find ϕ that maximizes ... max_{ϕ} 2 $\phi \chi - \phi L \phi$ Take the derivative:

 $L\phi - \chi$ $L\phi = \chi$ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Dual problem: Find ϕ that maximizes ... max_{ϕ} 2 $\phi \chi - \phi L \phi$

Take the derivative: $L\phi - \chi$ $L\phi = \chi$ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Dual problem: Find ϕ that maximizes ... max_{ϕ} 2 $\phi \chi - \phi L \phi$

Take the derivative: $L\phi - \chi$

 $L\phi = \chi$ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible ϕ , f,

Dual problem: Find ϕ that maximizes ... max_{ϕ} 2 $\phi \chi - \phi L \phi$

Take the derivative: $L\phi - \chi$

 $L\phi = \chi$ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible ϕ , f,

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi^T L \phi$

Dual problem: Find ϕ that maximizes ... max_{ϕ} 2 $\phi \chi - \phi L \phi$

Take the derivative:

 $L\phi - \chi$ $L\phi = \chi$ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible ϕ , f,

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi^T L\phi$

Duality gap is "distance" from optimal!

Dual problem: Find ϕ that maximizes ... max_{ϕ} 2 $\phi \chi - \phi L \phi$

Take the derivative:

 $L\phi - \chi$ $L\phi = \chi$ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible ϕ , f,

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi^T L \phi$

Duality gap is "distance" from optimal!

Algorithm: Work on flow and potentials. To drive gap to 0.

Given: χ , G

Given: χ , *G* Take a spanning tree *T* of *G*.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

Given: χ , *G* Take a spanning tree *T* of *G*. (Which tree?) Route flow, *f*, to satisfy χ through *T*

Given: χ , G

Take a spanning tree T of G. (Which tree?)

Route flow, *f*, to satisfy χ through *T* Compute, ϕ , using tree

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Given: χ , G

Take a spanning tree T of G. (Which tree?)

Route flow, *f*, to satisfy χ through *T* Compute, ϕ , using tree ; $\phi_s = 0$, add f_e through *T* Repeat:

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f<sub>e</sub> through T
```

Repeat:

Choose non-tree edge e = (u, v)

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?) $f(e) = (\phi_u - \phi_v)/(l_T(u, v) + 1)$

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?) $f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$ $(I_T(u, v)$ path length in *T*)

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v) / (I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v) / (I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \le 0$ ($m \log n \log \log n$)!

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Finds $(1 + \varepsilon)$ approximation in $O(m \log n \log \log n \log(\frac{n}{\varepsilon}))$

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Finds $(1 + \varepsilon)$ approximation in $O(m \log n \log \log n \log(\frac{n}{\varepsilon}))$!

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Finds $(1 + \varepsilon)$ approximation in $O(m \log n \log \log n \log(\frac{n}{\varepsilon}))$!!

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Finds $(1 + \varepsilon)$ approximation in $O(m \log \log \log n \log(\frac{n}{\varepsilon})) \mid ! \mid$

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Finds $(1 + \varepsilon)$ approximation in $O(m \log n \log \log n \log(\frac{n}{\varepsilon})) !!!!$

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Finds $(1 + \varepsilon)$ approximation in $O(m \log n \log \log n \log(\frac{n}{\varepsilon}))$!!!!!

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Finds $(1 + \varepsilon)$ approximation in $O(m \log n \log \log n \log(\frac{n}{\varepsilon}))$!!!!!!

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Finds $(1 + \varepsilon)$ approximation in $O(m \log \log \log n \log(\frac{n}{\varepsilon}))$!!!!!!!
Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Finds $(1 + \varepsilon)$ approximation in $O(m \log n \log \log n \log(\frac{n}{\varepsilon}))$!!!!!!!

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given: χ , G

Take a spanning tree T of G. (Which tree?)

