Today

Lagrange Multipliers.

Today

Lagrange Multipliers.
Fast Solution of Laplacian Systems.

Lagrangian Dual.

Find x, subject to

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian:

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
$\lambda_{i} \geq 0$ - Lagrangian multiplier for inequality i.

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
$\lambda_{i} \geq 0$ - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
$\lambda_{i} \geq 0$ - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
$\lambda_{i} \geq 0$ - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
$\lambda_{i} \geq 0$ - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
$\lambda_{i} \geq 0$ - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.
(C) non-positive for any valid λ.

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
$\lambda_{i} \geq 0$ - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.
(C) non-positive for any valid λ.

If $\exists \lambda \geq 0$, where $L(x, \lambda)$ is positive for all x

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
$\lambda_{i} \geq 0$ - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.
(C) non-positive for any valid λ.

If $\exists \lambda \geq 0$, where $L(x, \lambda)$ is positive for all x

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
$\lambda_{i} \geq 0$ - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.
(C) non-positive for any valid λ.

If $\exists \lambda \geq 0$, where $L(x, \lambda)$ is positive for all x
(A) there is no feasible x.

Lagrangian Dual.

Find x, subject to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
$\lambda_{i} \geq 0$ - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.
(C) non-positive for any valid λ.

If $\exists \lambda \geq 0$, where $L(x, \lambda)$ is positive for all x
(A) there is no feasible x.
(B) there is no x, λ with $L(x, \lambda)<0$.

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:
$L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x has value v

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x has value $v f(x)=v$ and all $f_{i}(x) \leq 0$

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x has value $v f(x)=v$ and all $f_{i}(x) \leq 0$
For all $\lambda \geq 0$ have $L(x, \lambda) \leq v$

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x has value $v f(x)=v$ and all $f_{i}(x) \leq 0$
For all $\lambda \geq 0$ have $L(x, \lambda) \leq v$
Maximizing λ, only positive λ_{i} when $f_{i}(x)=0$

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x has value $v f(x)=v$ and all $f_{i}(x) \leq 0$
For all $\lambda \geq 0$ have $L(x, \lambda) \leq v$
Maximizing λ, only positive λ_{i} when $f_{i}(x)=0$ which implies $L(x, \lambda) \geq f(x)$

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x has value $v f(x)=v$ and all $f_{i}(x) \leq 0$
For all $\lambda \geq 0$ have $L(x, \lambda) \leq v$
Maximizing λ, only positive λ_{i} when $f_{i}(x)=0$ which implies $L(x, \lambda) \geq f(x)=v$

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x has value $v f(x)=v$ and all $f_{i}(x) \leq 0$
For all $\lambda \geq 0$ have $L(x, \lambda) \leq v$
Maximizing λ, only positive λ_{i} when $f_{i}(x)=0$ which implies $L(x, \lambda) \geq f(x)=v$

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x has value $v f(x)=v$ and all $f_{i}(x) \leq 0$
For all $\lambda \geq 0$ have $L(x, \lambda) \leq v$
Maximizing λ, only positive λ_{i} when $f_{i}(x)=0$ which implies $L(x, \lambda) \geq f(x)=v$
If there is λ with $L(x, \lambda) \geq \alpha$ for all x

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:
$L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
If (primal) x has value $v f(x)=v$ and all $f_{i}(x) \leq 0$
For all $\lambda \geq 0$ have $L(x, \lambda) \leq v$
Maximizing λ, only positive λ_{i} when $f_{i}(x)=0$ which implies $L(x, \lambda) \geq f(x)=v$
If there is λ with $L(x, \lambda) \geq \alpha$ for all x
Optimum value of program is at least α

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:
$L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
If (primal) x has value $v f(x)=v$ and all $f_{i}(x) \leq 0$
For all $\lambda \geq 0$ have $L(x, \lambda) \leq v$
Maximizing λ, only positive λ_{i} when $f_{i}(x)=0$ which implies $L(x, \lambda) \geq f(x)=v$
If there is λ with $L(x, \lambda) \geq \alpha$ for all x
Optimum value of program is at least α
Primal problem:
x, that minimizes $L(x, \lambda)$ over all $\lambda \geq 0$.

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x has value $v f(x)=v$ and all $f_{i}(x) \leq 0$
For all $\lambda \geq 0$ have $L(x, \lambda) \leq v$
Maximizing λ, only positive λ_{i} when $f_{i}(x)=0$ which implies $L(x, \lambda) \geq f(x)=v$
If there is λ with $L(x, \lambda) \geq \alpha$ for all x
Optimum value of program is at least α
Primal problem:
x, that minimizes $L(x, \lambda)$ over all $\lambda \geq 0$.
Dual problem:
λ, that maximizes $L(x, \lambda)$ over all x.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

$$
\begin{gathered}
\min \quad f(x) \\
\text { subject to } f_{i}(x) \leq 0, \\
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
\end{gathered}
$$

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

$$
\begin{array}{rrr}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{array}
$$

$L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
Local minima for feasible x^{*}.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

Local minima for feasible x^{*}.
There exist multipliers λ, where

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

$$
\begin{aligned}
& \quad \min \quad f(x) \\
& \qquad \text { subject to } f_{i}(x) \leq 0, \\
& \quad L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) \\
& \text { Local minima for feasible } x^{*} . \\
& \text { There exist multipliers } \lambda \text {, where } \\
& \quad \nabla f\left(x^{*}\right)+\sum_{i} \lambda_{i} \nabla f_{i}\left(x^{*}\right)=0
\end{aligned}
$$

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

Local minima for feasible x^{*}.
There exist multipliers λ, where

$$
\nabla f\left(x^{*}\right)+\sum_{i} \lambda_{i} \nabla f_{i}\left(x^{*}\right)=0
$$

Feasible primal, $f_{i}\left(x^{*}\right) \leq 0$, and feasible dual $\lambda_{i} \geq 0$.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

