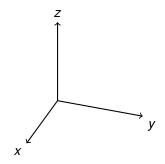
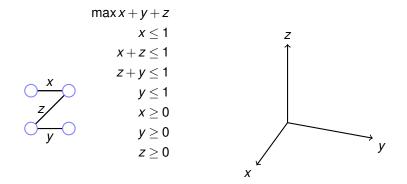
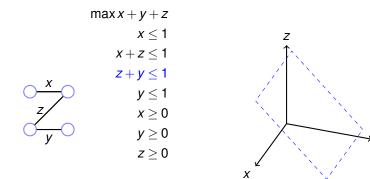
Crazy Picture.

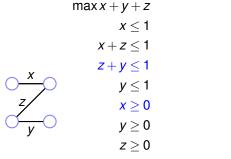


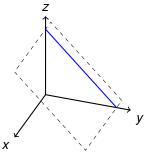


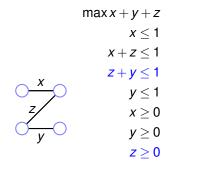


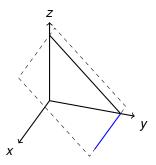


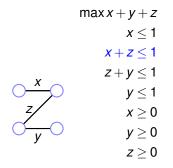
V

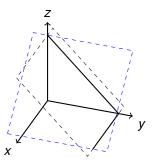


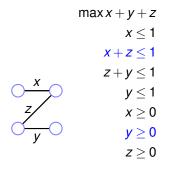


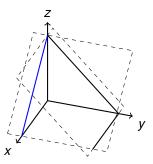


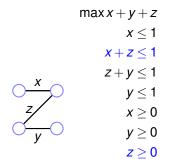


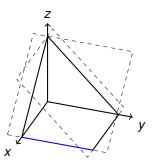


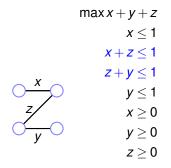


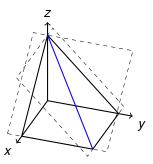


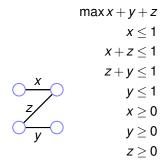


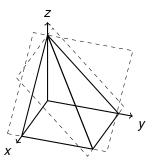


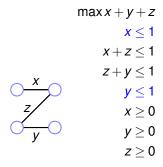




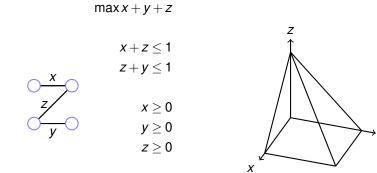




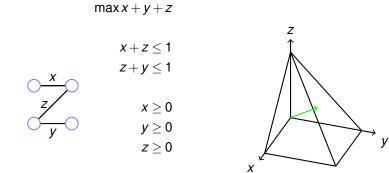


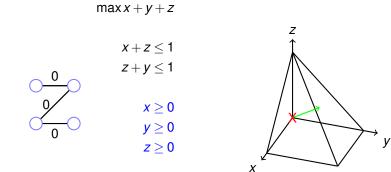


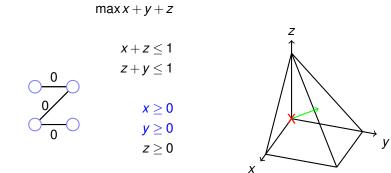
Blue constraints redundant.

