Today

Lagrange Multipliers.



Today

Lagrange Multipliers.
Fast Solution of Laplacian Systems.



Lagrangian Dual.

Find x, subject to



Lagrangian Dual.

Find x, subject to
fi(x)<0,i=1,...m.



Lagrangian Dual.

Find x, subject to
fi(x)<0,i=1,...m.

Remember calculus (constrained optimization.)



Lagrangian Dual.

Find x, subject to

fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian:



Lagrangian Dual.

Find x, subject to

fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y, A;fi(x)



Lagrangian Dual.

Find x, subject to
fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y, A;fi(x)
A; > 0 - Lagrangian multiplier for inequality /.



Lagrangian Dual.

Find x, subject to

fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y, A;fi(x)
A; > 0 - Lagrangian multiplier for inequality /.
For feasible solution x, L(x,A) is



Lagrangian Dual.

Find x, subject to

fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y, A;fi(x)
A; > 0 - Lagrangian multiplier for inequality /.
For feasible solution x, L(x,A) is



Lagrangian Dual.

Find x, subject to

fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y, A;fi(x)
A; > 0 - Lagrangian multiplier for inequality /.
For feasible solution x, L(x,A) is

(A) non-negative in expectation



Lagrangian Dual.

Find x, subject to

fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y, A;fi(x)
A; > 0 - Lagrangian multiplier for inequality /.
For feasible solution x, L(x,A) is
(A) non-negative in expectation

(B) positive for any A.



Lagrangian Dual.

Find x, subject to
fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y, A;fi(x)
A; > 0 - Lagrangian multiplier for inequality /.
For feasible solution x, L(x,A) is
(A) non-negative in expectation
(B) positive for any A.

(C) non-positive for any valid 7.



Lagrangian Dual.

Find x, subject to
fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y, A;fi(x)
A; > 0 - Lagrangian multiplier for inequality /.
For feasible solution x, L(x,A) is
(A) non-negative in expectation
(B) positive for any A.
(C) non-positive for any valid 7.

If 34 > 0, where L(x, 1) is positive for all x



Lagrangian Dual.

Find x, subject to
fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y, A;fi(x)
A; > 0 - Lagrangian multiplier for inequality /.
For feasible solution x, L(x,A) is
(A) non-negative in expectation
(B) positive for any A.
(C) non-positive for any valid 7.

If 34 > 0, where L(x, 1) is positive for all x



Lagrangian Dual.

Find x, subject to
fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y, A;fi(x)
A; > 0 - Lagrangian multiplier for inequality /.
For feasible solution x, L(x,A) is
(A) non-negative in expectation
(B) positive for any A.
(C) non-positive for any valid 7.

If 34 > 0, where L(x, 1) is positive for all x

(A) there is no feasible x.



Lagrangian Dual.

Find x, subject to
fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y, A;fi(x)
A; > 0 - Lagrangian multiplier for inequality /.
For feasible solution x, L(x,A) is
(A) non-negative in expectation
(B) positive for any A.
(C) non-positive for any valid 7.

If 34 > 0, where L(x, 1) is positive for all x

(A) there is no feasible x.
(B) thereis no x,A with L(x,1) < 0.



Lagrangian:constrained optimization.

min  f(x)

subject to fi(x) <0, i=1,..



Lagrangian:constrained optimization.

min  f(x)

subject to fi(x) <0, i=1,..

Lagrangian function:



Lagrangian:constrained optimization.

min  f(x)

subject to fi(x) <0, i=1,..

Lagrangian function:
L(x, ) = f(x) + EiZ1 Aifi(x)



Lagrangian:constrained optimization.

min  f(x)

subject to fi(x) <0, i=1,..

Lagrangian function:
L(x,A) = f(x) + EiZ4 Aifi(X)
If (primal) x has value v



Lagrangian:constrained optimization.

min  f(x)
subject to fi(x) <0, i=1,..

Lagrangian function:
L(x,A) = f(x) + EiZ4 Aifi(X)
If (primal) x has value v f(x) = v and all f;(x) <0



Lagrangian:constrained optimization.

min  f(x)
subject to fi(x) <0, i=1,..

Lagrangian function:
L(x, ) = f(x) + EiZ1 Aifi(x)

If (primal) x has value v f(x) vandall fi(x) <0
Forall A >0 have L(x,A) <



Lagrangian:constrained optimization.

min  f(x)
subject to fi(x) <0, i=1,..

Lagrangian function:
L(x, ) = f(x) + EiZ1 Aifi(x)

If (primal) x has value v f(x) = v and all f;(x) <0
Forall A >0 have L(x,A) <v
Maximizing A4, only positive A; when fj(x) =0



Lagrangian:constrained optimization.

min  f(x)
subject to fi(x) <0, i=1,..

Lagrangian function:
L(x, ) = f(x) + EiZ1 Aifi(x)

If (primal) x has value v f(x) = v and all fi(x) <0
ForallA >0 have L(x,A) <v
Maximizing A4, only positive A; when fj(x) =0
which implies L(x,A) > f(x)



Lagrangian:constrained optimization.

min  f(x)
subject to fi(x) <0, i=1,..

Lagrangian function:
L(x, ) = f(x) + EiZ1 Aifi(x)

If (primal) x has value v f(x) = v and all fi(x) <0
ForallA >0 have L(x,A) <v
Maximizing A4, only positive A; when fj(x) =0
which implies L(x,A) > f(x) =v



Lagrangian:constrained optimization.

min  f(x)
subject to fi(x) <0, i=1,..

