
Today

Lagrange Multipliers.

Fast Solution of Laplacian Systems.

Today

Lagrange Multipliers.

Fast Solution of Laplacian Systems.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian:

L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian Dual.
Find x , subject to

fi (x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑
m
i=1 λi fi (x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ) < 0.

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v
Maximizing λ , only positive λi when fi (x) = 0

which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v
Maximizing λ , only positive λi when fi (x) = 0

which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v
Maximizing λ , only positive λi when fi (x) = 0

which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v

f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v
Maximizing λ , only positive λi when fi (x) = 0

which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0

For all λ ≥ 0 have L(x ,λ)≤ v
Maximizing λ , only positive λi when fi (x) = 0

which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v

Maximizing λ , only positive λi when fi (x) = 0
which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v

Maximizing λ , only positive λi when fi (x) = 0

which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v

Maximizing λ , only positive λi when fi (x) = 0
which implies L(x ,λ)≥ f (x)

= v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v

Maximizing λ , only positive λi when fi (x) = 0
which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v

Maximizing λ , only positive λi when fi (x) = 0
which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v

Maximizing λ , only positive λi when fi (x) = 0
which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x

Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v

Maximizing λ , only positive λi when fi (x) = 0
which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v

Maximizing λ , only positive λi when fi (x) = 0
which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Lagrangian:constrained optimization.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

If (primal) x has value v f (x) = v and all fi (x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v

Maximizing λ , only positive λi when fi (x) = 0
which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗) + ∑i λi∇fi (x∗) = 0

Feasible primal, fi (x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi (x∗) = 0.

Launched nonlinear programming! See paper.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗) + ∑i λi∇fi (x∗) = 0

Feasible primal, fi (x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi (x∗) = 0.

Launched nonlinear programming! See paper.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗) + ∑i λi∇fi (x∗) = 0

Feasible primal, fi (x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi (x∗) = 0.

Launched nonlinear programming! See paper.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗) + ∑i λi∇fi (x∗) = 0

Feasible primal, fi (x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi (x∗) = 0.

Launched nonlinear programming! See paper.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗) + ∑i λi∇fi (x∗) = 0

Feasible primal, fi (x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi (x∗) = 0.

Launched nonlinear programming! See paper.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗) + ∑i λi∇fi (x∗) = 0

Feasible primal, fi (x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi (x∗) = 0.

Launched nonlinear programming! See paper.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗) + ∑i λi∇fi (x∗) = 0

Feasible primal, fi (x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi (x∗) = 0.

Launched nonlinear programming! See paper.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗) + ∑i λi∇fi (x∗) = 0

Feasible primal, fi (x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi (x∗) = 0.

Launched nonlinear programming! See paper.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗) + ∑i λi∇fi (x∗) = 0

Feasible primal, fi (x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi (x∗) = 0.

Launched nonlinear programming!

See paper.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗) + ∑i λi∇fi (x∗) = 0

Feasible primal, fi (x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi (x∗) = 0.

Launched nonlinear programming! See paper.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)

subject to fi (x)≤ 0, i = 1, ...,m

L(x ,λ) = f (x) + ∑
m
i=1 λi fi (x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗) + ∑i λi∇fi (x∗) = 0

Feasible primal, fi (x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi (x∗) = 0.

Launched nonlinear programming! See paper.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?

maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?

maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ

where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,

λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,

λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0

Duals!
Note: Lagrange multipliers for equality constraints.

Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Note: Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!
Note:

Lagrange multipliers for equality constraints.
Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!
Note: Lagrange multipliers for equality constraints.

Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!
Note: Lagrange multipliers for equality constraints.

Usually: ν , and un-restricted.

In this case, x for lagrangian of Dual.

Linear Program.
mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx + ∑i λi (bi −aix).

or

L(λ ,x) =−(∑j xj (ajλ −cj)) + bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!
Note: Lagrange multipliers for equality constraints.

Usually: ν , and un-restricted.
In this case, x for lagrangian of Dual.

Linear Systems...

Linear Systems...

Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)
O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: Õ(m) for Laplacian matrices.
Laplacian: dI−A where A is adjacency matrix of a graph.
→ symmetric diagonally dominant matrices by reduction.

Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)
O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: Õ(m) for Laplacian matrices.
Laplacian: dI−A where A is adjacency matrix of a graph.
→ symmetric diagonally dominant matrices by reduction.

Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)

O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: Õ(m) for Laplacian matrices.
Laplacian: dI−A where A is adjacency matrix of a graph.
→ symmetric diagonally dominant matrices by reduction.

Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)

O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: Õ(m) for Laplacian matrices.
Laplacian: dI−A where A is adjacency matrix of a graph.
→ symmetric diagonally dominant matrices by reduction.

Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)
O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: Õ(m) for Laplacian matrices.
Laplacian: dI−A where A is adjacency matrix of a graph.
→ symmetric diagonally dominant matrices by reduction.

Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)
O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.

For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: Õ(m) for Laplacian matrices.
Laplacian: dI−A where A is adjacency matrix of a graph.
→ symmetric diagonally dominant matrices by reduction.

Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)
O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.
For today: where m is sum of nonzeros in matrix.

For positive semidefinite matrix.

Today: Õ(m) for Laplacian matrices.
Laplacian: dI−A where A is adjacency matrix of a graph.
→ symmetric diagonally dominant matrices by reduction.

Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)
O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: Õ(m) for Laplacian matrices.
Laplacian: dI−A where A is adjacency matrix of a graph.
→ symmetric diagonally dominant matrices by reduction.

Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)
O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: Õ(m) for Laplacian matrices.

Laplacian: dI−A where A is adjacency matrix of a graph.
→ symmetric diagonally dominant matrices by reduction.

Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)
O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: Õ(m) for Laplacian matrices.
Laplacian: dI−A where A is adjacency matrix of a graph.

→ symmetric diagonally dominant matrices by reduction.

Linear Systems

Ax = b

Find x .

Gaussian elimination: O(n3)
O(n2.36...) with fast matrix multiplication.

Iterative Methods: O(nm log 1
ε

) to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: Õ(m) for Laplacian matrices.
Laplacian: dI−A where A is adjacency matrix of a graph.
→ symmetric diagonally dominant matrices by reduction.

Electrical Flow: a detour.

A graph G = (V ,E).

Circuit: nodes V , resistors E , value 1 (for today.)

Given χ : V →ℜ

Find flow that routes χ and minimizes
∑e f (e)2.

+1 -1

Claim: Minimizer is electrical flow.

Flow corresponds to flow induced by a set of potentials.

Electrical Flow: a detour.

A graph G = (V ,E).
Circuit: nodes V , resistors E , value 1 (for today.)

Given χ : V →ℜ

Find flow that routes χ and minimizes
∑e f (e)2.

+1 -1

Claim: Minimizer is electrical flow.

Flow corresponds to flow induced by a set of potentials.

Electrical Flow: a detour.

A graph G = (V ,E).
Circuit: nodes V , resistors E , value 1 (for today.)

Given χ : V →ℜ

Find flow that routes χ and minimizes
∑e f (e)2.

+1 -1

Claim: Minimizer is electrical flow.

Flow corresponds to flow induced by a set of potentials.

Electrical Flow: a detour.

A graph G = (V ,E).
Circuit: nodes V , resistors E , value 1 (for today.)

Given χ : V →ℜ

Find flow that routes χ and minimizes
∑e f (e)2.

+1 -1

Claim: Minimizer is electrical flow.

Flow corresponds to flow induced by a set of potentials.

Electrical Flow: a detour.

A graph G = (V ,E).
Circuit: nodes V , resistors E , value 1 (for today.)

Given χ : V →ℜ

Find flow that routes χ and minimizes
∑e f (e)2.

+1 -1

Claim: Minimizer is electrical flow.

Flow corresponds to flow induced by a set of potentials.

Electrical Flow: a detour.

A graph G = (V ,E).
Circuit: nodes V , resistors E , value 1 (for today.)

Given χ : V →ℜ

Find flow that routes χ and minimizes
∑e f (e)2.

+1 -1

Claim: Minimizer is electrical flow.

Flow corresponds to flow induced by a set of potentials.

Some Matrices.

Given G = (V ,E), arbitrarily orient edges.