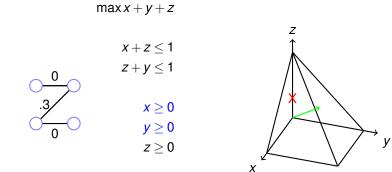


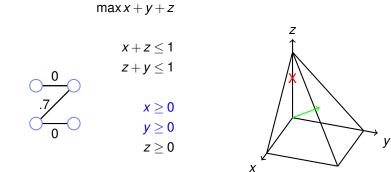
V

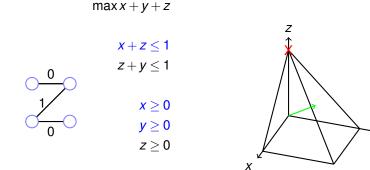




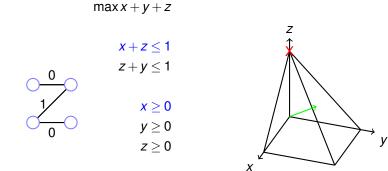


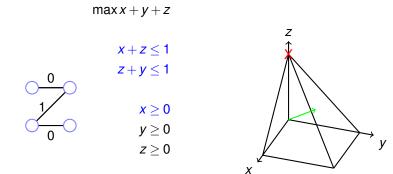


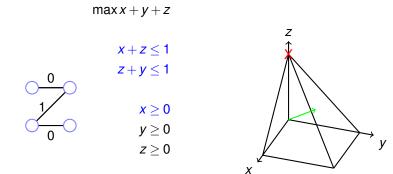


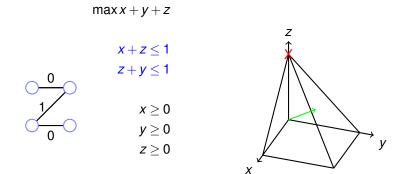


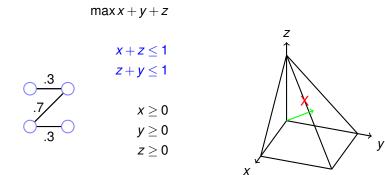
V





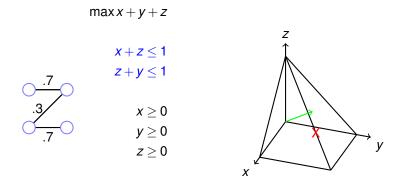






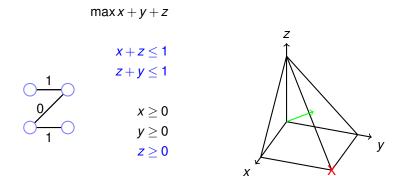
$$\bigcirc +1 \bigcirc -1 \bigcirc +1 \bigcirc \bigcirc$$

Augmenting Path.



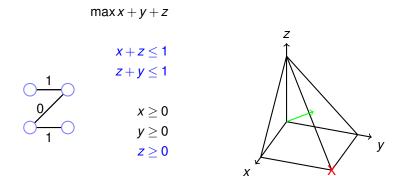
Blue constraints tight.

 $^{+1}$   $^{-1}$   $^{+1}$   $^{-1}$ 



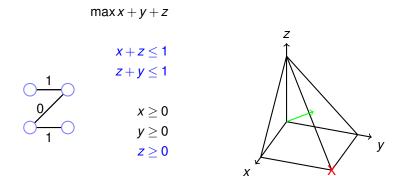
Blue constraints tight.

 $0^{+1}$   $0^{-1}$   $0^{+1}$   $0^{-1}$ 



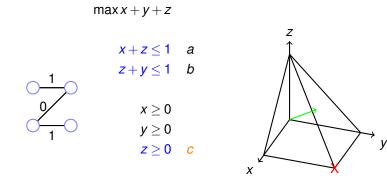
Blue constraints tight.

 $0^{+1}$   $0^{-1}$   $0^{+1}$   $0^{-1}$ 



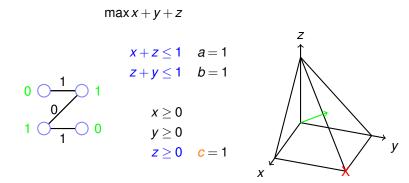
Blue constraints tight.

 $0^{+1}$   $0^{-1}$   $0^{+1}$   $0^{-1}$ 



Blue constraints tight.

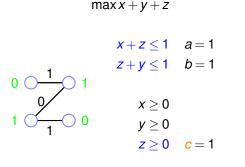
 $0^{+1}$   $0^{-1}$   $0^{+1}$   $0^{-1}$ 

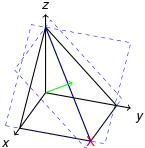


Blue constraints tight.

Sum: x + 2z + y.

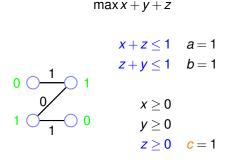
 $0^{+1}0^{-1}0^{+1}0$ 

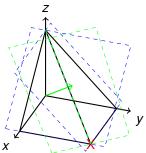




Blue constraints tight.

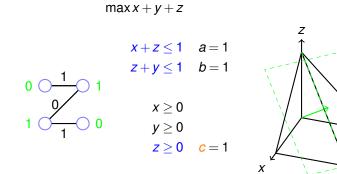
 $^{+1}^{-1}^{-1}^{+1}$ 





Blue constraints tight.

 $^{+1}^{-1}^{-1}^{+1}$ 



ν

Blue constraints tight.

 $^{+1}^{-1}^{-1}^{+1}$ 

Convex Separator.