Lagrangian function:
L(x, ) = f(x) + EiZ1 Aifi(x)

If (primal) x has value v f(x) = v and all fi(x) <0
ForallA >0 have L(x,A) <v
Maximizing A4, only positive A; when fj(x) =0
which implies L(x,A) > f(x) =v



Lagrangian:constrained optimization.

min  f(x)
subject to fi(x) <0, i=1,..

Lagrangian function:
L(x,A) = f(x) + EiZ4 Aifi(X)
If (primal) x has value v f(x) = v and all f;(x) <0
Forall A >0 have L(x,A) <v
Maximizing A4, only positive A; when fj(x) =0
which implies L(x,A) > f(x)=v

If there is A with L(x,4) > o for all x



Lagrangian:constrained optimization.

min  f(x)
subject to fi(x) <0, i=1,..

Lagrangian function:
L(x, ) = f(x) + EiZ1 Aifi(x)

If (primal) x has value v f(x) = v and all fi(x) <0
ForallA >0 have L(x,A) <v
Maximizing A4, only positive A; when fj(x) =0
which implies L(x,A) > f(x) =v

If there is A with L(x,4) > o for all x
Optimum value of program is at least



Lagrangian:constrained optimization.

min  f(x)
subject to fi(x) <0, i=1,..

Lagrangian function:
L(x,A) = f(x) + X2 Aifi(x)

If (primal) x has value v f(x) = v and all fi(x) <0
ForallA >0 have L(x,A) <v
Maximizing A4, only positive A; when fj(x) =0
which implies L(x,A) > f(x) =v
If there is A with L(x,4) > o for all x
Optimum value of program is at least

Primal problem:
x, that minimizes L(x,A) over all A > 0.



Lagrangian:constrained optimization.

min  f(x)
subject to fi(x) <0, i=1,..

Lagrangian function:
L(x,A) = f(x) + X2 Aifi(x)

If (primal) x has value v f(x) = v and all fi(x) <0
ForallA >0 have L(x,A) <v
Maximizing A4, only positive A; when fj(x) =0
which implies L(x,A) > f(x) =v
If there is A with L(x,4) > o for all x
Optimum value of program is at least

Primal problem:
x, that minimizes L(x,A) over all A > 0.

Dual problem:
A, that maximizes L(x,A) over all x.



Why important: KKT,

Karash, Kuhn and Tucker Conditions.



Why important: KKT,

Karash, Kuhn and Tucker Conditions.

min
subject to fi(x) <0,



Why important: KKT,

Karash, Kuhn and Tucker Conditions.

min
subject to fi(x) <0,

L(x,A) = f(x)+ ¥, Aif(x)



Why important: KKT,

Karash, Kuhn and Tucker Conditions.
min
subject to fi(x) <0,

L(x,A) = f(x) + L4 A4ifi(x)
Local minima for feasible x*.



Why important: KKT,

Karash, Kuhn and Tucker Conditions.

min
subject to fi(x) <0,
L(x,2) = f(x)+ X124 Aifi(x)
Local minima for feasible x*.
There exist multipliers A, where



Why important: KKT,

Karash, Kuhn and Tucker Conditions.

min
subject to fi(x) <0,
L(x,A) = f(x) + L4 A4ifi(x)
Local minima for feasible x*.

There exist multipliers A, where
VI(x*)+ ¥4 Vi(x*) =0



Why important: KKT,

Karash, Kuhn and Tucker Conditions.

min  f(x)
subject to fi(x) <0, i=1,...m

L(x,2) = F(x) + £ Aifi(x)
Local minima for feasible x*.
There exist multipliers A, where
VI(x*)+ XA Vi(x*) =0
Feasible primal, f;(x*) <0, and feasible dual 4; > 0.



Why important: KKT,

Karash, Kuhn and Tucker Conditions.

min  f(x)
subject to fi(x) <0, i=1,..

L(x.2) = f(x) + X4 4fi(x)
Local minima for feasible x*.
There exist multipliers A, where
VI(x*)+ XA Vi(x*) =0
Feasible primal, f;(x*) <0, and feasible dual 4; > 0.
Complementary slackness: A;fj(x*) =0.



Why important: KKT,

Karash, Kuhn and Tucker Conditions.

min  f(x)
subject to fi(x) <0, i=1,...m

L(x.2) = f(x) + X4 4fi(x)
Local minima for feasible x*.
There exist multipliers A, where
VI(x*)+ ¥4 Vi(x*) =0
Feasible primal, f;(x*) <0, and feasible dual 4; > 0.
Complementary slackness: A;fj(x*) =0.
Launched nonlinear programming!



Why important: KKT,

Karash, Kuhn and Tucker Conditions.

min  f(x)
subject to fi(x) <0, i=1,...m

L(x,2) = F(x) + £ Aifi(x)
Local minima for feasible x*.
There exist multipliers A, where
VI(x*)+ ¥4 Vi(x*) =0
Feasible primal, f;(x*) <0, and feasible dual 4; > 0.
Complementary slackness: A;fj(x*) =0.
Launched nonlinear programming! See paper.



Why important: KKT,

Karash, Kuhn and Tucker Conditions.

min  f(x)
subject to fi(x) <0, i=1,...m

L(x,2) = F(x) + £ Aifi(x)
Local minima for feasible x*.
There exist multipliers A, where
VI(x*)+ ¥4 Vi(x*) =0
Feasible primal, f;(x*) <0, and feasible dual 4; > 0.
Complementary slackness: A;fj(x*) =0.
Launched nonlinear programming! See paper.



