
Perceptron

Support Vector Machines

Lagrange Multiplier

+

+
+

+

−−

−

−
−

− −

−

−
−

γ

θ

Labelled points with x1, . . . ,xn.

Hyperplane separator.

Margins.

Inside unit ball.
Margin γ
Hyperplane:

w ·x ≥ γ for + points.
w ·x ≤−γ for − points.

Put points on unit ball.
w ·x = cosθ

Will assume positive labels!
negate the negative.

Perceptron Algorithm
An aside: a hyperplane is a perceptron.

(single layer neural network, do you see? Linear programming!)

Alg: Given x1, . . . ,xn.

Let w1 = x1.
For each xi where wt ·xi has wrong sign (negative)

wt+1 = wt +xi
t = t +1

Theorem: Algorithm only makes 1
γ2 mistakes.

Idea: Mistake on positive xi :
wt+1 ·xi = (wt +xi) ·xi = wtxi +1.

A step in the right direction!

Claim 1: wt+1 ·w ≥ wt ·w + γ.
A γ in the right direction!

Mistake on positive xi ;
wt+1 ·w = (wt +xi) ·w = wt ·w +xi ·w

≥ wt ·w + γ.

Alg: Given x1, . . . ,xn.

Let w1 = x1.
For each xi where wt ·xi has wrong sign (negative)

wt+1 = wt +xi
t = t +1

Claim 2: |wt+1|2 ≤ |wt |2 +1

wt

xi
xiwt+1

wt+1 = wt +xi
Less than a right angle!
→ |wt+1|2 ≤ |wt |2 + |xi |2 ≤ |wt |2 +1.

Algebraically.
Positive xi , wt ·xi ≤ 0.
(wt +xi)

2 = |wt |2 +2wt ·xi + |xi |2.
≤ |wt |2 + |xi |2 = |wt |2 +1.

Claim 2 holds even if no separating hyperplane!

Putting it together...

Claim 1: wt+1 ·w ≥ wt ·w + γ. =⇒ wt ·w ≥ tγ

Claim 2: |wt+1|2 ≤ |wt |2 +1. =⇒ |wt |2 ≤ t

M-number of mistakes in algorithm.
Let t = M.

γM ≤ wM ·w
≤ ||wM || ≤

√
M.

→ M ≤ 1
γ2

Hinge Loss.
Most of data has good separator.

Claim 1: wt+1 ·w ≥ wt ·w + γ.

Don’t make progress or tilt the wrong way.

How much bad tilting?

Rotate points to have γ-margin.
Total rotation: TDγ .

Analysis: subtract bad tilting part.

Claim 1: wt+1 ·w ≥ wt ·w + γ− rotation for xit .

wM ≥ γM−TDγ + Claim 2. → γM−TDγ ≤
√

M

Quadratic equation: γ2M2− (2γTDγ +1)M +TD2
γ ≤ 0.

Uh...

One implication: M ≤ 1
γ2 +

2
γ TDγ .

The extra is (twice) the amount of rotation in units of 1/γ.

Hinge loss: 1
γ TDγ .

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.

Find it! (Kind of.)

Any point within γ/2 is still a mistake.

Let w1 = x1,

For each x2, . . .xn,
if wt ·xi < γ/2, wt+1 = wt +xi , t = t +1

Claim 1: wt+1 ·w ≥ wt ·w + γ.

Same (ish) as before.

Margin Approximation: Claim 2

Claim 2(?): |wt+1|2 ≤ |wt |2 +1??

wt

xi

< γ/2

wt+1

v

Adding xi to wt even if in correct
direction.

Obtuse triangle.

|v |2 ≤ |wt |2 +1
→ |v | ≤ |wt |+ 1

2|wt |
(square right hand side.)

Red bit is at most γ/2.
Together: |wt+1| ≤ |wt |+ 1

2|wt | +
γ
2

If |wt | ≥ 2
γ , then |wt+1| ≤ |wt |+ 3

4 γ.

M updates |wM | ≤ 2
γ +

3
4 γM.

Claim 1: Implies |wM | ≥ γM.

γM ≤ 2
γ +

3
4 γM→ M ≤ 8

γ2

Support Vector Machines.

Other fat separators?

−

−
−

−

−

+

+

+

+
x2 +y2

x y

− −− −
−

+
+ +

+

No hyperplane separator.
Circle separator!
Map points to three dimensions.

map point (x ,y) to point (x ,y ,x2 +y2).
Hyperplane separator in three dimensions.

Kernel Functions.
Map x to φ(x).

Hyperplane separator for points under φ(·).
Problem: complexity of computing in higher dimension.

Recall perceptron. Only compute dot products!
Test: wt ·xi > γ
wt = xi1 +xi2 +xi3 · · ·

Support Vectors: xi1 ,xi2 , . . .
→ Support Vector Machine.

Kernel trick: compute dot products in original space.

Kernel function for mapping φ(·): K (x ,y) = φ(x) ·φ(y)
K (x ,y) = (1+x ·y)d φ(x) = [1, . . . ,xi , . . . ,xixj . . .]. Polynomial.

K (x ,y) = (1+x1y1)(1+x2y2) · · ·(1+xnyn)
φ(x) - products of all subsets. Boolean Fourier basis.

K (x ,y) = exp(C|x−y |2) Infinite dimensional space.
Expansion of ez . Gaussian Kernel.

Video

“http://www.youtube.com/watch?v=3liCbRZPrZA”

Support Vector Machine

Pick Kernel.

Run algorithm that:
(1) Uses dot products.
(2) Outputs hyperplane that is linear combination of points.

Perceptron.

Max Margin Problem as Convex optimization:
min |w |2 where ∀i w ·xi ≥ 1.

X
Algorithms output: tight hyperplanes!

Solution is linear combination of hyperplanes
w = α1x1 +α2x2 + · · · .

With Kernel: φ(·)
Problem is to find αi where
∀i(∑j αjφ(xj)) ·φ(xi)≥ 1

Lagrange Multipliers.

Lagrangian Dual.
Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ) = ∑m
i=1 λi fi(x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If ∃λ ≥ 0, where L(x ,λ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ)< 0.

Lagrangian:constrained optimization.

min f (x)
subject to fi(x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ) = f (x)+∑m
i=1 λi fi(x)

If (primal) x has value v f (x) = v and all fi(x)≤ 0
For all λ ≥ 0 have L(x ,λ)≤ v

Maximizing λ , only positive λi when fi(x) = 0
which implies L(x ,λ)≥ f (x) = v

If there is λ with L(x ,λ)≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ) over all x .

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min f (x)
subject to fi(x)≤ 0, i = 1, ...,m

L(x ,λ) = f (x)+∑m
i=1 λi fi(x)

Local minima for feasible x∗.

There exist multipliers λ , where

∇f (x∗)+∑i λi∇fi(x∗) = 0

Feasible primal, fi(x∗)≤ 0, and feasible dual λi ≥ 0.

Complementary slackness: λi fi(x∗) = 0.

Launched nonlinear programming! See paper.

Linear Program.

mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx +∑i λi(bi −aix).

or

L(λ ,x) =−(∑j xj(ajλ −cj))+bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