Convex Separator.

Farkas

Convex Separator.

Farkas

Strong Duality!!!!!

Convex Separator.

Farkas

Strong Duality!!!! Maybe.

Ax = b

Ax = b

A is  $n \times n$  matrix...

Ax = b

A is  $n \times n$  matrix...

..has a solution.

Ax = b

A is  $n \times n$  matrix...

..has a solution.

If rows of A are linearly independent.

Ax = b

A is  $n \times n$  matrix...

..has a solution.

If rows of *A* are linearly independent.  $y^T A \neq 0$  for any *y* 

Ax = b

A is  $n \times n$  matrix...

..has a solution.

If rows of *A* are linearly independent.  $y^T A \neq 0$  for any *y* 

.. or if *b* in subspace of *A*.

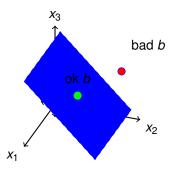
Ax = b

A is  $n \times n$  matrix...

..has a solution.

If rows of *A* are linearly independent.  $y^T A \neq 0$  for any *y* 

.. or if *b* in subspace of *A*.



Later.

Later. Actually. No.

Later. Actually. No. Now

Later. Actually. No. Now ...ish. Special Cases:

Later. Actually. No. Now ...ish. Special Cases: min-max 2 person games and experts.

Later. Actually. No. Now ...ish. Special Cases: min-max 2 person games and experts. Max weight matching and algorithm.

Later. Actually. No. Now ...ish. Special Cases: min-max 2 person games and experts. Max weight matching and algorithm. Approximate: facility location primal dual.

Later. Actually. No. Now ...ish. Special Cases: min-max 2 person games and experts. Max weight matching and algorithm. Approximate: facility location primal dual.

Today: Geometry!

For a convex body *P* and a point *b*,  $b \in P$  or hyperplane separates *P* from *b*.

For a convex body *P* and a point *b*,  $b \in P$  or hyperplane separates *P* from *b*.

 $v, \alpha$ , where  $v \cdot x \leq \alpha$  and  $v \cdot b > \alpha$ .

For a convex body *P* and a point *b*,  $b \in P$  or hyperplane separates *P* from *b*.

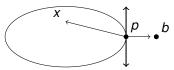
 $v, \alpha$ , where  $v \cdot x \leq \alpha$  and  $v \cdot b > \alpha$ .

For a convex body *P* and a point *b*,  $b \in P$  or hyperplane separates *P* from *b*.

 $v, \alpha$ , where  $v \cdot x \le \alpha$  and  $v \cdot b > \alpha$ . point p where  $(x - p)^T (b - p) < 0$ 

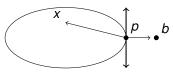
For a convex body *P* and a point *b*,  $b \in A$  or there is point *p* where  $(x-p)^T(b-p) < 0$ 

For a convex body *P* and a point *b*,  $b \in A$  or there is point *p* where  $(x-p)^T(b-p) < 0$ 



**Proof:** Choose *p* to be closest point to *b* in *P*.

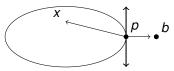
For a convex body *P* and a point *b*,  $b \in A$  or there is point *p* where  $(x-p)^T(b-p) < 0$ 



**Proof:** Choose *p* to be closest point to *b* in *P*.

Done

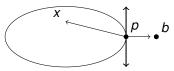
For a convex body *P* and a point *b*,  $b \in A$  or there is point *p* where  $(x-p)^T(b-p) < 0$ 



**Proof:** Choose *p* to be closest point to *b* in *P*.

Done or  $\exists x \in P$  with  $(x-p)^T (b-p) \ge 0$ 

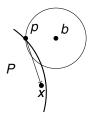
For a convex body *P* and a point *b*,  $b \in A$  or there is point *p* where  $(x-p)^T(b-p) < 0$ 



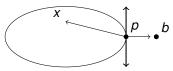
**Proof:** Choose *p* to be closest point to *b* in *P*.

Done or  $\exists x \in P$  with  $(x-p)^T (b-p) \ge 0$ 

$$(x-p)^T(b-p) \ge 0$$

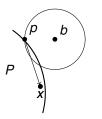


For a convex body *P* and a point *b*,  $b \in A$  or there is point *p* where  $(x-p)^T(b-p) < 0$ 



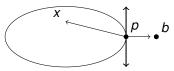
**Proof:** Choose *p* to be closest point to *b* in *P*.