Local minima for feasible x^{*}.
There exist multipliers λ, where

$$
\nabla f\left(x^{*}\right)+\sum_{i} \lambda_{i} \nabla f_{i}\left(x^{*}\right)=0
$$

Feasible primal, $f_{i}\left(x^{*}\right) \leq 0$, and feasible dual $\lambda_{i} \geq 0$.
Complementary slackness: $\lambda_{i} f_{i}\left(x^{*}\right)=0$.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

$$
\begin{array}{cc}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{array}
$$

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

Local minima for feasible x^{*}.
There exist multipliers λ, where

$$
\nabla f\left(x^{*}\right)+\sum_{i} \lambda_{i} \nabla f_{i}\left(x^{*}\right)=0
$$

Feasible primal, $f_{i}\left(x^{*}\right) \leq 0$, and feasible dual $\lambda_{i} \geq 0$.
Complementary slackness: $\lambda_{i} f_{i}\left(x^{*}\right)=0$.
Launched nonlinear programming!

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

$$
\begin{array}{cc}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{array}
$$

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

Local minima for feasible x^{*}.
There exist multipliers λ, where

$$
\nabla f\left(x^{*}\right)+\sum_{i} \lambda_{i} \nabla f_{i}\left(x^{*}\right)=0
$$

Feasible primal, $f_{i}\left(x^{*}\right) \leq 0$, and feasible dual $\lambda_{i} \geq 0$.
Complementary slackness: $\lambda_{i} f_{i}\left(x^{*}\right)=0$.
Launched nonlinear programming! See paper.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

$$
\begin{array}{cc}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{array}
$$

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

Local minima for feasible x^{*}.
There exist multipliers λ, where

$$
\nabla f\left(x^{*}\right)+\sum_{i} \lambda_{i} \nabla f_{i}\left(x^{*}\right)=0
$$

Feasible primal, $f_{i}\left(x^{*}\right) \leq 0$, and feasible dual $\lambda_{i} \geq 0$.
Complementary slackness: $\lambda_{i} f_{i}\left(x^{*}\right)=0$.
Launched nonlinear programming! See paper.

Linear Program.

$\min c x, A x \geq b$

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):
$L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right)$.

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):
$L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right)$.
or

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?

Linear Program.

$\min c x, A x \geq b$

$$
\begin{aligned}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & \quad i=1, \ldots, m
\end{aligned}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.
$\max b \lambda$,

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.
$\max b \lambda, \lambda^{\top} A=c$,

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.
$\max b \lambda, \lambda^{\top} A=c, \lambda \geq 0$

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{r}
\min \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0,
\end{array} \quad i=1, \ldots, m
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right)
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.
$\max b \lambda, \lambda^{T} A=c, \lambda \geq 0$
Duals!

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.
$\max b \lambda, \lambda^{\top} A=c, \lambda \geq 0$
Duals!
Note:

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.
$\max b \lambda, \lambda^{\top} A=c, \lambda \geq 0$
Duals!
Note: Lagrange multipliers for equality constraints.

Linear Program.

$\min c x, A x \geq b$

$$
\begin{aligned}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.
$\max b \lambda, \lambda^{\top} A=c, \lambda \geq 0$
Duals!
Note: Lagrange multipliers for equality constraints.
Usually: v, and un-restricted.

Linear Program.

$\min c x, A x \geq b$

$$
\begin{aligned}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.
$\max b \lambda, \lambda^{T} A=c, \lambda \geq 0$
Duals!
Note: Lagrange multipliers for equality constraints.
Usually: v, and un-restricted.
In this case, x for lagrangian of Dual.

Linear Systems...

Linear Systems...

Linear Systems

$$
A x=b
$$

Linear Systems

$A x=b$
Find x.

Linear Systems

$A x=b$
Find x.
Gaussian elimination: $O\left(n^{3}\right)$

Linear Systems

$A x=b$
Find x.
Gaussian elimination: $O\left(n^{3}\right)$

Linear Systems

$A x=b$
Find x.
Gaussian elimination: $O\left(n^{3}\right)$
$O\left(n^{2.36 \ldots}\right)$ with fast matrix multiplication.

Linear Systems

$A x=b$
Find x.
Gaussian elimination: $O\left(n^{3}\right)$
$O\left(n^{2.36 \ldots}\right)$ with fast matrix multiplication.
Iterative Methods: $O\left(n m \log \frac{1}{\varepsilon}\right)$ to ε approximate.

Linear Systems

$A x=b$
Find x.
Gaussian elimination: $O\left(n^{3}\right)$
$O\left(n^{2.36 \ldots}\right)$ with fast matrix multiplication.
Iterative Methods: $O\left(n m \log \frac{1}{\varepsilon}\right)$ to ε approximate.
For today: where m is sum of nonzeros in matrix.

Linear Systems

$A x=b$
Find x.
Gaussian elimination: $O\left(n^{3}\right)$
$O\left(n^{2.36 \ldots}\right)$ with fast matrix multiplication.
Iterative Methods: $O\left(n m \log \frac{1}{\varepsilon}\right)$ to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Linear Systems

$A x=b$
Find x.
Gaussian elimination: $O\left(n^{3}\right)$
$O\left(n^{2.36 \ldots}\right)$ with fast matrix multiplication.
Iterative Methods: $O\left(n m \log \frac{1}{\varepsilon}\right)$ to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.
Today: $\tilde{O}(m)$ for Laplacian matrices.

Linear Systems

$A x=b$
Find x.
Gaussian elimination: $O\left(n^{3}\right)$
$O\left(n^{2.36 \ldots}\right)$ with fast matrix multiplication.
Iterative Methods: $O\left(n m \log \frac{1}{\varepsilon}\right)$ to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.
Today: $\tilde{O}(m)$ for Laplacian matrices.
Laplacian: $d l-A$ where A is adjacency matrix of a graph.

