

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network, do you see? Linear programming!)
Alg: Given x_{1}, \ldots, x_{n}.

Let $w_{1}=x_{1}$.

For each x_{i} where $w_{t} \cdot x_{i}$ has wrong sign (negative)
$w_{t+1}=w_{t}+x_{i}$
$t=t+1$
Theorem: Algorithm only makes $\frac{1}{\gamma^{2}}$ mistakes
Idea: Mistake on positive x_{i}
$w_{t+1} \cdot x_{i}=\left(w_{t}+x_{i}\right) \cdot x_{i}=w_{t} x_{i}+1$.
A step in the right direction!
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
$A \gamma$ in the right direction!
Mistake on positive x_{i},

$$
w_{t+1} \cdot w=\left(w_{t}+x_{i}\right) \cdot w=w_{t} \cdot w+x_{i} \cdot w
$$

$$
\geq w_{t} \cdot w+\gamma .
$$

Hinge Loss

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way
How much bad tilting?
Rotate points to have γ-margin Total rotation: $T D_{\gamma}$
Analysis: subtract bad tilting part
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.
$w_{M} \geq \gamma M-T D_{\gamma}+$ Claim 2. $\rightarrow \gamma M-T D_{\gamma} \leq \sqrt{M}$
Quadratic equation: $\gamma^{2} M^{2}-\left(2 \gamma T D_{\gamma}+1\right) M+T D_{\gamma}^{2} \leq 0$
Uh
One implication: $M \leq \frac{1}{\gamma^{2}}+\frac{2}{\gamma} T D_{\gamma}$.
The extra is (twice) the amount of rotation in units of $1 / \gamma$
Hinge loss: $\frac{1}{\gamma} T D_{\gamma}$.

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.
Find it! (Kind of.)
Any point within $\gamma / 2$ is still a mistake.
Let $w_{1}=x_{1}$,
For each $x_{2}, \ldots x_{n}$,
if $w_{t} \cdot x_{i}<\gamma / 2, w_{t+1}=w_{t}+x_{i}, t=t+1$
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$
Same (ish) as before

Other fat separators?

No hyperplane separator Circle separator!
Map points to three dimensions.
map point (x, y) to point ($x, y, x^{2}+y^{2}$.
Hyperplane separator in three dimensions.

Margin Approximation: Claim 2

$$
\text { Claim 2(?): }\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?
$$

Adding x_{i} to w_{t} even if in correct direction.

If $\left|w_{t}\right| \geq \frac{2}{\gamma}$, then $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{3}{4} \gamma$.
M updates $\left|w_{M}\right| \leq \frac{2}{\gamma}+\frac{3}{4} \gamma M$.
Claim 1: Implies $\left|w_{M}\right| \geq \gamma M$.
$\gamma M \leq \frac{2}{\gamma}+\frac{3}{4} \gamma M \rightarrow M \leq \frac{8}{\gamma^{2}}$

Kernel Functions.

Map x to $\phi(x)$.
Hyperplane separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!
Test: $w_{t} \cdot x_{i}>\gamma$
$w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \cdots$

Kernel trick: compute dot products in original space
Kernel function for mapping $\phi(\cdot)$: $K(x, y)=\phi(x) \cdot \phi(y)$
$K(x, y)=(1+x \cdot y)^{d} \phi(x)=\left[1, \ldots, x_{i}, \ldots, x_{i} x_{j} \ldots\right]$. Polynomial.
$K(x, y)=\left(1+x_{1} y_{1}\right)\left(1+x_{2} y_{2}\right) \cdots\left(1+x_{n} y_{n}\right)$
$\phi(x)$ - products of all subsets. Boolean Fourier basis.
$K(x, y)=\exp \left(C|x-y|^{2}\right)$ Infinite dimensional space.
Expansion of e^{z}. Gaussian Kernel.

Support Vector Machines
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$
$\rightarrow|v| \leq\left|w_{t}\right|+\frac{1}{2 \mid w_{t}}$
(square right hand side.)
Red bit is at most $\gamma / 2$. Together: $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}+\frac{\gamma}{2}$


```
                                T
```


Support Vector Machine

Pick Kernel.

Run algorithm that:

(1) Uses dot products
(2) Outputs hyperplane that is linear combination of points

Perceptron.

Max Margin Problem as Convex optimization:
$\min |w|^{2}$ where $\forall i w \cdot x_{i}>1$.

Algorithms output: tight hyperplanes

 Solution is linear combination of hyperplanes $w=\alpha_{1} x_{1}+\alpha_{2} x_{2}+$With Kernel: $\phi(\cdot)$
Problem is to find α_{i} where
$\forall i\left(\sum_{j} \alpha_{j} \phi\left(x_{j}\right)\right) \cdot \phi\left(x_{i}\right) \geq 1$

Lagrangian:constrained optimization.

$$
\text { subject to } f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

Lagrangian function:

$L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
If (primal) x has value $v f(x)=v$ and all $f_{i}(x) \leq 0$
For all $\lambda \geq 0$ have $L(x, \lambda) \leq v$
Maximizing λ, only positive λ_{i} when $f_{i}(x)=0$
which implies $L(x, \lambda) \geq f(x)=v$
If there is λ with $L(x, \lambda) \geq \alpha$ for all x
Optimum value of program is at least α
Primal problem:
x, that minimizes $L(x, \lambda)$ over all $\lambda \geq 0$
Dual problem:
λ, that maximizes $L(x, \lambda)$ over all x.

Lagrange Multipliers.

Why important: KKT.
Karash, Kuhn and Tucker Conditions.

$$
\begin{aligned}
& \min ^{\text {subject to } f_{i}(x) \leq 0,} \quad f(x) \quad i=1, \ldots, m
\end{aligned}
$$

$L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
Local minima for feasible x^{*}.
There exist multipliers λ, where
$\nabla f\left(x^{*}\right)+\sum_{i} \lambda_{i} \nabla f_{i}\left(x^{*}\right)=0$
Feasible primal, $f_{i}\left(x^{*}\right) \leq 0$, and feasible dual $\lambda_{i} \geq 0$.
Complementary slackness: $\lambda_{i} f_{i}\left(x^{*}\right)=0$.
Launched nonlinear programming! See paper.

Lagrangian Dual.

Find x, subject to
$f_{i}(x) \leq 0, i=1, \ldots m$.
Remember calculus (constrained optimization.)
Lagrangian: $L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
$\lambda_{i} \geq 0$ - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.
(C) non-positive for any valid λ.

If $\exists \lambda \geq 0$, where $L(x, \lambda)$ is positive for all x
(A) there is no feasible x
(B) there is no x, λ with $L(x, \lambda)<0$.

Linear Program.

$$
\min c x, A x \geq b
$$

$\min \quad c \cdot x$

$$
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, \quad i=1, \ldots, m
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c$
$\max b \lambda, \lambda^{\top} A=c, \lambda \geq 0$
Duals!