Linear Program.
mincx,Ax > b



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,

Lagrangian (Dual):



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,

Lagrangian (Dual):
L(A,X) = CX+ZI)~,'(b,‘ — a,-x).



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,
Lagrangian (Dual):
L(A,x) = cx+ ¥ Ai(bi — ajx).
or



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,
Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).
or
L(A,x) = —(¥;x(ajA —¢j)) + bA.



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).

or

L(A,x) = —(¥; x;(ajA — ¢;)) + bA.

Best 1?



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).

or

L(A,x) = —(¥; x;(ajA — ¢;)) + bA.

Best 1?



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).

or

L(A,x) = —(¥; x;(ajA — ¢;)) + bA.

Best 1?
maxb- A



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).

or

L(A,x) = —(¥; x;(ajA — ¢;)) + bA.

Best 1?
maxb-A where aj)L =g



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).

or

L(A,x) = —(¥; x;(ajA — ¢;)) + bA.

Best 1?
maxb-A where aj)L =g

maxbAi,



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).

or

L(A,x) = —(¥; x;(ajA — ¢;)) + bA.

Best 1?
maxb-A where aj)L =g

maxbA,ATA=c,



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).

or

L(A,x) = —(¥; x;(ajA — ¢;)) + bA.

Best 1?
maxb-A where aj)L =g

maxbA, ATA=c,A >0



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).

or

L(A,x) = —(¥; x;(ajA — ¢;)) + bA.

Best 1?
maxb-A where aj)L =g

maxbA, ATA=c,A >0
Duals!



Linear Program.
mincx,Ax > b

min
subjectto b;—a;-x <0,

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).

or

L(A,x) = —(¥; x;(ajA — ¢;)) + bA.

Best 1?
maxb-A where aj)L =g

maxbA, ATA=c,A >0
Duals!
Note:



Linear Program.
mincx,Ax > b

min  c-Xx

subjectto b;—a;-x <0, i=1,..

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).

or

L(A,x) = —(¥; x;(ajA — ¢;)) + bA.

Best 1?
maxb-A where giA = ¢;.

maxbA, ATA=c,A >0
Duals!
Note: Lagrange multipliers for equality constraints.



Linear Program.
mincx,Ax > b

min  c-Xx

subjectto b;—a;-x <0, i=1,..

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).
or
L(A,x) = —(¥; x;(ajA — ¢;)) + bA.
Best 1?
maxb-A where giA = ¢;.

maxbA, ATA=c,A >0
Duals!
Note: Lagrange multipliers for equality constraints.
Usually: v, and un-restricted.



Linear Program.
mincx,Ax > b

min  c-Xx

subjectto b;—a;-x <0, i=1,..

Lagrangian (Dual):
L(A,x)=cx+YAi(bj—ajx).
or
L(A,x) = —(¥; x;(ajA — ¢;)) + bA.
Best 1?
maxb-A where giA = ¢;.

maxbA, ATA=c,A >0
Duals!
Note: Lagrange multipliers for equality constraints.
Usually: v, and un-restricted.
In this case, x for lagrangian of Dual.



Linear Systems...



Linear Systems...



Linear Systems

Ax

I
o



Linear Systems

Ax=0>b
Find x.



Linear Systems

Ax=b
Find x.
Gaussian elimination: O(n®)



Linear Systems

Ax=b
Find x.
Gaussian elimination: O(n®)



Linear Systems

Ax=0>b
Find x.

Gaussian elimination: O(n®)
O(n?38-) with fast matrix multiplication.



Linear Systems

Ax=0>b
Find x.

Gaussian elimination: O(n®)
O(n?38-) with fast matrix multiplication.

Iterative Methods: O(nmlog %) to € approximate.



Linear Systems

Ax=0>b
Find x.

Gaussian elimination: O(n®)
O(n?38-) with fast matrix multiplication.

Iterative Methods: O(nmlog %) to € approximate.
For today: where m is sum of nonzeros in matrix.



Linear Systems

Ax=0>b
Find x.

Gaussian elimination: O(n®)
O(n?38-) with fast matrix multiplication.

Iterative Methods: O(nmlog %) to € approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.



Linear Systems

Ax=0>b
Find x.

Gaussian elimination: O(n®)
O(n?38-) with fast matrix multiplication.

Iterative Methods: O(nmlog %) to € approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: O(m) for Laplacian matrices.



Linear Systems

Ax=0>b
Find x.

Gaussian elimination: O(n®)
O(n?38-) with fast matrix multiplication.

Iterative Methods: O(nmlog %) to € approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: O(m) for Laplacian matrices.
Laplacian: d/ — A where A is adjacency matrix of a graph.



Linear Systems

Ax=0>b
Find x.

Gaussian elimination: O(n®)
O(n?38-) with fast matrix multiplication.

Iterative Methods: O(nmlog %) to € approximate.
For today: where m is sum of nonzeros in matrix.
For positive semidefinite matrix.

Today: O(m) for Laplacian matrices.
Laplacian: d/ — A where A is adjacency matrix of a graph.
— symmetric diagonally dominant matrices by reduction.



Electrical Flow: a detour.

Agraph G=(V,E).



Electrical Flow: a detour.

Agraph G=(V,E).
Circuit: nodes V, resistors E, value 1 (for today.)