Done or  $\exists x \in P$  with  $(x-p)^T (b-p) \ge 0$ 



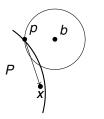
$$(x-p)^T(b-p) \ge 0$$
  
 $\rightarrow \le 90^\circ$  angle between  $\overrightarrow{x-p}$  and  $\overrightarrow{b-p}$ .

For a convex body *P* and a point *b*,  $b \in A$  or there is point *p* where  $(x-p)^T(b-p) < 0$ 



**Proof:** Choose *p* to be closest point to *b* in *P*.

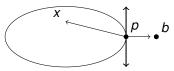
Done or  $\exists x \in P$  with  $(x-p)^T (b-p) \ge 0$ 



$$(x-p)^T(b-p) \ge 0$$
  
 $\rightarrow \le 90^\circ$  angle between  $\overrightarrow{x-p}$  and  $\overrightarrow{b-p}$ .

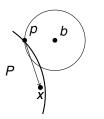
Must be closer point *b* on line from *p* to *x*.

For a convex body *P* and a point *b*,  $b \in A$  or there is point *p* where  $(x-p)^T(b-p) < 0$ 



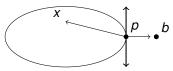
**Proof:** Choose *p* to be closest point to *b* in *P*.

Done or  $\exists x \in P$  with  $(x-p)^T (b-p) \ge 0$ 



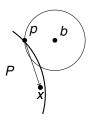
 $(x-p)^{T}(b-p) \ge 0$   $\rightarrow \le 90^{\circ}$  angle between  $\overrightarrow{x-p}$  and  $\overrightarrow{b-p}$ . Must be closer point *b* on line from *p* to *x*. All points on line to *x* are in polytope.

For a convex body *P* and a point *b*,  $b \in A$  or there is point *p* where  $(x-p)^T(b-p) < 0$ 



**Proof:** Choose *p* to be closest point to *b* in *P*.

Done or  $\exists x \in P$  with  $(x-p)^T (b-p) \ge 0$ 



 $(x-p)^T(b-p) \ge 0$  $\rightarrow \le 90^\circ$  angle between  $\overrightarrow{x-p}$  and  $\overrightarrow{b-p}$ .

Must be closer point b on line from p to x.

All points on line to x are in polytope.

Contradicts choice of *p* as closest point to *b* in polytope.



Squared distance to *b* from  $p + (x - p)\mu$ 



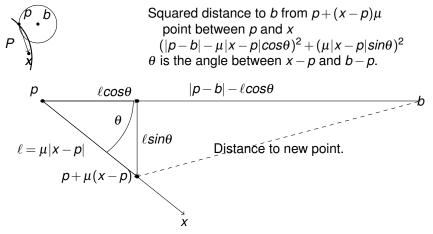
Squared distance to *b* from  $p + (x - p)\mu$ point between *p* and *x* 

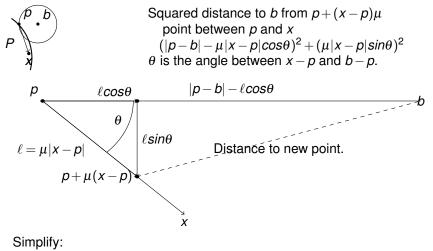


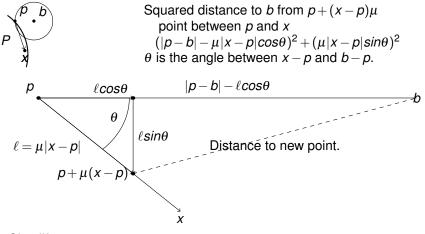
Squared distance to *b* from  $p + (x - p)\mu$ point between *p* and *x*  $(|p-b| - \mu|x - p|\cos\theta)^2 + (\mu|x - p|\sin\theta)^2$ 



Squared distance to *b* from  $p + (x - p)\mu$ point between *p* and *x*  $(|p-b|-\mu|x-p|\cos\theta)^2 + (\mu|x-p|\sin\theta)^2$  $\theta$  is the angle between x - p and b - p.