```
Route flow, f, to satisfy \chi through T
Compute, \phi, using tree ; \phi_s = 0, add f_e through T
```

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

$$f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$$

 $(I_T(u, v)$ path length in T)

Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for *T* w/ stretch $O(m \log n \log \log n)!$ Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

Given T, e = (u, v), let $R_e = I_T(u, v) + 1$.

Given T, e = (u, v), let $R_e = I_T(u, v) + 1$. Algorithm:

Given T, e = (u, v), let $R_e = I_T(u, v) + 1$. Algorithm:

```
Given T, e = (u, v), let R_e = I_T(u, v) + 1.
Algorithm:
```

```
Repeatedly "Fix" edge e = (u, v).
```

```
Given T, e = (u, v), let R_e = I_T(u, v) + 1.
Algorithm:
```

Repeatedly "Fix" edge e = (u, v). Route $-\delta = -\frac{\sum_{e' \in C_e} f(e')}{R_e}$ flow around cycle induced in *T*: C_e (assume *e*' are oriented around cycle.)

Given
$$T, e = (u, v)$$
, let $R_e = I_T(u, v) + 1$.
Algorithm:

Repeatedly "Fix" edge e = (u, v). Route $-\delta = -\frac{\sum_{e' \in C_e} f(e')}{R_e}$ flow around cycle induced in *T*: C_e (assume *e*' are oriented around cycle.)

Difference in energy from f and f'.

Given
$$T, e = (u, v)$$
, let $R_e = I_T(u, v) + 1$.
Algorithm:

Repeatedly "Fix" edge e = (u, v). Route $-\delta = -\frac{\sum_{e' \in C_e} f(e')}{R_e}$ flow around cycle induced in *T*: C_e (assume *e'* are oriented around cycle.)

Difference in energy from *f* and *f'*. $\sum_{e' \in C_e} (f(e') - \delta)^2 - (f(e'))^2$

Given
$$T, e = (u, v)$$
, let $R_e = I_T(u, v) + 1$.
Algorithm:

Repeatedly "Fix" edge e = (u, v). Route $-\delta = -\frac{\sum_{e' \in C_e} f(e')}{R_e}$ flow around cycle induced in *T*: C_e (assume *e'* are oriented around cycle.)

Difference in energy from *f* and *f'*. $\sum_{e' \in C_e} (f(e') - \delta)^2 - (f(e'))^2 = \sum_{e' \in C_e} -2f(e')\delta + \delta^2$

Given
$$T, e = (u, v)$$
, let $R_e = I_T(u, v) + 1$.
Algorithm:

Repeatedly "Fix" edge e = (u, v). Route $-\delta = -\frac{\sum_{e' \in C_e} f(e')}{R_e}$ flow around cycle induced in *T*: C_e (assume *e'* are oriented around cycle.)

Difference in energy from *f* and *f'*. $\sum_{e' \in C_e} (f(e') - \delta)^2 - (f(e'))^2 = \sum_{e' \in C_e} -2f(e')\delta + \delta^2$ $= -(2\delta \sum_{e' \in C_e} f(e')) + R_E \delta^2$

Given
$$T, e = (u, v)$$
, let $R_e = I_T(u, v) + 1$.
Algorithm:

Repeatedly "Fix" edge
$$e = (u, v)$$
.
Route $-\delta = -\frac{\sum_{e' \in C_e} f(e')}{R_e}$ flow around cycle induced in *T*: C_e
(assume e' are oriented around cycle.)

Difference in energy from *f* and *f'*. $\sum_{e' \in C_e} (f(e') - \delta)^2 - (f(e'))^2 = \sum_{e' \in C_e} -2f(e')\delta + \delta^2$ $= -(2\delta \sum_{e' \in C_e} f(e')) + R_E \delta^2$ Note: $\sum_{e' \in C_e} f(e') = R_e \delta$

Given
$$T, e = (u, v)$$
, let $R_e = I_T(u, v) + 1$.
Algorithm:

Repeatedly "Fix" edge
$$e = (u, v)$$
.
Route $-\delta = -\frac{\sum_{e' \in C_e} f(e')}{R_e}$ flow around cycle induced in *T*: C_e
(assume e' are oriented around cycle.)

Difference in energy from f and f'.

$$\sum_{e' \in C_e} (f(e') - \delta)^2 - (f(e'))^2 = \sum_{e' \in C_e} -2f(e')\delta + \delta^2$$

$$= -(2\delta \sum_{e' \in C_e} f(e')) + R_E \delta^2$$
Note:
$$\sum_{e' \in C_e} f(e') = R_e \delta$$

$$\rightarrow -\Delta_{C_e}^2 / R_e \text{ where } \Delta_{C_e} = \sum_{e' \in C_e} f(e').$$

Given
$$T, e = (u, v)$$
, let $R_e = I_T(u, v) + 1$.
Algorithm:

Repeatedly "Fix" edge e = (u, v). Route $-\delta = -\frac{\sum_{e' \in C_e} f(e')}{R_e}$ flow around cycle induced in *T*: C_e (assume *e*' are oriented around cycle.)

Difference in energy from *f* and *f'*.

$$\sum_{e' \in C_e} (f(e') - \delta)^2 - (f(e'))^2 = \sum_{e' \in C_e} -2f(e')\delta + \delta^2$$

$$= -(2\delta \sum_{e' \in C_e} f(e')) + R_E \delta^2$$
Note:
$$\sum_{e' \in C_e} f(e') = R_e \delta$$

$$\rightarrow -\Delta_{C_e}^2 / R_e \text{ where } \Delta_{C_e} = \sum_{e' \in C_e} f(e').$$
Fix a part of the potential difference, Δ_{C_e} around cyle!!

Given
$$T, e = (u, v)$$
, let $R_e = I_T(u, v) + 1$.
Algorithm:

Repeatedly "Fix" edge
$$e = (u, v)$$
.
Route $-\delta = -\frac{\sum_{e' \in C_e} f(e')}{R_e}$ flow around cycle induced in *T*: C_e
(assume e' are oriented around cycle.)

Difference in energy from f and f'.

$$\sum_{e' \in C_e} (f(e') - \delta)^2 - (f(e'))^2 = \sum_{e' \in C_e} -2f(e')\delta + \delta^2$$

$$= -(2\delta\sum_{e' \in C_e} f(e')) + R_E\delta^2$$
Note: $\sum_{e' \in C_e} f(e') = R_e\delta$

$$\rightarrow -\Delta_{C_e}^2 / R_e \text{ where } \Delta_{C_e} = \sum_{e' \in C_e} f(e').$$
Fix a part of the potential difference, Δ_{c_e} around cyle!!
 \rightarrow reduction of $\Delta_{C_e}^2 / R_e$ in energy!
Energy reduction.

Given
$$T, e = (u, v)$$
, let $R_e = I_T(u, v) + 1$.
Algorithm:

Repeatedly "Fix" edge
$$e = (u, v)$$
.
Route $-\delta = -\frac{\sum_{e' \in C_e} f(e')}{R_e}$ flow around cycle induced in *T*: C_e
(assume e' are oriented around cycle.)

Difference in energy from *f* and *f'*.

$$\sum_{e' \in C_e} (f(e') - \delta)^2 - (f(e'))^2 = \sum_{e' \in C_e} -2f(e')\delta + \delta^2$$

$$= -(2\delta \sum_{e' \in C_e} f(e')) + R_E \delta^2$$
Note:
$$\sum_{e' \in C_e} f(e') = R_e \delta$$

$$\rightarrow -\Delta_{C_e}^2 / R_e \text{ where } \Delta_{C_e} = \sum_{e' \in C_e} f(e').$$
Fix a part of the potential difference, Δ_{C_e} around cyle!!
 \rightarrow reduction of $\Delta_{C_e}^2 / R_e$ in energy!
Fix 1/ R_e of a cycle violation!

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Total Duality Gap?

Gap: $|f|^2 - (2\phi^T \chi - \phi^T L\phi)$.

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Gap:
$$|f|^2 - (2\phi^T \chi - \phi^T L\phi)$$
.
= $|f|^2 - 2\phi^T B^T f + \phi^T B^T B\phi$

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Gap:
$$|f|^2 - (2\phi^T \chi - \phi^T L\phi)$$
.
= $|f|^2 - 2\phi^T B^T f + \phi^T B^T B\phi$ where $B^T f = \chi$ and $L = B^T B$.

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Gap:
$$|f|^2 - (2\phi^T \chi - \phi^T L\phi)$$
.
= $|f|^2 - 2\phi^T B^T f + \phi^T B^T B\phi$ where $B^T f = \chi$ and $L = B^T B$.
= $(f - B\phi)^T (f - B\phi)$.

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Gap:
$$|f|^2 - (2\phi^T \chi - \phi^T L\phi)$$
.

$$= |f|^2 - 2\phi^T B^T f + \phi^T B^T B\phi \text{ where } B^T f = \chi \text{ and } L = B^T B.$$

$$= (f - B\phi)^T (f - B\phi).$$
Gap $= \sum_e (f(e) - \Delta_\phi(e))^2$

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Total Duality Gap?

Gap:
$$|f|^2 - (2\phi^T \chi - \phi^T L\phi)$$
.
= $|f|^2 - 2\phi^T B^T f + \phi^T B^T B\phi$ where $B^T f = \chi$ and $L = B^T B$.
= $(f - B\phi)^T (f - B\phi)$.

 $\operatorname{Gap} = \sum_{e} (f(e) - \Delta_{\phi}(e))^2$ Difference between ϕ flow and f.

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Total Duality Gap?

Gap:
$$|f|^2 - (2\phi^T \chi - \phi^T L\phi)$$
.
= $|f|^2 - 2\phi^T B^T f + \phi^T B^T B\phi$ where $B^T f = \chi$ and $L = B^T B$.
= $(f - B\phi)^T (f - B\phi)$.

 $\operatorname{Gap} = \sum_{e} (f(e) - \Delta_{\phi}(e))^2$ Difference between ϕ flow and f.