Linear Systems

$A x=b$
Find x.
Gaussian elimination: $O\left(n^{3}\right)$
$O\left(n^{2.36 \ldots}\right)$ with fast matrix multiplication.
Iterative Methods: $O\left(n m \log \frac{1}{\varepsilon}\right)$ to ε approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.
Today: $\tilde{O}(m)$ for Laplacian matrices.
Laplacian: $d l-A$ where A is adjacency matrix of a graph.
\rightarrow symmetric diagonally dominant matrices by reduction.

Electrical Flow: a detour.

A graph $G=(V, E)$.

Electrical Flow: a detour.

A graph $G=(V, E)$.
Circuit: nodes V, resistors E, value 1 (for today.)

Electrical Flow: a detour.

A graph $G=(V, E)$.
Circuit: nodes V, resistors E, value 1 (for today.)
Given $\chi: V \rightarrow \Re$
Find flow that routes χ and minimizes
$\sum_{e} f(e)^{2}$.

Electrical Flow: a detour.

A graph $G=(V, E)$.
Circuit: nodes V, resistors E, value 1 (for today.)
Given $\chi: V \rightarrow \Re$
Find flow that routes χ and minimizes
$\sum_{e} f(e)^{2}$.

Electrical Flow: a detour.

A graph $G=(V, E)$.
Circuit: nodes V, resistors E, value 1 (for today.)
Given $\chi: V \rightarrow \mathfrak{R}$
Find flow that routes χ and minimizes
$\sum_{e} f(e)^{2}$.

Claim: Minimizer is electrical flow.

Electrical Flow: a detour.

A graph $G=(V, E)$.
Circuit: nodes V, resistors E, value 1 (for today.)
Given $\chi: V \rightarrow \Re$
Find flow that routes χ and minimizes
$\sum_{e} f(e)^{2}$.
$+1$

-1

Claim: Minimizer is electrical flow.
Flow corresponds to flow induced by a set of potentials.

Some Matrices.

Given $G=(V, E)$, arbitrarily orient edges.

Some Matrices.

Given $G=(V, E)$, arbitrarily orient edges.

$$
B_{v, e}= \begin{cases}-1 & e=(u, v) \\ 1 & e=(v, u) \\ 0 & \text { otherwise }\end{cases}
$$

$$
L_{u, v}= \begin{cases}d & u=v \\ -1 & (u, v) \in E \\ 0 & \text { otherwise }\end{cases}
$$

L				
	a	b	c	d
a	2	-1	-1	0
b	-1	2	0	-1
c	-1	-1	3	-1
d	-1	-1	-1	3

Some Matrices.

Given $G=(V, E)$, arbitrarily orient edges.

$$
B_{v, e}= \begin{cases}-1 & e=(u, v) \\ 1 & e=(v, u) \\ 0 & \text { otherwise }\end{cases}
$$

$$
L_{u, v}= \begin{cases}d & u=v \\ -1 & (u, v) \in E \\ 0 & \text { otherwise }\end{cases}
$$

L				
	a	b	c	d
a	2	-1	-1	0
b	-1	2	0	-1
c	-1	-1	3	-1
d	-1	-1	-1	3

Fun facts: $\mathbf{f} \in \mathfrak{R}^{|E|}$

Some Matrices.

Given $G=(V, E)$, arbitrarily orient edges.

$$
B_{v, e}= \begin{cases}-1 & e=(u, v) \\ 1 & e=(v, u) \\ 0 & \text { otherwise }\end{cases}
$$

$$
L_{u, v}= \begin{cases}d & u=v \\ -1 & (u, v) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Fun facts: $\mathbf{f} \in \mathfrak{R}^{|E|}$
$\left[B^{T} f\right]_{u}=\sum_{e=(u, v)} f_{e}-\sum_{e=(v, u)} f_{e}$

Some Matrices.

Given $G=(V, E)$, arbitrarily orient edges.

$$
B_{v, e}= \begin{cases}-1 & e=(u, v) \\ 1 & e=(v, u) \\ 0 & \text { otherwise }\end{cases}
$$

$$
L_{u, v}= \begin{cases}d & u=v \\ -1 & (u, v) \in E \\ 0 & \text { otherwise }\end{cases}
$$

L				
	a	b	c	d
a	2	-1	-1	0
b	-1	2	0	-1
c	-1	-1	3	-1
d	-1	-1	-1	3

Fun facts: $\mathbf{f} \in \mathfrak{R}^{|E|}$

$$
\begin{aligned}
& {\left[B^{\top} f\right]_{u}=\sum_{e=(u, v)} f_{e}-\sum_{e=(v, u)} f_{e}} \\
& B^{T} B=L
\end{aligned}
$$

Some Matrices.

Given $G=(V, E)$, arbitrarily orient edges.
$B_{v, e}= \begin{cases}-1 & e=(u, v) \\ 1 & e=(v, u) \\ 0 & \text { otherwise }\end{cases}$

$L_{u, v}= \begin{cases}d & u=v \\ -1 & (u, v) \in E \\ 0 & \text { otherwise }\end{cases}$

Fun facts: $\mathbf{f} \in \mathfrak{R}^{|E|}$

$$
\begin{aligned}
& {\left[B^{\top} f\right]_{u}=\sum_{e=(u, v)} f_{e}-\sum_{e=(v, u)} f_{e}} \\
& B^{T} B=L \\
& {[B x]_{e=(u, v)}=x_{u}-x_{v}}
\end{aligned}
$$

Some Matrices.