Electrical Flow: a detour.

Agraph G=(V,E).
Circuit: nodes V, resistors E, value 1 (for today.)
Giveny:V—%xX
Find flow that routes y and minimizes
Yef(e)?.



Electrical Flow: a detour.

Agraph G=(V,E).
Circuit: nodes V, resistors E, value 1 (for today.)

Giveny:V—%xX
Find flow that routes y and minimizes
Yef(e).

+1 -1



Electrical Flow: a detour.

Agraph G=(V,E).
Circuit: nodes V, resistors E, value 1 (for today.)

Giveny:V—%xX
Find flow that routes y and minimizes
Yef(e).
+1 -1

Claim: Minimizer is electrical flow.



Electrical Flow: a detour.

Agraph G=(V,E).
Circuit: nodes V, resistors E, value 1 (for today.)

Giveny:V—%xX
Find flow that routes y and minimizes
Yef(e).
+1 -1

Claim: Minimizer is electrical flow.

Flow corresponds to flow induced by a set of potentials.



Some Matrices.

Given G = (V,E), arbitrarily orient edges.



Some Matrices.

Given G = (V,E), arbitrarily orient edges.

-1 e=(u,v)
e=(v,u)

Bvﬁe - 1

0 otherwise

B
()

a b ¢ d
(@b)|1 -1 0 O
(ae) |1 0 -1 0
(cd |0 0O 1 -1
(db)y|0 -1 0 1
(bcy|]O 1 -1 1

Lu,v =

d u=v

-1 (y,v)eE

0 otherwise
L

a b ¢ d
a2 -1 -1 0
bl-1 2 0 -1
c|l-1 -1 3 -1
d|{-1 -1 -1 3



Some Matrices.

Given G = (V,E), arbitrarily orient edges.

-1 e=(u,v)
e=(v,u)

Bvﬁe - 1

0 otherwise

Fun facts: f € RIEl

a b ¢ d

1 1 0 O

1 0 -1 0

o 0o 1 -1

, o -1 0 1
(b, o 1 -1 1

d u=v
Luv=<-1 (uv)eE
0 otherwise

L

a b ¢ d
a2 -1 -1 0
bl-1 2 0 -1
c|-1 -1 3 -
d|-1 -1 -1 3



Some Matrices.

Given G = (V,E), arbitrarily orient edges.

-1 e=(u,v)
e=(v,u)

Bv.e =41

0 otherwise

B
()

(o

Fun facts: f € RIEl

OO = =0

- Lool

-1

[BTf]u = ):e:(u,v) fe - Ze:(v,u) fe

- 2 L oola

Lu,v =

d u=v

-1 (y,v)eE

0 otherwise
L

a b ¢ d
a2 -1 -1 0
bl-1 2 0 -1
c|l-1 -1 3 -1
d|{-1 -1 -1 3



Some Matrices.

Given G = (V,E), arbitrarily orient edges.

-1 e=(u,v)
e=(v,u)

Bv.e =41

0 otherwise

B
()

(o

Fun facts: f € RIEl

OO = =0

- Lool

-1

[BTf]u = ):e:(u,v) fe - Ze:(v,u) fe

B'B=L

- 2 L oola

Lu,v =

d u=v

-1 (y,v)eE

0 otherwise
L

a b ¢ d
a2 -1 -1 0
bl-1 2 0 -1
c|l-1 -1 3 -1
d|{-1 -1 -1 3



Some Matrices.

Given G = (V,E), arbitrarily orient edges.

-1 e=(u,v)
e=(v,u)

Bv.e =41

0 otherwise

B
()

(o

Fun facts: f € RIEl

OO = =0

- Lool

-1

[BTf]u = ):e:(u,v) fe - Ze:(v,u) fe

B'B=1L
[Bx]e:(uAv) = Xu— Xy

- 2 L oola

Lu,v =

d u=v

-1 (y,v)eE

0 otherwise
L

a b ¢ d
a2 -1 -1 0
bl-1 2 0 -1
c|l-1 -1 3 -1
d|{-1 -1 -1 3



Some Matrices.

Given G = (V,E), arbitrarily orient edges.

-1 e=(uv)
BV.e - 1 e= (V, U)
0 otherwise

(o

O c
0

oo L
1
—

OO = =0
'
—_

Fun facts: f € RIE|
[BTf]u = ):e:(u,v) fe - Ze:(v,u) fe
B'B=1L
[Bx]e:(uAv) = Xu— Xy
XTLx = Yo (uv)(Xu—Xv)?

—_

-1

- 2 L oola

d u=v
Luv=<-1 (uv)eE
0 otherwise

L

a b ¢ d
a2 -1 -1 0
bl-1 2 0 -1
c|-1 -1 3 -
d{-1 -1 -1 3



Duality..

Given G,x, x L 1



Duality..

Given G,x, x L 1



Duality..

Given G,x, x L 1
Minimize |f|?



Duality..

Given G, x, x L1
Minimize |f|> subjectto BT f = y.



Duality..

Given G,x, x L 1
Minimize |f|> subjectto BT f = y.
Lagrangian:



Duality..

Given G, x, x L1
Minimize |f|> subjectto BT f = y.
Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.
Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual:



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.
Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)?



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.

For e = (u,v)
2f(e)+2(¢v — 9u) =0



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.

Fore=(u,v)
2f(e) +2(¢y — ¢y) = 0 (Minimum when partial derivatives = 0.)



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.