 $\Delta_{\phi}(u, v) = \sum_{e \in P_{u,v}} -f(e)$. assume f(e) is oriented around cycle.

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Total Duality Gap?

Gap:
$$|f|^2 - (2\phi^T \chi - \phi^T L\phi)$$
.
= $|f|^2 - 2\phi^T B^T f + \phi^T B^T B\phi$ where $B^T f = \chi$ and $L = B^T B$.
= $(f - B\phi)^T (f - B\phi)$.

$$\begin{split} & \operatorname{Gap} = \sum_{e} (f(e) - \Delta_{\phi}(e))^2 \text{ Difference between } \phi \text{ flow and } f. \\ & \Delta_{\phi}(u, v) = \sum_{e \in P_{u,v}} -f(e). \text{ assume } f(e) \text{ is oriented around cycle.} \\ & \operatorname{For } e \in T, \ \Delta_{\phi}(e) = 0. \end{split}$$

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Total Duality Gap?

Gap:
$$|f|^2 - (2\phi^T \chi - \phi^T L\phi)$$
.
= $|f|^2 - 2\phi^T B^T f + \phi^T B^T B\phi$ where $B^T f = \chi$ and $L = B^T B$.
= $(f - B\phi)^T (f - B\phi)$.

$$\begin{split} & \operatorname{Gap} = \sum_{e} (f(e) - \Delta_{\phi}(e))^2 \text{ Difference between } \phi \text{ flow and } f. \\ & \Delta_{\phi}(u, v) = \sum_{e \in P_{u,v}} -f(e). \text{ assume } f(e) \text{ is oriented around cycle.} \\ & \operatorname{For } e \in T, \, \Delta_{\phi}(e) = 0. \text{ For } e \notin T \ f(e) + \sum_{e \in P_e} f(e) = \Delta_{c_e}(f) \end{split}$$

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Total Duality Gap?

Gap:
$$|f|^2 - (2\phi^T \chi - \phi^T L\phi)$$
.
= $|f|^2 - 2\phi^T B^T f + \phi^T B^T B\phi$ where $B^T f = \chi$ and $L = B^T B$.
= $(f - B\phi)^T (f - B\phi)$.

 $\begin{aligned} & \operatorname{Gap} = \sum_{e} (f(e) - \Delta_{\phi}(e))^{2} \text{ Difference between } \phi \text{ flow and } f. \\ & \Delta_{\phi}(u, v) = \sum_{e \in P_{u,v}} -f(e). \text{ assume } f(e) \text{ is oriented around cycle.} \\ & \operatorname{For} e \in T, \Delta_{\phi}(e) = 0. \text{ For } e \notin T \ f(e) + \sum_{e \in P_{e}} f(e) = \Delta_{c_{e}}(f) \\ & \operatorname{Duality} \operatorname{Gap:} \sum_{e \notin T} \sum_{e} \Delta_{c_{e}}(f)^{2} \end{aligned}$

Algorithm maintains feasible ϕ , f, ($B^T f = \chi$)

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Total Duality Gap?

Gap:
$$|f|^2 - (2\phi^T \chi - \phi^T L\phi)$$
.
= $|f|^2 - 2\phi^T B^T f + \phi^T B^T B\phi$ where $B^T f = \chi$ and $L = B^T B$.
= $(f - B\phi)^T (f - B\phi)$.

 $\begin{aligned} & \operatorname{Gap} = \sum_{e} (f(e) - \Delta_{\phi}(e))^{2} \text{ Difference between } \phi \text{ flow and } f. \\ & \Delta_{\phi}(u, v) = \sum_{e \in P_{u,v}} -f(e). \text{ assume } f(e) \text{ is oriented around cycle.} \\ & \operatorname{For} e \in T, \Delta_{\phi}(e) = 0. \text{ For } e \notin T \ f(e) + \sum_{e \in P_{e}} f(e) = \Delta_{c_{e}}(f) \\ & \operatorname{Duality} \operatorname{Gap:} \sum_{e \notin T} \sum_{e} \Delta_{c_{e}}(f)^{2} \end{aligned}$

Total distance from optimal is cycle violations!

Claim: $E[\text{change in energy}|Gap] = \frac{Gap}{\tau}$

Claim: *E*[change in energy|*Gap*] = $\frac{Gap}{\tau}$ (τ is stretch of *E* in *T*.)

Choose edge *e* reduce energy by $-\frac{\Delta_{Ce}^2}{R_e}$.

Choose edge *e* reduce energy by $-\frac{\Delta_{Ce}^2}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Choose edge *e* reduce energy by $-\frac{\Delta_{Ce}^2}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}$

Choose edge *e* reduce energy by $-\frac{\Delta_{Ce}^2}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{ce}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{ce}^{2}}{\tau}$