Given $G=(V, E)$, arbitrarily orient edges.

$$
B_{v, e}= \begin{cases}-1 & e=(u, v) \\ 1 & e=(v, u) \\ 0 & \text { otherwise }\end{cases}
$$

$$
L_{u, v}= \begin{cases}d & u=v \\ -1 & (u, v) \in E \\ 0 & \text { otherwise }\end{cases}
$$

L				
	a	b	c	d
a	2	-1	-1	0
b	-1	2	0	-1
c	-1	-1	3	-1
d	-1	-1	-1	3

Fun facts: $\mathbf{f} \in \mathfrak{R}^{|E|}$

$$
\begin{aligned}
& {\left[B^{T} f\right]_{u}=\sum_{e=(u, v)} f_{e}-\sum_{e=(v, u)} f_{e}} \\
& B^{T} B=L \\
& {[B x]_{e=(u, v)}=x_{u}-x_{v}} \\
& x^{\top} L x=\sum_{e=(u, v)}\left(x_{u}-x_{v}\right)^{2}
\end{aligned}
$$

Duality..

Given $G, \chi, \chi \perp 1$

Duality..

Given $G, \chi, \chi \perp 1$

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian:

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual:

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$?

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$? Calculus.

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$? Calculus.
For $e=(u, v)$
$2 f(e)+2\left(\phi_{v}-\phi_{u}\right)=0$

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$? Calculus.
For $e=(u, v)$
$2 f(e)+2\left(\phi_{v}-\phi_{u}\right)=0$ (Minimum when partial derivatives $=0$.)

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$? Calculus.
For $e=(u, v)$
$2 f(e)+2\left(\phi_{v}-\phi_{u}\right)=0$ (Minimum when partial derivatives $=0$.)
$\rightarrow f(e)=\left(\phi_{u}-\phi_{v}\right)$

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$? Calculus.
For $e=(u, v)$
$2 f(e)+2\left(\phi_{v}-\phi_{u}\right)=0$ (Minimum when partial derivatives $=0$.)
$\rightarrow f(e)=\left(\phi_{u}-\phi_{v}\right) \quad$ Potential differences!!!

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$? Calculus.
For $e=(u, v)$
$2 f(e)+2\left(\phi_{v}-\phi_{u}\right)=0$ (Minimum when partial derivatives $=0$.)
$\rightarrow f(e)=\left(\phi_{u}-\phi_{v}\right) \quad$ Potential differences!!!
Matrix Form: $f=B \phi$

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$? Calculus.
For $e=(u, v)$
$2 f(e)+2\left(\phi_{v}-\phi_{u}\right)=0$ (Minimum when partial derivatives $=0$.)
$\rightarrow f(e)=\left(\phi_{u}-\phi_{v}\right) \quad$ Potential differences!!!
Matrix Form: $f=B \phi \quad$ Again, flows should be potential differences.

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$? Calculus.
For $e=(u, v)$
$2 f(e)+2\left(\phi_{v}-\phi_{u}\right)=0$ (Minimum when partial derivatives $=0$.)
$\rightarrow f(e)=\left(\phi_{u}-\phi_{v}\right) \quad$ Potential differences!!!
Matrix Form: $f=B \phi \quad$ Again, flows should be potential differences.
Dual problem:

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$? Calculus.
For $e=(u, v)$
$2 f(e)+2\left(\phi_{v}-\phi_{u}\right)=0$ (Minimum when partial derivatives $=0$.)
$\rightarrow f(e)=\left(\phi_{u}-\phi_{v}\right) \quad$ Potential differences!!!
Matrix Form: $f=B \phi \quad$ Again, flows should be potential differences.
Dual problem: Find ϕ that maximizes ...

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$? Calculus.
For $e=(u, v)$
$2 f(e)+2\left(\phi_{v}-\phi_{u}\right)=0$ (Minimum when partial derivatives $=0$.)
$\rightarrow f(e)=\left(\phi_{u}-\phi_{v}\right) \quad$ Potential differences!!!
Matrix Form: $f=B \phi \quad$ Again, flows should be potential differences.
Dual problem: Find ϕ that maximizes ...
$\max _{\phi} 2 \phi^{\top} \chi-\phi^{\top} L \phi$

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$? Calculus.
For $e=(u, v)$
$2 f(e)+2\left(\phi_{v}-\phi_{u}\right)=0$ (Minimum when partial derivatives $=0$.)
$\rightarrow f(e)=\left(\phi_{u}-\phi_{v}\right) \quad$ Potential differences!!!
Matrix Form: $f=B \phi \quad$ Again, flows should be potential differences.
Dual problem: Find ϕ that maximizes ...
$\max _{\phi} 2 \phi^{\top} \chi-\phi^{\top} L \phi$
Note: want $\phi^{\top} L \phi=\sum_{e}\left(\phi_{u}-\phi_{v}\right)^{2}$ to be small.

Duality..

Given $G, \chi, \chi \perp 1$
Minimize $|f|^{2}$ subject to $B^{T} f=\chi$.
Lagrangian: $L(\phi, f)=\sum_{e} f(e)^{2}+2 \phi^{T}\left(\chi-B^{T} f\right)$
Lagrangian Dual: Find ϕ that maximizes $\min _{f} L(\phi, f)$.
Given ϕ, minimize $L(\phi, f)$? Calculus.
For $e=(u, v)$
$2 f(e)+2\left(\phi_{v}-\phi_{u}\right)=0$ (Minimum when partial derivatives $=0$.)
$\rightarrow f(e)=\left(\phi_{u}-\phi_{v}\right) \quad$ Potential differences!!!
Matrix Form: $f=B \phi \quad$ Again, flows should be potential differences.
Dual problem: Find ϕ that maximizes ...
$\max _{\phi} 2 \phi^{\top} \chi-\phi^{\top} L \phi$
Note: want $\phi^{\top} L \phi=\sum_{e}\left(\phi_{u}-\phi_{v}\right)^{2}$ to be small.
Minimize Squared Potential differences!

Why did we take dual?

Dual problem:

Why did we take dual?

Dual problem:
Find ϕ that maximizes ...
$\max _{\phi} 2 \phi \chi-\phi L \phi$

Why did we take dual?

Dual problem:
Find ϕ that maximizes ...
$\max _{\phi} 2 \phi \chi-\phi L \phi$
Take the derivative:

Why did we take dual?