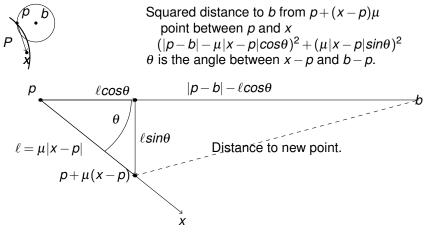






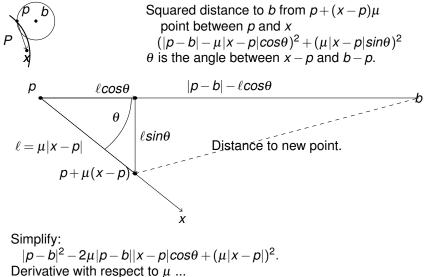
Simplify:

$$|p - b|^2 - 2\mu |p - b| |x - p| \cos\theta + (\mu |x - p|)^2$$

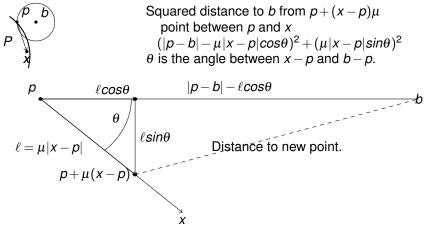


Simplify:

 $|p - b|^2 - 2\mu |p - b| |x - p| \cos\theta + (\mu |x - p|)^2$ . Derivative with respect to  $\mu$  ...



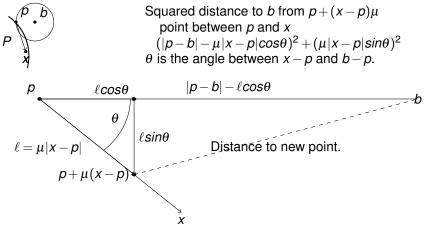
 $-2|p-b||x-p|\cos\theta+2(\mu|x-p|^2).$ 



Simplify:

 $|p-b|^2 - 2\mu|p-b||x-p|\cos\theta + (\mu|x-p|)^2$ . Derivative with respect to  $\mu$  ...

 $-2|p-b||x-p|\cos\theta+2(\mu|x-p|^2).$ which is negative for a small enough value of  $\mu$ 



Simplify:

 $|p - b|^2 - 2\mu |p - b| |x - p| \cos\theta + (\mu |x - p|)^2$ . Derivative with respect to  $\mu$  ...

 $-2|p-b||x-p|\cos\theta+2(\mu|x-p|^2).$ which is negative for a small enough value of  $\mu$  (for positive  $\cos\theta$ .)

Theorems of Alternatives.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g.,  $0 \neq 5$ .

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g.,  $0 \neq 5$ . That is, find y where  $y^T A = 0$  and  $y^T b \neq 0$ .

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g.,  $0 \neq 5$ . That is, find y where  $y^T A = 0$  and  $y^T b \neq 0$ . Space is image of A.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g.,  $0 \neq 5$ . That is, find y where  $y^T A = 0$  and  $y^T b \neq 0$ . Space is image of A. Affine subspace is columnspan of A.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g.,  $0 \neq 5$ . That is, find y where  $y^T A = 0$  and  $y^T b \neq 0$ . Space is image of A. Affine subspace is columnspan of A. y is normal.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g.,  $0 \neq 5$ . That is, find y where  $y^T A = 0$  and  $y^T b \neq 0$ . Space is image of A. Affine subspace is columnspan of A. y is normal. y in nullspace for column span.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g.,  $0 \neq 5$ . That is, find y where  $y^T A = 0$  and  $y^T b \neq 0$ . Space is image of A. Affine subspace is columnspan of A. y is normal. y in nullspace for column span.  $y^T b \neq 0 \implies b$  not in column span.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g.,  $0 \neq 5$ . That is, find y where  $y^T A = 0$  and  $y^T b \neq 0$ . Space is image of A. Affine subspace is columnspan of A. y is normal. y in nullspace for column span.  $y^T b \neq 0 \implies b$  not in column span.

There is a separating hyperplane between any two convex bodies.

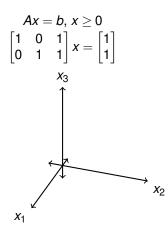
Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

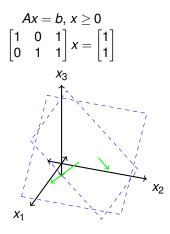
From Ax = b use row reduction to get, e.g.,  $0 \neq 5$ . That is, find y where  $y^T A = 0$  and  $y^T b \neq 0$ . Space is image of A. Affine subspace is columnspan of A. y is normal. y in nullspace for column span.  $y^T b \neq 0 \implies b$  not in column span.

There is a separating hyperplane between any two convex bodies.