Bv ,e =

−1 e = (u,v)

1 e = (v ,u)

0 otherwise
Lu,v =

d u = v
−1 (u,v) ∈ E
0 otherwise

a

b

c

d

B
a b c d

(a,b) 1 -1 0 0
(a,c) 1 0 -1 0
(c,d) 0 0 1 -1
(d,b) 0 -1 0 1
(b,c) 0 1 -1 1

L
a b c d

a 2 -1 -1 0
b -1 2 0 -1
c -1 -1 3 -1
d -1 -1 -1 3

Fun facts: f ∈ℜ|E |

[BT f]u = ∑e=(u,v) fe−∑e=(v ,u) fe
BT B = L
[Bx]e=(u,v) = xu−xv

xT Lx = ∑e=(u,v)(xu−xv)2

Some Matrices.

Given G = (V ,E), arbitrarily orient edges.

Bv ,e =

−1 e = (u,v)

1 e = (v ,u)

0 otherwise
Lu,v =

d u = v
−1 (u,v) ∈ E
0 otherwise

a

b

c

d

B
a b c d

(a,b) 1 -1 0 0
(a,c) 1 0 -1 0
(c,d) 0 0 1 -1
(d,b) 0 -1 0 1
(b,c) 0 1 -1 1

L
a b c d

a 2 -1 -1 0
b -1 2 0 -1
c -1 -1 3 -1
d -1 -1 -1 3

Fun facts: f ∈ℜ|E |

[BT f]u = ∑e=(u,v) fe−∑e=(v ,u) fe
BT B = L
[Bx]e=(u,v) = xu−xv

xT Lx = ∑e=(u,v)(xu−xv)2

Some Matrices.

Given G = (V ,E), arbitrarily orient edges.

Bv ,e =

−1 e = (u,v)

1 e = (v ,u)

0 otherwise
Lu,v =

d u = v
−1 (u,v) ∈ E
0 otherwise

a

b

c

d

B
a b c d

(a,b) 1 -1 0 0
(a,c) 1 0 -1 0
(c,d) 0 0 1 -1
(d,b) 0 -1 0 1
(b,c) 0 1 -1 1

L
a b c d

a 2 -1 -1 0
b -1 2 0 -1
c -1 -1 3 -1
d -1 -1 -1 3

Fun facts: f ∈ℜ|E |

[BT f]u = ∑e=(u,v) fe−∑e=(v ,u) fe
BT B = L
[Bx]e=(u,v) = xu−xv

xT Lx = ∑e=(u,v)(xu−xv)2

Some Matrices.

Given G = (V ,E), arbitrarily orient edges.

Bv ,e =

−1 e = (u,v)

1 e = (v ,u)

0 otherwise
Lu,v =

d u = v
−1 (u,v) ∈ E
0 otherwise

a

b

c

d

B
a b c d

(a,b) 1 -1 0 0
(a,c) 1 0 -1 0
(c,d) 0 0 1 -1
(d,b) 0 -1 0 1
(b,c) 0 1 -1 1

L
a b c d

a 2 -1 -1 0
b -1 2 0 -1
c -1 -1 3 -1
d -1 -1 -1 3

Fun facts: f ∈ℜ|E |

[BT f]u = ∑e=(u,v) fe−∑e=(v ,u) fe

BT B = L
[Bx]e=(u,v) = xu−xv

xT Lx = ∑e=(u,v)(xu−xv)2

Some Matrices.

Given G = (V ,E), arbitrarily orient edges.

Bv ,e =

−1 e = (u,v)

1 e = (v ,u)

0 otherwise
Lu,v =

d u = v
−1 (u,v) ∈ E
0 otherwise

a

b

c

d

B
a b c d

(a,b) 1 -1 0 0
(a,c) 1 0 -1 0
(c,d) 0 0 1 -1
(d,b) 0 -1 0 1
(b,c) 0 1 -1 1

L
a b c d

a 2 -1 -1 0
b -1 2 0 -1
c -1 -1 3 -1
d -1 -1 -1 3

Fun facts: f ∈ℜ|E |

[BT f]u = ∑e=(u,v) fe−∑e=(v ,u) fe
BT B = L

[Bx]e=(u,v) = xu−xv

xT Lx = ∑e=(u,v)(xu−xv)2

Some Matrices.