Fore=(u,v)
2f(e) +2(¢y — ¢y) = 0 (Minimum when partial derivatives = 0.)

— f(€) = (¢u—9v)



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.

Fore=(u,v)
2f(e) +2(¢y — ¢y) = 0 (Minimum when partial derivatives = 0.)

— f(e)=(¢u—¢y) Potential differences!!!



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.

Fore=(u,v)
2f(e) +2(¢y — ¢y) = 0 (Minimum when partial derivatives = 0.)

— f(e)=(¢u—¢y) Potential differences!!!
Matrix Form: f = B¢



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.

Fore=(u,v)
2f(e) +2(¢y — ¢y) = 0 (Minimum when partial derivatives = 0.)

— f(e)=(¢u—¢y) Potential differences!!!
Matrix Form: f = B¢ Again, flows should be potential differences.



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.

Fore=(u,v)
2f(e) +2(¢y — ¢y) = 0 (Minimum when partial derivatives = 0.)

— f(e)=(¢u—¢y) Potential differences!!!
Matrix Form: f = B¢ Again, flows should be potential differences.
Dual problem:



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.

Fore=(u,v)
2f(e) +2(¢y — ¢y) = 0 (Minimum when partial derivatives = 0.)

— f(e)=(¢u—¢y) Potential differences!!!
Matrix Form: f = B¢ Again, flows should be potential differences.
Dual problem: Find ¢ that maximizes ...



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.

Fore=(u,v)
2f(e) +2(¢y — ¢y) = 0 (Minimum when partial derivatives = 0.)

— f(e)=(¢u—¢y) Potential differences!!!
Matrix Form: f = B¢ Again, flows should be potential differences.

Dual problem: Find ¢ that maximizes ...
maxy 29Ty — ¢ L¢



Duality..

Given G,x, x L 1

Minimize |f|> subjectto BT f = y.

Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.

Fore=(u,v)
2f(e) +2(¢y — ¢y) = 0 (Minimum when partial derivatives = 0.)

— f(e)=(¢u—¢y) Potential differences!!!
Matrix Form: f = B¢ Again, flows should be potential differences.

Dual problem: Find ¢ that maximizes ...
maxy 29Ty — ¢ L¢
Note: want ¢ " Lo = Y o(¢y — ¢,)? to be small.



Duality..

Given G, x, x L1
Minimize |f|> subjectto BT f = y.
Lagrangian: L(¢,f) =Y. f(€)>+2¢ 7 (x — B'f)
Lagrangian Dual: Find ¢ that maximizes mins L(¢, f).
Given ¢, minimize L(¢,f)? Calculus.
For e = (u,v)
2f(e) +2(¢y — ¢y) = 0 (Minimum when partial derivatives = 0.)
— f(e)=(¢u—¢y) Potential differences!!!
Matrix Form: f = B¢ Again, flows should be potential differences.
Dual problem: Find ¢ that maximizes ...
maxy 29Ty — ¢ L¢
Note: want ¢ " Lo = Y o(¢y — ¢,)? to be small.
Minimize Squared Potential differences!



Why did we take dual?

Dual problem:



Why did we take dual?

Dual problem:
Find ¢ that maximizes ...

maxy 29y — Lo



Why did we take dual?

Dual problem:
Find ¢ that maximizes ...

maxy 29y — Lo
Take the derivative:



Why did we take dual?

Dual problem:
Find ¢ that maximizes ...

maxy 29y — Lo
Take the derivative:
Lo—2x



Why did we take dual?

Dual problem:

Find ¢ that maximizes ...
maxy 29y — Lo

Take the derivative:
Lo—x

Lo = x at optimal point!



Why did we take dual?

Dual problem:
Find ¢ that maximizes ...
maxy 29y — Lo
Take the derivative:
Lo—x
L¢ = x at optimal point!
Optimal potential is solution to a Laplacian linear system.



Why did we take dual?

Dual problem:
Find ¢ that maximizes ...

maxy 29y — Lo
Take the derivative:
Lo—x
Lo = x at optimal point!
Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.



Why did we take dual?

Dual problem:
Find ¢ that maximizes ...

maxy 29y — Lo

Take the derivative:
Lo—2x

Lo = x at optimal point!

Optimal potential is solution to a Laplacian linear system.
Also useful for convergence.
Algorithm maintains feasible ¢, f,



Why did we take dual?

Dual problem:
Find ¢ that maximizes ...

maxy 29y — Lo

Take the derivative:
Lo—2x

Lo = x at optimal point!

Optimal potential is solution to a Laplacian linear system.
Also useful for convergence.
Algorithm maintains feasible ¢, f,

Primal value: |f|?.
Dual value: 29y — o7 Lo



Why did we take dual?

Dual problem:

Find ¢ that maximizes ...
maxy 29y — Lo

Take the derivative:
Lo—x

Lo = x at optimal point!

Optimal potential is solution to a Laplacian linear system.
Also useful for convergence.
Algorithm maintains feasible ¢, f,

Primal value: |f|?.
Dual value: 29y — o7 Lo

Duality gap is “distance” from optimal!



Why did we take dual?

Dual problem:

Find ¢ that maximizes ...
maxy 29y — Lo

Take the derivative:
Lo—x

Lo = x at optimal point!

Optimal potential is solution to a Laplacian linear system.
Also useful for convergence.
Algorithm maintains feasible ¢, f,

Primal value: |f|?.
Dual value: 29y — o7 Lo

Duality gap is “distance” from optimal!