Choose edge *e* reduce energy by $-\frac{\Delta_{Ce}^2}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_e}{\tau} \frac{\Delta_{c_e}^2}{R_e} = -\sum_{e} \frac{\Delta_{c_e}^2}{\tau}$

Choose edge *e* reduce energy by $-\frac{\Delta_{Ce}^2}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction
$$-\sum_{e} rac{R_e}{\tau} rac{\Delta_{c_e}^2}{R_e} = -\sum_{e} rac{\Delta_{c_e}^2}{\tau}$$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

Choose edge *e* reduce energy by $-\frac{\Delta_{C_e}^2}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

Choose edge *e* reduce energy by $-\frac{\Delta_{Ce}^2}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

 $\tau = O(m \log n \log \log n) \dots$

Choose edge *e* reduce energy by $-\frac{\Delta_{Ce}^2}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{ce}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{ce}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

 $\tau = O(m\log n\log\log n) \dots$

 $\tilde{O}(m)$ iterations

Choose edge *e* reduce energy by $-\frac{\Delta_{Ce}^2}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $ightarrow ilde{O}(\textit{m})$ time

Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $ightarrow ilde{O}(m)$ time!

Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $\rightarrow \tilde{O}(m)$ time! !

Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $\rightarrow \tilde{O}(m)$ time!!!

Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $\rightarrow \tilde{O}(m)$ time!!!!

Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $\rightarrow \tilde{O}(m)$ time!!!!!

Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $\rightarrow \tilde{O}(m)$ time! !!!!!
Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $\rightarrow \tilde{O}(m)$ time!!!!!!

Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $\rightarrow \tilde{O}(m)$ time!!!!!!!

Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $\rightarrow \tilde{O}(m)$ time!!!!!!!!

Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $\rightarrow \tilde{O}(m)$ time!!!!!!!!!

Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $\rightarrow \tilde{O}(m)$ time!!!!!!!!!!!

Choose edge *e* reduce energy by $-\frac{\Delta^2_{Ce}}{R_e}$.

Choose edge with probability $\frac{R_e}{\tau}$.

Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Duality Gap reduces by $(1 - 1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1 + \varepsilon)$ approximation.

$$\tau = O(m \log n \log \log n) \dots$$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $\rightarrow \tilde{O}(m)$ time!!!!!!!!!!!!!!!!

How to get low stretch tree?

How to get low stretch tree? Answer: Elkin-Spielman-Teng, ...,

How to get low stretch tree? Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.

How to get low stretch tree? Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.

Open: Get O(mlog n) stretch?

How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ..., Abraham, Newman.

Open: Get O(mlog n) stretch?

How to do update along cycle?

How to get low stretch tree? Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get *O*(*m*log *n*) stretch?

How to do update along cycle? Answer: Data Structures.

How to get low stretch tree? Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get *O*(*m*log *n*) stretch?

How to do update along cycle? Answer: Data Structures. Idea: Use a binary tree on paths.

How to get low stretch tree? Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get *O*(*m*log *n*) stretch?

How to do update along cycle? Answer: Data Structures. Idea: Use a binary tree on paths. Decompose tree into paths.