Given G = (V ,E), arbitrarily orient edges.

Bv ,e =

−1 e = (u,v)

1 e = (v ,u)

0 otherwise
Lu,v =

d u = v
−1 (u,v) ∈ E
0 otherwise

a

b

c

d

B
a b c d

(a,b) 1 -1 0 0
(a,c) 1 0 -1 0
(c,d) 0 0 1 -1
(d,b) 0 -1 0 1
(b,c) 0 1 -1 1

L
a b c d

a 2 -1 -1 0
b -1 2 0 -1
c -1 -1 3 -1
d -1 -1 -1 3

Fun facts: f ∈ℜ|E |

[BT f]u = ∑e=(u,v) fe−∑e=(v ,u) fe
BT B = L
[Bx]e=(u,v) = xu−xv

xT Lx = ∑e=(u,v)(xu−xv)2

Some Matrices.

Given G = (V ,E), arbitrarily orient edges.

Bv ,e =

−1 e = (u,v)

1 e = (v ,u)

0 otherwise
Lu,v =

d u = v
−1 (u,v) ∈ E
0 otherwise

a

b

c

d

B
a b c d

(a,b) 1 -1 0 0
(a,c) 1 0 -1 0
(c,d) 0 0 1 -1
(d,b) 0 -1 0 1
(b,c) 0 1 -1 1

L
a b c d

a 2 -1 -1 0
b -1 2 0 -1
c -1 -1 3 -1
d -1 -1 -1 3

Fun facts: f ∈ℜ|E |

[BT f]u = ∑e=(u,v) fe−∑e=(v ,u) fe
BT B = L
[Bx]e=(u,v) = xu−xv

xT Lx = ∑e=(u,v)(xu−xv)2

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2

subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian:

L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual:

Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes

minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)?

Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0

(Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv)

Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ

Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem:

Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...

maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.

Minimize Squared Potential differences!

Duality..

Given G,χ, χ ⊥ 1

Minimize |f |2 subject to BT f = χ.

Lagrangian: L(φ , f) = ∑e f (e)2 + 2φT (χ−BT f)

Lagrangian Dual: Find φ that maximizes minf L(φ , f).

Given φ , minimize L(φ , f)? Calculus.

For e = (u,v)
2f (e) + 2(φv −φu) = 0 (Minimum when partial derivatives = 0.)

→ f (e) = (φu−φv) Potential differences!!!

Matrix Form: f = Bφ Again, flows should be potential differences.

Dual problem: Find φ that maximizes ...
maxφ 2φT χ−φT Lφ

Note: want φT Lφ = ∑e(φu−φv)2 to be small.
Minimize Squared Potential differences!

Why did we take dual?

Dual problem:

Find φ that maximizes ...
maxφ 2φ χ−φLφ

Take the derivative:
Lφ −χ

Lφ = χ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible φ , f ,

Primal value: |f |2.
Dual value: 2φ χ−φT Lφ

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.

Why did we take dual?

Dual problem:
Find φ that maximizes ...

maxφ 2φ χ−φLφ

Take the derivative:
Lφ −χ

Lφ = χ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible φ , f ,

Primal value: |f |2.
Dual value: 2φ χ−φT Lφ

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.

Why did we take dual?

Dual problem:
Find φ that maximizes ...

maxφ 2φ χ−φLφ

Take the derivative:

Lφ −χ

Lφ = χ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible φ , f ,

Primal value: |f |2.
Dual value: 2φ χ−φT Lφ

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.

Why did we take dual?

Dual problem:
Find φ that maximizes ...

maxφ 2φ χ−φLφ

Take the derivative:
Lφ −χ

Lφ = χ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible φ , f ,

Primal value: |f |2.
Dual value: 2φ χ−φT Lφ

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.

Why did we take dual?

Dual problem:
Find φ that maximizes ...

maxφ 2φ χ−φLφ

Take the derivative:
Lφ −χ

Lφ = χ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible φ , f ,

Primal value: |f |2.
Dual value: 2φ χ−φT Lφ

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.