Dual problem:
Find ϕ that maximizes ...
$\max _{\phi} 2 \phi \chi-\phi L \phi$
Take the derivative:
$L \phi-\chi$

Why did we take dual?

Dual problem:
Find ϕ that maximizes ...
$\max _{\phi} 2 \phi \chi-\phi L \phi$
Take the derivative:
$L \phi-\chi$
$L \phi=\chi$ at optimal point!

Why did we take dual?

Dual problem:
Find ϕ that maximizes ...
$\max _{\phi} 2 \phi \chi-\phi L \phi$
Take the derivative:
$L \phi-\chi$
$L \phi=\chi$ at optimal point!
Optimal potential is solution to a Laplacian linear system.

Why did we take dual?

Dual problem:
Find ϕ that maximizes ...
$\max _{\phi} 2 \phi \chi-\phi L \phi$
Take the derivative:
$L \phi-\chi$
$L \phi=\chi$ at optimal point!
Optimal potential is solution to a Laplacian linear system. Also useful for convergence.

Why did we take dual?

Dual problem:
Find ϕ that maximizes ...
$\max _{\phi} 2 \phi \chi-\phi L \phi$
Take the derivative:
$L \phi-\chi$
$L \phi=\chi$ at optimal point!
Optimal potential is solution to a Laplacian linear system.
Also useful for convergence.
Algorithm maintains feasible ϕ, f,

Why did we take dual?

Dual problem:
Find ϕ that maximizes ...

$$
\max _{\phi} 2 \phi \chi-\phi L \phi
$$

Take the derivative:
$L \phi-\chi$
$L \phi=\chi$ at optimal point!
Optimal potential is solution to a Laplacian linear system.
Also useful for convergence.
Algorithm maintains feasible ϕ, f,
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi^{T} L \phi$

Why did we take dual?

Dual problem:
Find ϕ that maximizes ...

$$
\max _{\phi} 2 \phi \chi-\phi L \phi
$$

Take the derivative:
$L \phi-\chi$
$L \phi=\chi$ at optimal point!
Optimal potential is solution to a Laplacian linear system.
Also useful for convergence.
Algorithm maintains feasible ϕ, f,
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi^{T} L \phi$
Duality gap is "distance" from optimal!

Why did we take dual?

Dual problem:
Find ϕ that maximizes ...
$\max _{\phi} 2 \phi \chi-\phi L \phi$
Take the derivative:
$L \phi-\chi$
$L \phi=\chi$ at optimal point!
Optimal potential is solution to a Laplacian linear system.
Also useful for convergence.
Algorithm maintains feasible ϕ, f,
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi^{T} L \phi$
Duality gap is "distance" from optimal!
Algorithm: Work on flow and potentials.
To drive gap to 0 .

Alg.

Given: χ, G

Alg.

Given: χ, G
Take a spanning tree T of G.

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in T)
Route excess on path through tree.

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in T)
Route excess on path through tree.

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in T)
Route excess on path through tree.

Which Tree?

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in T)
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$!

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in T)
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$!
Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in T)
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in T)
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$!
Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)$!

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!$!

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!!$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!!$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in T)
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!!$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!!$

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!!$
!!!!

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!!!$
! ! ! ! !

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!!$!!!!!!

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!!$
!!!!!!!

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!!$
!!!!!!!!

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!!$
!!!!!!!!!

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!!$!!!!!!!!!!

Alg.

Given: χ, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy χ through T
Compute, ϕ, using tree ; $\phi_{s}=0$, add f_{e} through T
Repeat:
Choose non-tree edge $e=(u, v)$ (Which non-tree edge?)
$f(e)=\left(\phi_{u}-\phi_{v}\right) /\left(I_{T}(u, v)+1\right)$
($I_{T}(u, v)$ path length in $\left.T\right)$
Route excess on path through tree.

Which Tree?

Claim: Linear time algorithm for $T \mathrm{w} /$ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u, v)} I_{T}(u, v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_{T}(e)$.
Finds $(1+\varepsilon)$ approximation in $O\left(m \log n \log \log n \log \left(\frac{n}{\varepsilon}\right)\right)!!!!!!!!!!$
!!!!!!!!!!!!

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:
Repeatedly "Fix" edge $e=(u, v)$.

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:
Repeatedly "Fix" edge $e=(u, v)$.
Route $-\delta=-\frac{\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)}{R_{e}}$ flow around cycle induced in $T: C_{e}$ (assume e^{\prime} are oriented around cycle.)

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:
Repeatedly "Fix" edge $e=(u, v)$.
Route $-\delta=-\frac{\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)}{R_{e}}$ flow around cycle induced in $T: C_{e}$ (assume e^{\prime} are oriented around cycle.)
Difference in energy from f and f^{\prime}.

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:
Repeatedly "Fix" edge $e=(u, v)$.
Route $-\delta=-\frac{\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)}{R_{e}}$ flow around cycle induced in $T: C_{e}$ (assume e^{\prime} are oriented around cycle.)
Difference in energy from f and f^{\prime}.

$$
\sum_{e^{\prime} \in C_{e}}\left(f\left(e^{\prime}\right)-\delta\right)^{2}-\left(f\left(e^{\prime}\right)\right)^{2}
$$

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:
Repeatedly "Fix" edge $e=(u, v)$.
Route $-\delta=-\frac{\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)}{R_{e}}$ flow around cycle induced in $T: C_{e}$ (assume e^{\prime} are oriented around cycle.)
Difference in energy from f and f^{\prime}.

$$
\sum_{e^{\prime} \in C_{e}}\left(f\left(e^{\prime}\right)-\delta\right)^{2}-\left(f\left(e^{\prime}\right)\right)^{2}=\sum_{e^{\prime} \in C_{e}}-2 f\left(e^{\prime}\right) \delta+\delta^{2}
$$

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:
Repeatedly "Fix" edge $e=(u, v)$.
Route $-\delta=-\frac{\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)}{R_{e}}$ flow around cycle induced in $T: C_{e}$ (assume e^{\prime} are oriented around cycle.)
Difference in energy from f and f^{\prime}.

