Lagrange Multipliers.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

Local minima for feasible x^* .

There exist multipliers λ , where

$$\nabla f(x^*) + \sum_i \lambda_i \nabla f_i(x^*) = 0$$

Feasible primal, $f_i(x^*) \le 0$, and feasible dual $\lambda_i \ge 0$.

Complementary slackness: $\lambda_i f_i(x^*) = 0$.

Launched nonlinear programming! See paper.

Lagrangian Dual.

$$f_i(x) \leq 0, i = 1, ... m.$$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\lambda_i \geq 0$ - Lagrangian multiplier for inequality *i*.

For feasible solution x, $L(x, \lambda)$ is

- (A) non-negative in expectation
- (B) positive for any λ .
- (C) non-positive for any valid λ .

If $\exists \lambda \geq 0$, where $L(x,\lambda)$ is positive for all x

- (A) there is no feasible x.
- (B) there is no x, λ with $L(x, \lambda) < 0$.

Linear Program.

$$\min cx, Ax \ge b$$

min
$$c \cdot x$$

subject to
$$b_i - a_i \cdot x \le 0$$
, $i = 1, ..., m$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_{i} \lambda_{i}(b_{i} - a_{i}x).$$

10

$$L(\lambda, x) = -(\sum_{i} x_{i}(a_{i}\lambda - c_{i})) + b\lambda.$$

Best λ ?

 $\max b \cdot \lambda$ where $a_i \lambda = c_i$.

$$\max b\lambda, \lambda^T A = c, \lambda \ge 0$$

Duals!

Lagrangian:constrained optimization.

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x has value v f(x) = v and all $f_i(x) \le 0$

For all $\lambda \geq 0$ have $L(x,\lambda) \leq v$

Maximizing λ , only positive λ_i when $f_i(x) = 0$

which implies $L(x,\lambda) \ge f(x) = v$

If there is λ with $L(x,\lambda) \geq \alpha$ for all x

Optimum value of program is at least α

Primal problem:

x, that minimizes $L(x,\lambda)$ over all $\lambda \geq 0$.

Dual problem:

 λ , that maximizes $L(x,\lambda)$ over all x.

Linear Systems...

Linear Systems

```
Ax = b
Find x.
Gaussian elimination: O(n^3)
    O(n^{2.36...}) with fast matrix multiplication.
Iterative Methods: O(nm\log\frac{1}{\varepsilon}) to \varepsilon approximate.
 For today: where m is sum of nonzeros in matrix.
  For positive semidefinite matrix.
Today: \tilde{O}(m) for Laplacian matrices.
 Laplacian: dI - A where A is adjacency matrix of a graph.
  → symmetric diagonally dominant matrices by reduction.
```

Duality...

```
Given G, \chi, \chi \perp 1
Minimize |f|^2 subject to B^T f = \chi.
Lagrangian: L(\phi, f) = \sum_{e} f(e)^2 + 2\phi^T (\chi - B^T f)
Lagrangian Dual: Find \phi that maximizes \min_{f} L(\phi, f).
Given \phi, minimize L(\phi, f)? Calculus.
For e = (u, v)
 2f(e) + 2(\phi_V - \phi_U) = 0 (Minimum when partial derivatives = 0.)
\rightarrow f(e) = (\phi_u - \phi_v) Potential differences!!!
Matrix Form: f = B\phi Again, flows should be potential differences.
Dual problem: Find \phi that maximizes ...
\max_{\phi} 2\phi^T \chi - \phi^T L\phi
Note: want \phi^T L \phi = \sum_e (\phi_u - \phi_v)^2 to be small.
 Minimize Squared Potential differences!
```

Electrical Flow: a detour.

A graph
$$G=(V,E)$$
.
Circuit: nodes V , resistors E , value 1 (for today.)
Given $\chi:V\to\Re$
Find flow that routes χ and minimizes $\Sigma_e f(e)^2$.

Claim: Minimizer is electrical flow.

Flow corresponds to flow induced by a set of potentials.

Why did we take dual?

Dual problem: Find ϕ that maximizes ... $\max_{\phi} 2\phi \chi - \phi L\phi$ Take the derivative: $L\phi - \chi$

 $L\phi = \chi$ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible ϕ , f,

Primal value: $|f|^2$. Dual value: $2\phi \chi - \phi^T L \phi$

Duality gap is "distance" from optimal!

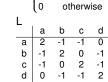
Algorithm: Work on flow and potentials.

To drive gap to 0.

Some Matrices.