Algorithm: Work on flow and potentials.
To drive gap to 0.



Alg.

Given: x, G



Alg.

Given: x, G
Take a spanning tree T of G.



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e = (u, v)



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e

= (u,v) (Which non-tree edge?)
f(e) = (¢u—ov)/(Ir(u,v)+1)



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e = (u, v) (Which non-tree edge?)
f(e) = (9u—9v)/(Ir(u,v)+1)

(Ir(u,v) path length in T)



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T
Repeat:
Choose non-tree edge e =
f(e) = (¢u—ov)/(Ir(u,v)+
(Ir(u,v) path length in T)
Route excess on path through tree.

(u,v) (Which non-tree edge?)
1)



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T
Repeat:
Choose non-tree edge e =
f(e) = (¢u—ov)/(Ir(u,v)+
(Ir(u,v) path length in T)
Route excess on path through tree.

(u,v) (Which non-tree edge?)
1)



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T
Repeat:
Choose non-tree edge e =
f(e) = (¢u—ov)/(Ir(u,v)+
(Ir(u,v) path length in T)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e

f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.
Which Tree?
Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

(u,v) (Which non-tree edge?)
1)



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (9u—ov)/(Ir(u,v)+
(Ir(u,v) path Iength inT)
Route excess on path through tree.
Which Tree?

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!
Stretch: Yoy vy Ir(U, V)

(u,v) (Which non-tree edge?)
1)



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e

f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.
Which Tree?
Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!
Stretch: Yoy vy Ir(U, V)

Which non-tree edge?

(u,v) (Which non-tree edge?)
1)



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (9u—ov)/(Ir(u,v)+
(Ir(u,v) path Iength inT)
Route excess on path through tree.
Which Tree?
Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!
Stretch: Yoy vy Ir(U, V)
Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

(u,v) (Which non-tree edge?)
1)



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T
Repeat:
Choose non-tree edge e =
f(e) = (9u—ov)/(Ir(u,v)+
(Ir(u,v) path Iength inT)
Route excess on path through tree.
Which Tree?
Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!
Stretch: Yoy vy Ir(U, V)
Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

(u,v) (Which non-tree edge?)
1)

Finds (1+€) approximation in O(mlog nloglog nlog(Z2))



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T
Repeat:
Choose non-tree edge e =
f(e) = (9u—ov)/(Ir(u,v)+
(Ir(u,v) path Iength inT)
Route excess on path through tree.
Which Tree?
Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!
Stretch: Yoy vy Ir(U, V)
Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

(u,v) (Which non-tree edge?)
1)

Finds (1 -+ €) approximation in O(mlog nloglognlog(Z2)) !



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T
Repeat:
Choose non-tree edge e =
f(e) = (9u—ov)/(Ir(u,v)+
(Ir(u,v) path Iength inT)
Route excess on path through tree.
Which Tree?
Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!
Stretch: Yoy vy Ir(U, V)
Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

(u,v) (Which non-tree edge?)
1)

Finds (1+€) approximation in O(mlog nloglognlog(2)) ! !



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T
Repeat:
Choose non-tree edge e =
f(e) = (9u—ov)/(Ir(u,v)+
(Ir(u,v) path Iength inT)
Route excess on path through tree.
Which Tree?
Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!
Stretch: Yoy vy Ir(U, V)
Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

(u,v) (Which non-tree edge?)
1)

Finds (1+€) approximation in O(mlog nloglognlog(2)) ! !



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T
Repeat:
Choose non-tree edge e =
f(e) = (9u—ov)/(Ir(u,v)+
(Ir(u,v) path Iength inT)
Route excess on path through tree.
Which Tree?
Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!
Stretch: Yoy vy Ir(U, V)
Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

(u,v) (Which non-tree edge?)
1)

Finds (1+€) approximation in O(mlog nloglognlog(2)) !'! !'!



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T
Repeat:
Choose non-tree edge e =
f(e) = (9u—ov)/(Ir(u,v)+
(Ir(u,v) path Iength inT)
Route excess on path through tree.
Which Tree?
Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!
Stretch: Yoy vy Ir(U, V)
Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

(u,v) (Which non-tree edge?)
1)

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T
Repeat:
Choose non-tree edge e =
f(e) = (9u—ov)/(Ir(u,v)+
(Ir(u,v) path Iength inT)
Route excess on path through tree.
Which Tree?
Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!
Stretch: Yoy vy Ir(U, V)
Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

(u,v) (Which non-tree edge?)
1)

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!
!



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!
!



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!
L



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!
Lt



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!
Lt



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!
Lrrrnd



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!
trrrind



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!
trrrind



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!
rrrrrrend



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!
ARERERERN



Alg.

Given: x, G
Take a spanning tree T of G. (Which tree?)
Route flow, f, to satisfy y through T
Compute, ¢, using tree ; ¢s =0, add f, through T

Repeat:
Choose non-tree edge e =
f(e) = (¢u—9v)/(Ir(u, V) +
(Ir(u,v) path Iength inT)
Route excess on path through tree.

Which Tree?

(u,v) (Which non-tree edge?)
1)

Claim: Linear time algorithm for T w/ stretch O(mlog nloglog n)!

Stretch: Yoy vy Ir(U, V)

Which non-tree edge?
Choose an edge w/prob. proportional to I1(e).

Finds (1 -+ €) approximation in O(mlog nloglognlog(2)) !'! I'!!
ARERERERN















+1




+1




+1




+1

6







Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:
Repeatedly “Fix” edge e = (u, v).