$$
\begin{aligned}
& \sum_{e^{\prime} \in C_{e}}\left(f\left(e^{\prime}\right)-\delta\right)^{2}-\left(f\left(e^{\prime}\right)\right)^{2}=\sum_{e^{\prime} \in C_{e}}-2 f\left(e^{\prime}\right) \delta+\delta^{2} \\
= & -\left(2 \delta \sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)\right)+R_{E} \delta^{2}
\end{aligned}
$$

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:
Repeatedly "Fix" edge $e=(u, v)$.
Route $-\delta=-\frac{\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)}{R_{e}}$ flow around cycle induced in $T: C_{e}$ (assume e^{\prime} are oriented around cycle.)
Difference in energy from f and f^{\prime}.

$$
\begin{aligned}
& \sum_{e^{\prime} \in C_{e}}\left(f\left(e^{\prime}\right)-\delta\right)^{2}-\left(f\left(e^{\prime}\right)\right)^{2}=\sum_{e^{\prime} \in C_{e}}-2 f\left(e^{\prime}\right) \delta+\delta^{2} \\
= & -\left(2 \delta \sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)\right)+R_{E} \delta^{2}
\end{aligned}
$$

Note: $\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)=R_{e} \delta$

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:
Repeatedly "Fix" edge $e=(u, v)$.
Route $-\delta=-\frac{\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)}{R_{e}}$ flow around cycle induced in $T: C_{e}$ (assume e^{\prime} are oriented around cycle.)
Difference in energy from f and f^{\prime}.

$$
\begin{aligned}
& \sum_{e^{\prime} \in C_{e}}\left(f\left(e^{\prime}\right)-\delta\right)^{2}-\left(f\left(e^{\prime}\right)\right)^{2}=\sum_{e^{\prime} \in C_{e}}-2 f\left(e^{\prime}\right) \delta+\delta^{2} \\
= & -\left(2 \delta \sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)\right)+R_{E} \delta^{2}
\end{aligned}
$$

Note: $\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)=R_{e} \delta$
$\rightarrow-\Delta_{C_{e}}^{2} / R_{e}$ where $\left.\Delta_{C_{e}}=\sum_{e^{\prime} \in C_{e}} f_{(} e^{\prime}\right)$.

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:
Repeatedly "Fix" edge $e=(u, v)$.
Route $-\delta=-\frac{\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)}{R_{e}}$ flow around cycle induced in $T: C_{e}$ (assume e^{\prime} are oriented around cycle.)
Difference in energy from f and f^{\prime}.

$$
\begin{aligned}
& \sum_{e^{\prime} \in C_{e}}\left(f\left(e^{\prime}\right)-\delta\right)^{2}-\left(f\left(e^{\prime}\right)\right)^{2}=\sum_{e^{\prime} \in C_{e}}-2 f\left(e^{\prime}\right) \delta+\delta^{2} \\
= & -\left(2 \delta \sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)\right)+R_{E} \delta^{2}
\end{aligned}
$$

Note: $\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)=R_{e} \delta$
$\rightarrow-\Delta_{C_{e}}^{2} / R_{e}$ where $\left.\Delta_{C_{e}}=\sum_{e^{\prime} \in C_{e}} f_{(} e^{\prime}\right)$.
Fix a part of the potential difference, $\Delta_{c_{e}}$ around cyle!!

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:
Repeatedly "Fix" edge $e=(u, v)$.
Route $-\delta=-\frac{\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)}{R_{e}}$ flow around cycle induced in $T: C_{e}$ (assume e^{\prime} are oriented around cycle.)
Difference in energy from f and f^{\prime}.

$$
\begin{aligned}
& \sum_{e^{\prime} \in C_{e}}\left(f\left(e^{\prime}\right)-\delta\right)^{2}-\left(f\left(e^{\prime}\right)\right)^{2}=\sum_{e^{\prime} \in C_{e}}-2 f\left(e^{\prime}\right) \delta+\delta^{2} \\
= & -\left(2 \delta \sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)\right)+R_{E} \delta^{2}
\end{aligned}
$$

Note: $\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)=R_{e} \delta$
$\rightarrow-\Delta_{C_{e}}^{2} / R_{e}$ where $\left.\Delta_{C_{e}}=\sum_{e^{\prime} \in C_{e}} f_{(} e^{\prime}\right)$.
Fix a part of the potential difference, $\Delta_{c_{e}}$ around cyle!!
\rightarrow reduction of $\Delta_{C_{e}}^{2} / R_{e}$ in energy!

Energy reduction.

Given $T, e=(u, v)$, let $R_{e}=I_{T}(u, v)+1$.
Algorithm:
Repeatedly "Fix" edge $e=(u, v)$.
Route $-\delta=-\frac{\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)}{R_{e}}$ flow around cycle induced in $T: C_{e}$ (assume e^{\prime} are oriented around cycle.)
Difference in energy from f and f^{\prime}.

$$
\begin{aligned}
& \sum_{e^{\prime} \in C_{e}}\left(f\left(e^{\prime}\right)-\delta\right)^{2}-\left(f\left(e^{\prime}\right)\right)^{2}=\sum_{e^{\prime} \in C_{e}}-2 f\left(e^{\prime}\right) \delta+\delta^{2} \\
= & -\left(2 \delta \sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)\right)+R_{E} \delta^{2}
\end{aligned}
$$

Note: $\sum_{e^{\prime} \in C_{e}} f\left(e^{\prime}\right)=R_{e} \delta$
$\rightarrow-\Delta_{C_{e}}^{2} / R_{e}$ where $\left.\Delta_{C_{e}}=\sum_{e^{\prime} \in C_{e}} f_{(} e^{\prime}\right)$.
Fix a part of the potential difference, $\Delta_{c_{e}}$ around cyle!!
\rightarrow reduction of $\Delta_{C_{e}}^{2} / R_{e}$ in energy!
Fix $1 / R_{e}$ of a cycle violation!