Given G = (V, E), arbitrarily orient edges. (-1 e = (u, v)

 $B_{v,e} = \{ 1 \quad e = (v,u) \}$



 $\int du = v$

 $L_{u,v} = \{ -1 \ (u,v) \in E \}$

Fun facts:
$$\mathbf{f} \in \mathfrak{R}^{|E|}$$

 $[B^T f]_u = \sum_{e=(u,v)} f_e - \sum_{e=(v,u)} f_e$
 $B^T B = L$
 $[Bx]_{e=(u,v)} = x_u - x_v$
 $x^T Lx = \sum_{e=(u,v)} (x_u - x_v)^2$

Alg.

Given: γ, G

Take a spanning tree T of G. (Which tree?)

Route flow, f, to satisfy χ through T

Compute, ϕ , using tree; $\phi_s = 0$, add f_e through T

Repeat:

Choose non-tree edge e = (u, v) (Which non-tree edge?)

 $f(e) = (\phi_u - \phi_v)/(I_T(u, v) + 1)$ $(I_T(u, v))$ path length in T)

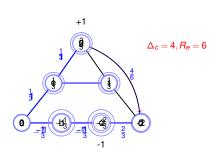
Route excess on path through tree.

Claim: Linear time algorithm for T w/ stretch $O(m \log n \log \log n)$! Stretch: $\sum_{e=(u,v)} I_T(u,v)$

Which non-tree edge?

Choose an edge w/prob. proportional to $I_T(e)$.

пинішіі



Claim: $E[\text{change in energy}|Gap] = \frac{Gap}{\tau} (\tau \text{ is stretch of } E \text{ in } T.)$

Duality Gap: $\sum_{e \notin T} \Delta_{C_e}(f)^2$

Choose edge *e* reduce energy by $-\frac{\Delta_{Ce}^2}{B_e}$

Choose edge with probability $\frac{R_{\theta}}{\tau}$.

Expected reduction
$$-\sum_{e} \frac{R_{e}}{\tau} \frac{\Delta_{c_{e}}^{2}}{R_{e}} = -\sum_{e} \frac{\Delta_{c_{e}}^{2}}{\tau}$$

Duality Gap reduces by $(1-1/\tau)$ every iteration on expectation.

 $O(\tau \log(n/\varepsilon))$ iterations gives $(1+\varepsilon)$ approximation.

 $\tau = O(m \log n \log \log n) \dots$

 $\tilde{O}(m)$ iterations

Iteration in $O(\log^2 n)$ time using balanced binary trees.

Energy reduction.

Given
$$T, e = (u, v)$$
, let $R_e = I_T(u, v) + 1$.

Algorithm:

Repeatedly "Fix" edge e=(u,v). Route $-\delta = -\frac{\sum_{e' \in C_\theta} f(e')}{R_\theta}$ flow around cycle induced in T: C_θ (assume e' are oriented around cycle.)

Difference in energy from
$$f$$
 and f' .
$$\sum_{e' \in C_e} (f(e') - \delta)^2 - (f(e'))^2 = \sum_{e' \in C_e} -2f(e')\delta + \delta^2 = -(2\delta \sum_{e' \in C_e} f(e')) + R_E \delta^2$$

$$= -(2\delta \sum_{e' \in C_e} f(e')) + H_E \delta$$
Note: $\sum_{e' \in C_e} f(e') = R_e \delta$

$$ightarrow -\Delta_{C_e}^2/R_e$$
 where $\Delta_{C_e} = \sum_{e' \in C_e} f(e')$.

Fix a part of the potential difference, Δ_{c_n} around cyle!!

 \rightarrow reduction of $\Delta_{C_e}^2/R_e$ in energy!

Fix $1/R_e$ of a cycle violation!

See you ...

Tuesday.

Duality Gap?

Algorithm maintains feasible ϕ , f, $(B^T f = \chi)$

Primal value: $|f|^2$.

Dual value: $2\phi \chi - \phi L\phi$

 ϕ is tree induced voltages.

Total Duality Gap?

Gap:
$$|f|^2 - (2\phi^T \chi - \phi^T L \phi)$$
.

$$=|f|^2-2\phi^TB^Tf+\phi^TB^TB\phi \text{ where } B^Tf=\chi \text{ and } L=B^TB.\\ =(f-B\phi)^T(f-B\phi).$$

$$= (f - B\phi)^T (f - B\phi)^T$$

 $\operatorname{\mathsf{Gap}} = \sum_{e} (f(e) - \Delta_{\phi}(e))^2$ Difference between ϕ flow and f.

$$\Delta_{\phi}(u,v) = \sum_{e \in P_{u,v}} -f(e)$$
. assume $f(e)$ is oriented around cycle.

For
$$e \in T$$
, $\Delta_{\phi}(e) = 0$. For $e \notin T$ $f(e) + \sum_{e \in P_e} f(e) = \Delta_{C_e}(f)$

Duality Gap: $\sum_{e \notin T} \sum_{e} \Delta_{c_e}(f)^2$

Total distance from optimal is cycle violations!