Why did we take dual?

Dual problem:
Find φ that maximizes ...

maxφ 2φ χ−φLφ

Take the derivative:
Lφ −χ

Lφ = χ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible φ , f ,

Primal value: |f |2.
Dual value: 2φ χ−φT Lφ

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.

Why did we take dual?

Dual problem:
Find φ that maximizes ...

maxφ 2φ χ−φLφ

Take the derivative:
Lφ −χ

Lφ = χ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible φ , f ,

Primal value: |f |2.
Dual value: 2φ χ−φT Lφ

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.

Why did we take dual?

Dual problem:
Find φ that maximizes ...

maxφ 2φ χ−φLφ

Take the derivative:
Lφ −χ

Lφ = χ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible φ , f ,

Primal value: |f |2.
Dual value: 2φ χ−φT Lφ

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.

Why did we take dual?

Dual problem:
Find φ that maximizes ...

maxφ 2φ χ−φLφ

Take the derivative:
Lφ −χ

Lφ = χ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible φ , f ,

Primal value: |f |2.
Dual value: 2φ χ−φT Lφ

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.

Why did we take dual?

Dual problem:
Find φ that maximizes ...

maxφ 2φ χ−φLφ

Take the derivative:
Lφ −χ

Lφ = χ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible φ , f ,

Primal value: |f |2.
Dual value: 2φ χ−φT Lφ

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.

Why did we take dual?

Dual problem:
Find φ that maximizes ...

maxφ 2φ χ−φLφ

Take the derivative:
Lφ −χ

Lφ = χ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible φ , f ,

Primal value: |f |2.
Dual value: 2φ χ−φT Lφ

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G.

(Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T

Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree

; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:

Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v)

(Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)

Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!
Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?

Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

))

! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) !

! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! !

! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! !

! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! !

! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! !

! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! !

! ! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! !

! ! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! !

! !
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! !

!
! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
!

! ! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! !

! ! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! !

! ! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! !

! ! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! !

! ! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! !

! ! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! !

! ! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! !

! ! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !

! !

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! !

!

Alg.

Given: χ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f , to satisfy χ through T
Compute, φ , using tree ; φs = 0, add fe through T

Repeat:
Choose non-tree edge e = (u,v) (Which non-tree edge?)
f (e) = (φu−φv)/(lT (u,v) + 1)

(lT (u,v) path length in T)
Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch O(m logn log logn)!

Stretch: ∑e=(u,v) lT (u,v)

Which non-tree edge?
Choose an edge w/prob. proportional to lT (e).

Finds (1 + ε) approximation in O(m logn log logn log(n
ε

)) ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! !