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:
Repeatedly “Fix” edge e = (u, v).

f(e . .
Route -6 = —Ze’%‘z() flow around cycle induced in T: Ce
(assume €’ are oriented around cycle.)



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:
Repeatedly “Fix” edge e = (u, v).

f(e . .
Route -6 = —Ze’%ee() flow around cycle induced in T: Ce
(assume €’ are oriented around cycle.)

Difference in energy from f and f'.



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:
Repeatedly “Fix” edge e = (u, v).

f(e . .
Route -6 = —Ze’%‘;() flow around cycle induced in T: Ce
(assume €’ are oriented around cycle.)

Difference in energy from f and f'.
Yeec.(f(€) = 8)? —((€))



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:
Repeatedly “Fix” edge e = (u, v).

f(e . .
Route -6 = —Ze’%‘;() flow around cycle induced in T: Ce
(assume €’ are oriented around cycle.)

Difference in energy from f and f'.
Yeec,(f(€) = 8)? — (f(€))? = Locc, —2f(€')8 + 67



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:
Repeatedly “Fix” edge e = (u, v).

f(e . .
Route -6 = —Ze’%‘;() flow around cycle induced in T: Ce
(assume €’ are oriented around cycle.)

Difference in energy from f and f'.
Yeec,(f(€) = 8)? — (f(€))? = Locc, —2f(€')8 + 67
= —(26Lecc, f(€)) + Red?



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:
Repeatedly “Fix” edge e = (u, v).
Route —6 = —Ze’%‘;f(é) flow around cycle induced in T: Ce
(assume €’ are oriented around cycle.)
Difference in energy from f and f'.
Yeec,(f(€) = 8)? — (f(€))? = Locc, —2f(€')8 + 67
= —(26Lecc, f(€)) + Red?

Note: Ze’eCe f(e/) = R36



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:
Repeatedly “Fix” edge e = (u, v).

f(e . .
Route -6 = —Ze’%‘;() flow around cycle induced in T: Ce
(assume €’ are oriented around cycle.)

Difference in energy from f and f'.
Yeec,(f(€) = 8)? — (f(€))? = Locc, —2f(€')8 + 67
= —(26Lecc, f(€)) + Red?

Note: Ze’eCe f(e/) = R36

— —A%_/Re where Ac, = Yoec, €)-



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:
Repeatedly “Fix” edge e = (u, v).

f(e . .
Route -6 = —Ze’%‘;() flow around cycle induced in T: Ce
(assume €’ are oriented around cycle.)

Difference in energy from f and f'.
Yeec,(f(€) = 8)? — (f(€))? = Locc, —2f(€')8 + 67
= —(26Lecc, f(€)) + Red?

Note: Ze’eCe f(e/) = R36
— —A%_/Re where Ac, = Yoec, €)-
Fix a part of the potential difference, A¢, around cyle!!



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:
Repeatedly “Fix” edge e = (u, v).

f(e . .
Route -6 = —Ze’%‘;() flow around cycle induced in T: Ce
(assume €’ are oriented around cycle.)

Difference in energy from f and f'.
Yeec,(f(€) = 8)? — (f(€))? = Locc, —2f(€')8 + 67
= —(26Lecc, f(€)) + Red?

Note: Ze’eCe f(e/) = R36

— —A%_/Re where Ac, = Yoec, €)-

Fix a part of the potential difference, A¢, around cyle!!
— reduction of A% _/Re in energy!



Energy reduction.

Given T,e=(u,v), let Re = Ir(u,v)+1.
Algorithm:
Repeatedly “Fix” edge e = (u, v).

f(e . .
Route -6 = —Ze’%‘;() flow around cycle induced in T: Ce
(assume €’ are oriented around cycle.)

Difference in energy from f and f'.
Yeec,(f(€) = 8)? — (f(€))? = Locc, —2f(€')8 + 67
= —(26Lecc, f(€)) + Red?

Note: Ze’eCe f(e/) = R36

— —A%_/Re where Ac, = Yoec, €)-

Fix a part of the potential difference, A¢, around cyle!!
— reduction of A% _/Re in energy!

Fix 1/Re of a cycle violation!



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.
Total Duality Gap?



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.

Total Duality Gap?
Gap: |f|? (207 x —¢7L9).



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.
Total Duality Gap?
Gap: |f[2—(2¢Tx —¢TLg).
=|f?—2¢"BTf+¢"B"B¢



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.
Total Duality Gap?
Gap: [f2— (29T x — ¢ TL9).
=|f?—2¢"BTf+¢"B"B¢p where BTf=y and L= B"B.



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.
Total Duality Gap?
Gap: |f|? (207 x —¢7L9).
=|f?—2¢"BTf+¢"B"B¢p where BTf=y and L= B"B.
= (f—B¢)(f-B9).



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.
Total Duality Gap?
Gap: [f2— (29T x — ¢ TL9).
=|f?—2¢"BTf+¢"B"B¢p where BTf=y and L= B"B.
= (f—B¢)(f-B9).
Gap = Ye(f(e) — 8y (e))?



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.
Total Duality Gap?
Gap: [f2— (29T x — ¢ TL9).
=|f?—2¢"BTf+¢"B"B¢p where BTf=y and L= B"B.
= (f-B¢)"(f—B9).
Gap = Ye(f(e) — Ay (€))? Difference between ¢ flow and f.