How to get low stretch tree? Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get *O*(*m*log *n*) stretch?

How to do update along cycle? Answer: Data Structures. Idea: Use a binary tree on paths. Decompose tree into paths.

Geometric View.

How to get low stretch tree? Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get *O*(*m*log *n*) stretch?

How to do update along cycle? Answer: Data Structures. Idea: Use a binary tree on paths. Decompose tree into paths.

Geometric View.

Cycles are constraints.

How to get low stretch tree? Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get *O*(*m*log *n*) stretch?

How to do update along cycle? Answer: Data Structures. Idea: Use a binary tree on paths. Decompose tree into paths.

Geometric View.

Cycles are constraints.

Flow around cycle = 0.

How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ..., Abraham, Newman.

Open: Get O(mlog n) stretch?

How to do update along cycle? Answer: Data Structures. Idea: Use a binary tree on paths. Decompose tree into paths.

Geometric View.

Cycles are constraints.

Flow around cycle = 0.

Each cycle update is projection into subspace defined by constraint.

How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ..., Abraham, Newman.

Open: Get O(mlog n) stretch?

How to do update along cycle? Answer: Data Structures. Idea: Use a binary tree on paths. Decompose tree into paths.

Geometric View.

Cycles are constraints.

Flow around cycle = 0.

Each cycle update is projection into subspace defined by constraint.

How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ..., Abraham, Newman.

Open: Get O(mlog n) stretch?

How to do update along cycle? Answer: Data Structures. Idea: Use a binary tree on paths. Decompose tree into paths.

Geometric View.

Cycles are constraints.

Flow around cycle = 0.

Each cycle update is projection into subspace defined by constraint.

Better Algorithm:

How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ..., Abraham, Newman.

Open: Get O(mlog n) stretch?

How to do update along cycle? Answer: Data Structures. Idea: Use a binary tree on paths. Decompose tree into paths.

Geometric View.

Cycles are constraints.

Flow around cycle = 0.

Each cycle update is projection into subspace defined by constraint.

Better Algorithm:

Recursive algorithm give $O(m\sqrt{\log n})$ iterations to halve error.

How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ..., Abraham, Newman.

Open: Get O(mlog n) stretch?

How to do update along cycle? Answer: Data Structures. Idea: Use a binary tree on paths. Decompose tree into paths.

Geometric View.

Cycles are constraints.

Flow around cycle = 0.

Each cycle update is projection into subspace defined by constraint.

Better Algorithm:

Recursive algorithm give $O(m\sqrt{\log n})$ iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky factorization.

How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ..., Abraham, Newman.

Open: Get O(mlog n) stretch?

How to do update along cycle? Answer: Data Structures. Idea: Use a binary tree on paths. Decompose tree into paths.

Geometric View.

Cycles are constraints.

Flow around cycle = 0.

Each cycle update is projection into subspace defined by constraint.

Better Algorithm:

Recursive algorithm give $O(m\sqrt{\log n})$ iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky factorization.

Laplacian Systems are quite general: Climate, physics, SDD-matrices.

See you ...

Tuesday.