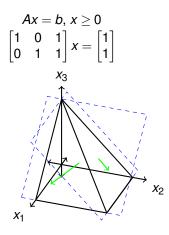
Idea: Let closest pair of points in two bodies define direction.



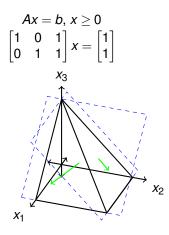




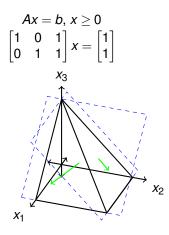




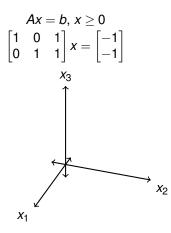






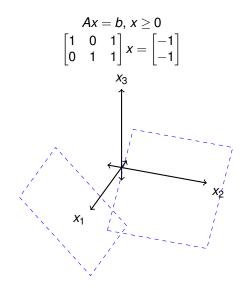




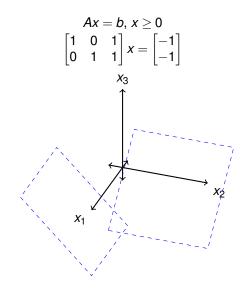


Coordinates 
$$s = b - Ax$$
.  
 $x \ge 0$  where  $s = 0$ ?

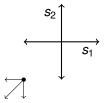


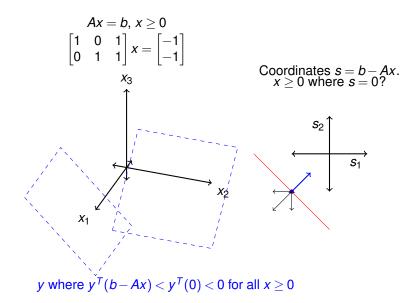


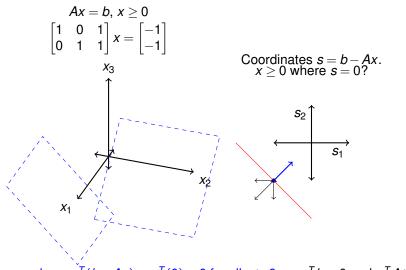




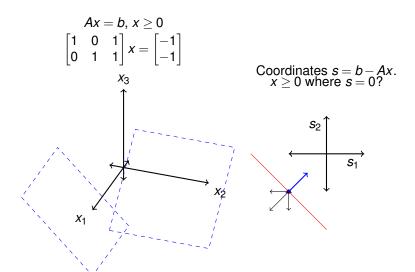
Coordinates 
$$s = b - Ax$$
.  
 $x \ge 0$  where  $s = 0$ ?



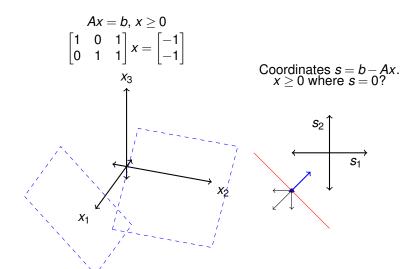




y where  $y^T(b-Ax) < y^T(0) < 0$  for all  $x \ge 0 \rightarrow y^T b < 0$  and  $y^T A \ge 0$ .

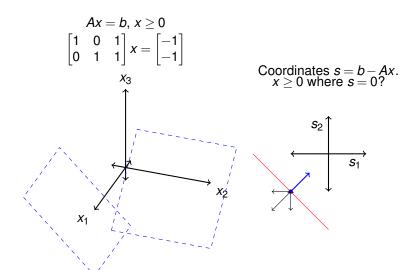


*y* where  $y^T(b-Ax) < y^T(0) < 0$  for all  $x \ge 0 \rightarrow y^T b < 0$  and  $y^T A \ge 0$ . **Farkas A:** Solution for exactly one of:



*y* where  $y^T(b-Ax) < y^T(0) < 0$  for all  $x \ge 0 \rightarrow y^T b < 0$  and  $y^T A \ge 0$ . **Farkas A:** Solution for exactly one of:

(1)  $Ax = b, x \ge 0$ 



*y* where  $y^T(b-Ax) < y^T(0) < 0$  for all  $x \ge 0 \rightarrow y^T b < 0$  and  $y^T A \ge 0$ . **Farkas A:** Solution for exactly one of:

(1) 
$$Ax = b, x \ge 0$$
  
(2)  $y^T A \ge 0, y^T b < 0$ 



Farkas A: Solution for exactly one of:

# **Farkas A:** Solution for exactly one of: (1) $Ax = b, x \ge 0$

#### Farkas A: Solution for exactly one of:

(1)  $Ax = b, x \ge 0$ (2)  $y^T A \ge 0, y^T b < 0.$ 

#### **Farkas A:** Solution for exactly one of: (1) $Ax = b, x \ge 0$

(2)  $y^T A \ge 0, y^T b < 0.$ 

Farkas B: Solution for exactly one of:

# **Farkas A:** Solution for exactly one of: (1) A: b x > 0

(1)  $Ax = b, x \ge 0$ (2)  $y^T A \ge 0, y^T b < 0.$ 

**Farkas B:** Solution for exactly one of: (1)  $Ax \le b$ 

#### Farkas A: Solution for exactly one of:

(1)  $Ax = b, x \ge 0$ (2)  $y^T A \ge 0, y^T b < 0.$ 

Farkas B: Solution for exactly one of:

(1)  $Ax \le b$ (2)  $y^T A = 0, y^T b < 0, y \ge 0.$ 

## Strong Duality

(From Goemans notes.)

Primal P 
$$z^* = \min c^T x$$
  
 $Ax = b$   
 $x > 0$ 

Dual D: $w^* = \max b^T y$  $A^T y \le c$ 

## Strong Duality

(From Goemans notes.)

Primal P
$$z^* = \min c^T x$$
Dual  $D: w^* = \max b^T y$  $Ax = b$  $A^T y \le c$  $x \ge 0$  $A^T y \le c$ 

Weak Duality: x, y- feasible P, D:  $x^T c \ge b^T y$ .

## Strong Duality

(From Goemans notes.)

Primal P
$$z^* = \min c^T x$$
Dual D:  $w^* = \max b^T y$  $Ax = b$  $A^T y \le c$  $x \ge 0$  $A^T y \le c$ 

**Weak Duality:** x, y-feasible P, D:  $x^T c \ge b^T y$ .

$$x^{T}c - b^{T}y = x^{T}c - x^{T}A^{T}y$$
$$= x^{T}(c - A^{T}y)$$
$$\geq 0$$

**Strong duality** If P or D is feasible and bounded then  $z^* = w^*$ . Primal feasible, bounded, value  $z^*$ .

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

 $\exists y, y^T A \leq c, b^T y \geq z^*.$ 

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

 $\exists y, y^T A \leq c, b^T y \geq z^*.$ 

Want y.

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

 $\exists y, y^T A \leq c, b^T y \geq z^*.$ 

Want y.

$$\begin{pmatrix} A^{\check{T}} \\ -b^{T} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y.

$$\begin{pmatrix} \mathbf{A}^{\mathsf{T}} \\ -\mathbf{b}^{\mathsf{T}} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

If none, then Farkas B says  $\exists x, \lambda \ge 0.$  $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ 

$$\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$$

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y.

$$\begin{pmatrix} \mathbf{A}^{\mathsf{T}} \\ -\mathbf{b}^{\mathsf{T}} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

If none, then Farkas B says  $\exists x, \lambda \ge 0.$  $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ 

$$c^{T}$$
  $-z^{*}$ ) $\begin{pmatrix} x \\ \lambda \end{pmatrix}$  < 0

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ 

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y.

$$\begin{pmatrix} \mathbf{A}^{\mathsf{T}} \\ -\mathbf{b}^{\mathsf{T}} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

If none, then Farkas B says  $\exists x, \lambda \ge 0.$  $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ 

$$c^{T}$$
  $-z^{*}$ ) $\begin{pmatrix} x\\\lambda \end{pmatrix}$  < 0

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ 

Case 1:  $\lambda > 0$ .

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y.

$$\begin{pmatrix} \mathbf{A}^{\mathsf{T}} \\ -\mathbf{b}^{\mathsf{T}} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

If none, then Farkas B says  $\exists x, \lambda \ge 0.$   $(A -b)\begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$  $(c^T -z^*)\begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$ 

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1:  $\lambda > 0$ .  $A(\frac{x}{\lambda}) = b$ ,  $c^T(\frac{x}{\lambda}) < z^*$ .

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y.

$$\begin{pmatrix} A^{\check{T}} \\ -b^{T} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

If none, then Farkas B says  $\exists x, \lambda \ge 0.$  $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$   $(c^{7})$ 

$$c^{T}$$
  $-z^{*}$ ) $\begin{pmatrix} x\\ \lambda \end{pmatrix}$  < 0

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1:  $\lambda > 0$ .  $A(\frac{x}{\lambda}) = b$ ,  $c^T(\frac{x}{\lambda}) < z^*$ . Better Primal!!