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.
Total Duality Gap?
Gap: [f2— (29T x — ¢ TL9).
=|f?—2¢"BTf+¢"B"B¢p where BTf=y and L= B"B.
= (f—B¢)(f-B9).
Gap = Ye(f(e) — Ay (€))? Difference between ¢ flow and f.
Ay(U,v) = Xecp,, —f(e). assume f(e) is oriented around cycle.



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.
Total Duality Gap?
Gap: [f2— (29T x — ¢ TL9).
=|f?—2¢"BTf+¢"B"B¢p where BTf=y and L= B"B.
= (f-B¢)"(f—B9).
Gap = Ye(f(e) — Ay (€))? Difference between ¢ flow and f.
Ay(U,v) = Xecp,, —f(e). assume f(e) is oriented around cycle.
Foree T, Ay(e)=0.



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.
Total Duality Gap?
Gap: [f2— (29T x — ¢ TL9).
=|f?—2¢"BTf+¢"B"B¢p where BTf=y and L= B"B.
= (f-B¢)"(f—B9).
Gap = Ye(f(e) — Ay (€))? Difference between ¢ flow and f.
Ay(U,v) = Xecp,, —f(e). assume f(e) is oriented around cycle.
Foree T, Ay(e)=0. Foreg T f(e)+Yecp, f(€) = Ac.(f)



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.
Total Duality Gap?
Gap: [f2— (29T x — ¢ TL9).
=|f?—2¢"BTf+¢"B"B¢p where BTf=y and L= B"B.
= (f-B¢)"(f—B9).
Gap = Ye(f(e) — Ay (€))? Difference between ¢ flow and f.
Ay(U,v) = Xecp,, —f(e). assume f(e) is oriented around cycle.
Foree T, Ay(e)=0. Foreg T f(e)+Yecp, f(€) = Ac.(f)

Duality Gap: Yes1 Ye Ace(f)?



Duality Gap?

Algorithm maintains feasible ¢, f, (BT f = )

Primal value: |f|?.
Dual value: 29y — ¢L¢

¢ is tree induced voltages.
Total Duality Gap?
Gap: [f2— (29T x — ¢ TL9).
=|f?—2¢"BTf+¢"B"B¢p where BTf=y and L= B"B.
= (f—B¢)(f-B9).
Gap = Ye(f(e) — Ay (€))? Difference between ¢ flow and f.
Ay(U,v) = Xecp,, —f(e). assume f(e) is oriented around cycle.
Foree T, Ay(e)=0. Foreg T f(e)+Yecp, f(€) = Ac.(f)
Duality Gap: Yo7 Yo Aco(f)?
Total distance from optimal is cycle violations!



Claim: E[change in energy|Gap] = 22



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?




Claim: E[change in energy|Gap] =
Duality Gap: Yeq1 A, (f)?

Gap (t is stretch of E in

Choose edge with probability Ze.



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Ze.

A2
Expected reduction — Y, e = Re

e



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction — Y % = —Ze ce

e



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction — Y % = —Ze ce

e



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction — ¥, % = —Ze ce

Duality Gap reduces by (1 —1/7) every iteration on expectation.

e



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction — ¥, % = —Ze ce

Duality Gap reduces by (1 —1/7) every iteration on expectation.

e

O(rlog(n/e)) iterations gives (1 + €) approximation.



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction — ¥, % = —Ze ce

Duality Gap reduces by (1 —1/7) every iteration on expectation.

e

O(rlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction — ¥, % = —Ze ce

Duality Gap reduces by (1 —1/7) every iteration on expectation.

e

O(rlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...

O(m) iterations



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction — ¥, % = —Ze ce

Duality Gap reduces by (1 —1/7) every iteration on expectation.

e

O(rlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations

lteration in O(log? n) time using balanced binary trees.



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.
— O(m) time



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.
— O(m) time!



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.

— O(m) time! |



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.

— O(m) time! |



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.

— O(m) time! | ||



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.

— O(m) time! 1 | 1|



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.

— O(m) time! 1 | 1|



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.

— O(m) time! 11 1111



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.

— O(m) time! 1 111111



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.

— O(m) time! 1 111111



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.

— O(m) time! 111111111



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.

— O(m) time! | 11111111



Claim: E[change in energy|Gap] = Gap (t is stretch of Ein T.)
Duality Gap: Yeq1 A, (f)?

Choose edge with probability Re

Expected reduction —Xe% e = — oy, ce
Duality Gap reduces by (1 —1/7) every iteration on expectation.
O(zlog(n/e)) iterations gives (1 + €) approximation.
= O(mlognloglogn) ...
O(m) iterations
lteration in O(log? n) time using balanced binary trees.

— O(m) time! | 11111111



Wrapup...

How to get low stretch tree?



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m+/log n) iterations to halve error.



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m+/log n) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.



Wrapup...

How to get low stretch tree?
Answer: Elkin-Spielman-Teng, ...,Abraham, Newman.
Open: Get O(mlogn) stretch?

How to do update along cycle?
Answer: Data Structures.
Idea: Use a binary tree on paths.
Decompose tree into paths.

Geometric View.
Cycles are constraints.
Flow around cycle = 0.
Each cycle update is projection into subspace defined by constraint.

Better Algorithm:
Recursive algorithm give O(m+/log n) iterations to halve error.

Correspondence to Practice: Random sparsification of Cholesky
factorization.

Laplacian Systems are quite general: Climate, physics,
SDD-matrices.



See you ...

Tuesday.