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.
Total Duality Gap?

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.
Total Duality Gap?
Gap: $|f|^{2}-\left(2 \phi^{\top} \chi-\phi^{T} L \phi\right)$.

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.
Total Duality Gap?

$$
\begin{aligned}
& \text { Gap: }|f|^{2}-\left(2 \phi^{T} \chi-\phi^{T} L \phi\right) . \\
& \quad=|f|^{2}-2 \phi^{T} B^{T} f+\phi^{T} B^{T} B \phi
\end{aligned}
$$

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.
Total Duality Gap?

$$
\begin{aligned}
& \text { Gap: }|f|^{2}-\left(2 \phi^{T} \chi-\phi^{T} L \phi\right) . \\
& \quad=|f|^{2}-2 \phi^{T} B^{T} f+\phi^{T} B^{T} B \phi \text { where } B^{T} f=\chi \text { and } L=B^{T} B .
\end{aligned}
$$

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.
Total Duality Gap?

$$
\begin{aligned}
& \text { Gap: }|f|^{2}-\left(2 \phi^{T} \chi-\phi^{T} L \phi\right) . \\
&=|f|^{2}-2 \phi^{T} B^{T} f+\phi^{T} B^{T} B \phi \text { where } B^{T} f=\chi \text { and } L=B^{T} B . \\
& \quad=(f-B \phi)^{T}(f-B \phi) .
\end{aligned}
$$

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.
Total Duality Gap?

$$
\begin{aligned}
& \text { Gap: } \begin{aligned}
&|f|^{2}-\left(2 \phi^{T} \chi-\phi^{T} L \phi\right) . \\
&=|f|^{2}-2 \phi^{T} B^{T} f+\phi^{T} B^{T} B \phi \text { where } B^{T} f=\chi \text { and } L=B^{T} B . \\
&=(f-B \phi)^{T}(f-B \phi) . \\
& \text { Gap }=\sum_{e}\left(f(e)-\Delta_{\phi}(e)\right)^{2}
\end{aligned}
\end{aligned}
$$

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.
Total Duality Gap?

$$
\begin{aligned}
& \text { Gap: } \begin{aligned}
&|f|^{2}-\left(2 \phi^{T} \chi-\phi^{T} L \phi\right) . \\
&=|f|^{2}-2 \phi^{T} B^{T} f+\phi^{T} B^{T} B \phi \text { where } B^{T} f=\chi \text { and } L=B^{T} B . \\
&=(f-B \phi)^{T}(f-B \phi) .
\end{aligned} \\
& \text { Gap }=\sum_{e}\left(f(e)-\Delta_{\phi}(e)\right)^{2} \text { Difference between } \phi \text { flow and } f .
\end{aligned}
$$

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.
Total Duality Gap?

$$
\begin{aligned}
\text { Gap: } & |f|^{2}-\left(2 \phi^{T} \chi-\phi^{T} L \phi\right) . \\
& =|f|^{2}-2 \phi^{T} B^{T} f+\phi^{T} B^{T} B \phi \text { where } B^{T} f=\chi \text { and } L=B^{T} B . \\
& =(f-B \phi)^{T}(f-B \phi) .
\end{aligned}
$$

Gap $=\sum_{e}\left(f(e)-\Delta_{\phi}(e)\right)^{2}$ Difference between ϕ flow and f.
$\Delta_{\phi}(u, v)=\sum_{e \in P_{u, v}}-f(e)$. assume $f(e)$ is oriented around cycle.

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.
Total Duality Gap?

$$
\begin{aligned}
& \text { Gap: }|f|^{2}-\left(2 \phi^{T} \chi-\phi^{T} L \phi\right) . \\
&=|f|^{2}-2 \phi^{T} B^{T} f+\phi^{T} B^{T} B \phi \text { where } B^{T} f=\chi \text { and } L=B^{T} B . \\
& \quad=(f-B \phi)^{T}(f-B \phi) .
\end{aligned}
$$

Gap $=\sum_{e}\left(f(e)-\Delta_{\phi}(e)\right)^{2}$ Difference between ϕ flow and f. $\Delta_{\phi}(u, v)=\sum_{e \in P_{u, v}}-f(e)$. assume $f(e)$ is oriented around cycle.
For $e \in T, \Delta_{\phi}(e)=0$.

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.
Total Duality Gap?

$$
\begin{aligned}
& \text { Gap: }|f|^{2}-\left(2 \phi^{T} \chi-\phi^{T} L \phi\right) . \\
&=|f|^{2}-2 \phi^{T} B^{T} f+\phi^{T} B^{T} B \phi \text { where } B^{T} f=\chi \text { and } L=B^{T} B . \\
& \quad=(f-B \phi)^{T}(f-B \phi) .
\end{aligned}
$$

Gap $=\sum_{e}\left(f(e)-\Delta_{\phi}(e)\right)^{2}$ Difference between ϕ flow and f. $\Delta_{\phi}(u, v)=\sum_{e \in P_{u, v}}-f(e)$. assume $f(e)$ is oriented around cycle.
For $e \in T, \Delta_{\phi}(e)=0$. For $e \notin T f(e)+\sum_{e \in P_{e}} f(e)=\Delta_{c_{e}}(f)$

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.
Total Duality Gap?

$$
\begin{aligned}
& \text { Gap: }|f|^{2}-\left(2 \phi^{T} \chi-\phi^{T} L \phi\right) . \\
&=|f|^{2}-2 \phi^{T} B^{T} f+\phi^{T} B^{T} B \phi \text { where } B^{T} f=\chi \text { and } L=B^{T} B . \\
& \quad=(f-B \phi)^{T}(f-B \phi) .
\end{aligned}
$$

Gap $=\sum_{e}\left(f(e)-\Delta_{\phi}(e)\right)^{2}$ Difference between ϕ flow and f. $\Delta_{\phi}(u, v)=\sum_{e \in P_{u, v}}-f(e)$. assume $f(e)$ is oriented around cycle.
For $e \in T, \Delta_{\phi}(e)=0$. For $e \notin T f(e)+\sum_{e \in P_{e}} f(e)=\Delta_{c_{e}}(f)$
Duality Gap: $\sum_{e \notin T} \sum_{e} \Delta_{c_{e}}(f)^{2}$

Duality Gap?

