Perceptron
Support Vector Machines
Lagrange Multiplier

Hyperplane separator.
Margins.

Inside unit ball.
Margin y
Hyperplane:
w-x > vy for + points.
w-x < —yfor — points.
Put points on unit ball.
w- X = cosf
Will assume positive labels!
negate the negative.

Labelled points with x1,..., Xn.

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network, do you see? Linear programming!)

Alg: Given Xxy,...,Xp.

Let wy = xq.
For each x; where w; - x; has wrong sign (negative)
Wiiq = W+ X
t=t+1
Theorem: Algorithm only makes % mistakes.
Idea: Mistake on positive x;:
Wit - X = (We+X) - Xi = weXi+ 1.
A step in the right direction!
Claim1: wy 1-w>w-w—+7y.
Ay in the right direction!
Mistake on positive x;;
Wi W= (Wi+X) W=W-W+X;- W
> W wHy.

Alg: Given xi,...,Xn.

Let wy = x4.
For each x; where w; - x; has wrong sign (negative)
Wit = Wi+ X

t=t+1
Claim 2: |w;, 1|2 < [w[2 +1
Wit = Wit X
Less than a right angle!
Weit a7 WP < WP Dl < w1
Xj Algebraically.
W Positive x;, w; - x; < 0.
t

(We+ )2 = |wi|? +2w; - x; + | x; 2.
< Wil + i [2 = (w2 +1.

Claim 2 holds even if no separating hyperplane!

Putting it together...

Claim1: wy - w>w-w+y. = wi-w>ty
Claim 2: |w; 12 < w2 +1. = |w? <t
M-number of mistakes in algorithm.
Lett=M.
YM<wpy-w

< [lwyl| < VM.

4
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Hinge Loss.
Most of data has good separator.
Claim1: wy 1-w>w-w+7.
Don’t make progress or tilt the wrong way.
How much bad tilting?

Rotate points to have y-margin.
Total rotation: TD,.
Analysis: subtract bad tilting part.

Claim 1: wp 1 -w > w; - w+ y— rotation for x;,.
wy > yM — TD, + Claim 2. — yM - TD, < VM
Quadratic equation: Y?M? — (2yTDy+1)M+ TDZ < 0.
Uh...

One implication: M < % +21D,.

The extra is (twice) the amount of rotation in units of 1/7.
Hinge loss: 17D,




Approximately Maximizing Margin Algorithm

There is a y separating hyperplane.

Find it! (Kind of.)

Any point within y/2 is still a mistake.
Let wy = x4,

For each x»,... X,
if we-X; <7v/2, W = Wi+ X5, t=1t+1

Claim 1: wiq-w>wp-w+7y.

Same (ish) as before.

Margin Approximation: Claim 2

Claim 2(?): [wp44[? < |2 +12?
Adding x; to w; even if in correct

direction.
Obtuse triangle.
X;
' IV < w41
1
w = |V < Wil + gy

«—>
<v/2 (square right hand side.)

Red bit is at most y/2.
Together: |we1| < Wil + g + 4
If lwe] > 2, then [wp.q| < |wi| + 37.
M updates |wy| < %-&- Sym.
Claim 1: Implies |wy| > YM.
2.3 8
M < ?+IYM*> MS?

Support Vector Machines.

Other fat separators?

+

No hyperplane separator.
Circle separator!
Map points to three dimensions.
map point (x, y) to point (x, y, X%+ y?).
Hyperplane separator in three dimensions.

Kernel Functions.
Map x to ¢(x).
Hyperplane separator for points under ¢(-).
Problem: complexity of computing in higher dimension.

Recall perceptron. Only compute dot products!
Test: w;-x; >y
Wt = Xj, + X, + Xjy -+

Support Vectors: X;,, Xj,,. ..
— Support Vector Machine.

Kernel trick: compute dot products in original space.
Kernel function for mapping ¢(-): K(x,y) = ¢(x)-¢(y)
Kx,y)=1+x-y) o(x) = [1,...,X,..., XiX;...]. Polynomial.

K(x,y) = (1 +xy1)(1 + Xay2) - (1 + Xnyn)
0(x) - products of all subsets. Boolean Fourier basis.
K(x,y) = exp(C|x — y|?) Infinite dimensional space.
Expansion of €. Gaussian Kernel.

Video

“http://www.youtube.com/watch?v=3liCbRZPrZA”




Support Vector Machine

Pick Kernel.
Run algorithm that:

(1) Uses dot products.

(2) Outputs hyperplane that is linear combination of points.
Perceptron.

Max Margin Problem as Convex optimization:
min|w|? where Vi w-x; > 1.

Algorithms output: tight hyperplanes!

Solution is linear combination of hyperplanes
W=01X1 +0Xo+"--.

With Kernel: ¢(-)
Problem is to find o; where

Vi(L; 09 (x)) - #(x) = 1

Lagrange Multipliers.

Lagrangian Dual.

Find x, subject to
fi(x)<0,i=1,...m.

Remember calculus (constrained optimization.)

Lagrangian:  L(x,A) =Y, Aifi(x)

A; > 0 - Lagrangian multiplier for inequality /.

For feasible solution x, L(x,1) is
(A) non-negative in expectation
(B) positive for any A.

(C) non-positive for any valid A.

If 34 > 0, where L(x,4) is positive for all x

(A) there is no feasible x.
(B) thereis no x,A with L(x,A) <0.

Lagrangian:constrained optimization.

min  f(x)
subject to f(x) <0, i=1,...m

Lagrangian function:
L(x,A) = f(x) + EZ4 Aifi(x)
If (primal) x has value v f(x) = v and all fi(x) <0
For all A >0 have L(x,A) <v
Maximizing A, only positive A; when f;(x) =0
which implies L(x,1) > f(x) = v
If there is A with L(x,1) > o for all x
Optimum value of program is at least o

Primal problem:
x, that minimizes L(x,1) over all 2 > 0.

Dual problem:
A, that maximizes L(x,A) over all x.

Why important: KKT.

Karash, Kuhn and Tucker Conditions.

min  f(x)
subject to f;(x) <0, i=1,..

L(x.2) = F(x) + £ Aifi()
Local minima for feasible x*.
There exist multipliers A, where
VI(x*)+¥LiAVi(x*)=0
Feasible primal, fi(x*) < 0, and feasible dual 4; > 0.
Complementary slackness: 4;f;(x*) = 0.
Launched nonlinear programming! See paper.

Linear Program.

mincx,Ax > b

min
subject to b —a;-x <0,

Lagrangian (Dual):

L(A,x) =cx+Y;Ai(bi — ajx).
or
L(2,x) = —(x;xi(aA — ) + bA.
Best A?

maxb-A where A = ¢;.

maxbA,ATA=c A >0
Duals!

Cc-X

i=1,..

,m