a b c d

e f

g

+1

-1

1

1

−1 −1
0 -1 -2 -2

1 1

2
1

1

∆c = 4,Re = 6

0 −1
3 −2

3 0

1
3

1
3

2
31

3

1
3

−1
3 −1

3
2
3

4
6

a b c d

e f

g

+1

-1

1

1

−1 −1

0 -1 -2 -2

1 1

2
1

1

∆c = 4,Re = 6

0 −1
3 −2

3 0

1
3

1
3

2
31

3

1
3

−1
3 −1

3
2
3

4
6

a b c d

e f

g

+1

-1

1

1

−1 −1

0 -1 -2 -2

1 1

2
1

1

∆c = 4,Re = 6

0 −1
3 −2

3 0

1
3

1
3

2
31

3

1
3

−1
3 −1

3
2
3

4
6

a b c d

e f

g

+1

-1

1

1

−1 −1

0 -1 -2 -2

1 1

2
1

1

∆c = 4,Re = 6

0 −1
3 −2

3 0

1
3

1
3

2
31

3

1
3

−1
3 −1

3
2
3

4
6

a b c d

e f

g

+1

-1

1

1

−1 −1
0 -1 -2 -2

1 1

2
1

1

∆c = 4,Re = 6

0 −1
3 −2

3 0

1
3

1
3

2
31

3

1
3

−1
3 −1

3
2
3

4
6

a b c d

e f

g

+1

-1

1

1

−1 −1
0 -1 -2 -2

1 1

2
1

1

∆c = 4,Re = 6

0 −1
3 −2

3 0

1
3

1
3

2
31

3

1
3

−1
3 −1

3
2
3

4
6

a b c d

e f

g

+1

-1

1

1

−1 −1
0 -1 -2 -2

1 1

2
1

1

∆c = 4,Re = 6

0 −1
3 −2

3 0

1
3

1
3

2
31

3

1
3

−1
3 −1

3
2
3

4
6

a b c d

e f

g

+1

-1

1

1

−1 −1

0 -1 -2 -2

1 1

2

1

1

∆c = 4,Re = 6

0 −1
3 −2

3 0

1
3

1
3

2
3

1
3

1
3

−1
3 −1

3
2
3

4
6

a b c d

e f

g

+1

-1

1

1

−1 −1
0 -1 -2 -2

1 1

2
1

1

∆c = 4,Re = 6

0 −1
3 −2

3 0

1
3

1
3

2
31

3

1
3

−1
3 −1

3
2
3

4
6

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.

∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2

= ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Energy reduction.

Given T ,e = (u,v), let Re = lT (u,v) + 1.

Algorithm:

Repeatedly “Fix” edge e = (u,v).

Route −δ =−∑e′∈Ce f (e′)
Re

flow around cycle induced in T : Ce

(assume e′ are oriented around cycle.)

Difference in energy from f and f ′.
∑e′∈Ce (f (e′)−δ)2− (f (e′))2 = ∑e′∈Ce−2f (e′)δ + δ 2

=−(2δ ∑e′∈Ce f (e′)) + RE δ 2

Note: ∑e′∈Ce f (e′) = Reδ

→ −∆2
Ce
/Re where ∆Ce = ∑e′∈Ce f(e′).

Fix a part of the potential difference, ∆ce around cyle!!

→ reduction of ∆2
Ce
/Re in energy!

Fix 1/Re of a cycle violation!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ

where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.

= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2

Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0.

For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Duality Gap?

Algorithm maintains feasible φ , f , (BT f = χ)

Primal value: |f |2.
Dual value: 2φ χ−φLφ

φ is tree induced voltages.

Total Duality Gap?

Gap: |f |2− (2φT χ−φT Lφ).

= |f |2−2φT BT f + φT BT Bφ where BT f = χ and L = BT B.
= (f −Bφ)T (f −Bφ).

Gap = ∑e(f (e)−∆φ (e))2 Difference between φ flow and f .

∆φ (u,v) = ∑e∈Pu,v −f (e). assume f (e) is oriented around cycle.

For e ∈ T , ∆φ (e) = 0. For e 6∈ T f (e) + ∑e∈Pe f (e) = ∆ce (f)

Duality Gap: ∑e 6∈T ∑e ∆ce (f)2

Total distance from optimal is cycle violations!

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re

=−∑e
∆2

ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time

! ! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time!

! ! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! !

! ! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! !

! ! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! !

! ! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! !

! ! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! !

! ! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! !

! ! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! !

! ! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! !

! ! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! !

! !

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! !

!

Claim: E [change in energy|Gap] = Gap
τ

(τ is stretch of E in T .)

Duality Gap: ∑e 6∈T ∆Ce (f)2

Choose edge e reduce energy by −
∆2

Ce
Re

.

Choose edge with probability Re
τ

.

Expected reduction −∑e
Re
τ

∆2
ce

Re
=−∑e

∆2
ce
τ

Duality Gap reduces by (1−1/τ) every iteration on expectation.

O(τ log(n/ε)) iterations gives (1 + ε) approximation.

τ = O(m logn log logn) ...

Õ(m) iterations

Iteration in O(log2 n) time using balanced binary trees.

→ Õ(m) time! ! ! ! ! ! ! ! ! ! ! !

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.

Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,

Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.

Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.

Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.

Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.

Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?

Answer: Data Structures.
Idea: Use a binary tree on paths.

Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.

Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.

Idea: Use a binary tree on paths.

Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.

Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.

Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.

Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.

Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.

Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.

Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.

Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.

Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.

Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.

Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:

Recursive algorithm give O(m
√

logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.

Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.

Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

Wrapup...
How to get low stretch tree?

Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(m logn) stretch?

How to do update along cycle?
Answer: Data Structures.

Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m

√
logn) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.

See you ...

Tuesday.