Algorithm maintains feasible $\phi, f,\left(B^{T} f=\chi\right)$
Primal value: $|f|^{2}$.
Dual value: $2 \phi \chi-\phi L \phi$
ϕ is tree induced voltages.
Total Duality Gap?

$$
\begin{aligned}
& \text { Gap: }|f|^{2}-\left(2 \phi^{T} \chi-\phi^{T} L \phi\right) . \\
&=|f|^{2}-2 \phi^{T} B^{T} f+\phi^{T} B^{T} B \phi \text { where } B^{T} f=\chi \text { and } L=B^{T} B . \\
& \quad=(f-B \phi)^{T}(f-B \phi) .
\end{aligned}
$$

Gap $=\sum_{e}\left(f(e)-\Delta_{\phi}(e)\right)^{2}$ Difference between ϕ flow and f.
$\Delta_{\phi}(u, v)=\sum_{e \in P_{u, v}}-f(e)$. assume $f(e)$ is oriented around cycle.
For $e \in T, \Delta_{\phi}(e)=0$. For $e \notin T f(e)+\sum_{e \in P_{e}} f(e)=\Delta_{c_{e}}(f)$
Duality Gap: $\sum_{e \notin T} \sum_{e} \Delta_{C_{e}}(f)^{2}$
Total distance from optimal is cycle violations!

Claim: $E[$ change in energy $\mid G a p]=\frac{\text { Gap }}{\tau}$

Claim: $E[$ change in energy \mid Gap $]=\frac{\text { Gap }}{\tau}(\tau$ is stretch of E in T.)

Claim: $E[$ change in energy \mid Gap $]=\frac{\text { Gap }}{\tau}(\tau$ is stretch of E in T.) Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$

Claim: $E[$ change in energy $\mid G a p]=\frac{\text { Gap }}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{\delta_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}$

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{\delta_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta \Delta_{e e}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{\delta_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta \Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$

Claim: $E[$ change in energy $\mid G a p]=\frac{\text { Gap }}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{\delta_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by ($1-1 / \tau$) every iteration on expectation.

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time!

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time! !

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time! !!

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time! !!!

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time! !!!!

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time! !!!!!

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time! ! ! ! ! ! !

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time! ! ! ! ! ! ! !

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time! !!!!!!!!!

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time! !!!!!!!!!

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time! !!!!!!!!!!!

Claim: $E[$ change in energy $\mid G a p]=\frac{G a p}{\tau}(\tau$ is stretch of E in T.)
Duality Gap: $\sum_{e \notin T} \Delta_{C_{e}}(f)^{2}$
Choose edge e reduce energy by $-\frac{\Delta_{C_{e}}^{2}}{R_{e}}$.
Choose edge with probability $\frac{R_{e}}{\tau}$.
Expected reduction $-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}}=-\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$
Duality Gap reduces by $(1-1 / \tau)$ every iteration on expectation.
$O(\tau \log (n / \varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.
$\tau=O(m \log n \log \log n) \ldots$
$\tilde{O}(m)$ iterations
Iteration in $O\left(\log ^{2} n\right)$ time using balanced binary trees.
$\rightarrow \tilde{O}(m)$ time! !!!!!!!!!!!

Wrapup...

How to get low stretch tree?

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get $O(m \log n)$ stretch?

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get $O(m \log n)$ stretch?
How to do update along cycle?

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get $O(m \log n)$ stretch?
How to do update along cycle?
Answer: Data Structures.

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get $O(m \log n)$ stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get $O(m \log n)$ stretch?
How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get $O(m \log n)$ stretch?
How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.
Geometric View.

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get $O(m \log n)$ stretch?
How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.
Geometric View.
Cycles are constraints.

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get $O(m \log n)$ stretch?
How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.
Geometric View.
Cycles are constraints.
Flow around cycle $=0$.

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get $O(m \log n)$ stretch?
How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.
Geometric View.
Cycles are constraints.
Flow around cycle $=0$.
Each cycle update is projection into subspace defined by constraint.

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get $O(m \log n)$ stretch?
How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.
Geometric View.
Cycles are constraints.
Flow around cycle $=0$.
Each cycle update is projection into subspace defined by constraint.

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get $O(m \log n)$ stretch?
How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.
Geometric View.
Cycles are constraints.
Flow around cycle $=0$.
Each cycle update is projection into subspace defined by constraint.
Better Algorithm:

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get $O(m \log n)$ stretch?
How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.
Geometric View.
Cycles are constraints.
Flow around cycle $=0$.
Each cycle update is projection into subspace defined by constraint.
Better Algorithm:
Recursive algorithm give $O(m \sqrt{\log n})$ iterations to halve error.

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get $O(m \log n)$ stretch?
How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.
Geometric View.
Cycles are constraints.
Flow around cycle $=0$.
Each cycle update is projection into subspace defined by constraint.
Better Algorithm:
Recursive algorithm give $O(m \sqrt{\log n})$ iterations to halve error.
Correspondence to Practice: Random sparsification of Cholesky factorization.

Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman. Open: Get $O(m \log n)$ stretch?
How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.
Geometric View.
Cycles are constraints.
Flow around cycle $=0$.
Each cycle update is projection into subspace defined by constraint.
Better Algorithm:
Recursive algorithm give $O(m \sqrt{\log n})$ iterations to halve error.
Correspondence to Practice: Random sparsification of Cholesky factorization.
Laplacian Systems are quite general: Climate, physics, SDD-matrices.

See you ...

Tuesday.