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y.

$$\begin{pmatrix} A^{\check{T}} \\ -b^{T} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

If none, then Farkas B says  $\exists x, \lambda \ge 0.$   $(A -b)\begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$  $(c^T -z^*)\begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$ 

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1:  $\lambda > 0$ .  $A(\frac{x}{\lambda}) = b$ ,  $c^T(\frac{x}{\lambda}) < z^*$ . Better Primal!! Case 2:  $\lambda = 0$ .  $Ax = 0, c^T x < 0$ .

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y.

$$\begin{pmatrix} \mathbf{A}^{\mathsf{T}} \\ -\mathbf{b}^{\mathsf{T}} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

If none, then Farkas B says  $\exists x, \lambda \ge 0.$  $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ 

$$c^{T}$$
  $-z^{*}$ ) $\begin{pmatrix} x\\ \lambda \end{pmatrix} < 0$ 

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^*\lambda < 0$ Case 1:  $\lambda > 0$ .  $A(\frac{x}{\lambda}) = b$ ,  $c^T(\frac{x}{\lambda}) < z^*$ . Better Primal!! Case 2:  $\lambda = 0$ . Ax = 0,  $c^T x < 0$ . Feasible  $\tilde{x}$  for Primal.

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y.

$$\begin{pmatrix} A^{\check{T}} \\ -b^{T} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

If none, then Farkas B says  $\exists x, \lambda \ge 0.$  $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ 

$$\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1:  $\lambda > 0$ .  $A(\frac{x}{\lambda}) = b$ ,  $c^T(\frac{x}{\lambda}) < z^*$ . Better Primal!!
Case 2:  $\lambda = 0$ . Ax = 0,  $c^T x < 0$ .
Feasible  $\tilde{x}$  for Primal.
(a)  $\tilde{x} + \mu x \ge 0$  since  $\tilde{x}, x, \mu \ge 0$ .

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y.

$$\begin{pmatrix} A^{\check{T}} \\ -b^{T} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

If none, then Farkas B says  $\exists x, \lambda \ge 0.$  $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ 

$$\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^{t}x - z^{*}\lambda < 0$ Case 1:  $\lambda > 0$ .  $A(\frac{x}{\lambda}) = b$ ,  $c^{T}(\frac{x}{\lambda}) < z^{*}$ . Better Primal!!

Case 2: 
$$\lambda = 0$$
.  $Ax = 0$ ,  $c^T x < 0$ .  
Feasible  $\tilde{x}$  for Primal.  
(a)  $\tilde{x} + \mu x \ge 0$  since  $\tilde{x}, x, \mu \ge 0$ .  
(b)  $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$ .

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y.

$$\begin{pmatrix} A^{\check{T}} \\ -b^{T} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

If none, then Farkas B says  $\exists x, \lambda \ge 0.$  $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ 

$$\begin{pmatrix} c^{T} & -z^{*} \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^*\lambda < 0$ Case 1:  $\lambda > 0$ .  $A(\frac{x}{\lambda}) = b$ ,  $c^T(\frac{x}{\lambda}) < z^*$ . Better Primal!! Case 2:  $\lambda = 0$ . Ax = 0,  $c^T x < 0$ . Feasible  $\tilde{x}$  for Primal. (a)  $\tilde{x} + \mu x > 0$  since  $\tilde{x}, x, \mu > 0$ .

(b)  $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$ . Feasible

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y.

$$\begin{pmatrix} A^{\check{T}} \\ -b^{T} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

If none, then Farkas B says  $\exists x, \lambda \ge 0.$  $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ 

$$\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1:  $\lambda > 0$ .  $A(\frac{x}{\lambda}) = b$ ,  $c^T(\frac{x}{\lambda}) < z^*$ . Better Primal!!

Case 2: 
$$\lambda = 0$$
.  $Ax = 0$ ,  $c^T x < 0$ .  
Feasible  $\tilde{x}$  for Primal.  
(a)  $\tilde{x} + \mu x \ge 0$  since  $\tilde{x}, x, \mu \ge 0$ .  
(b)  $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$ . Feasible  $c^T(\tilde{x} + \mu x) = x^T \tilde{x} + \mu c^T x \to -\infty$  as  $\mu \to \infty$ 

Primal feasible, bounded, value  $z^*$ .

**Claim:** Exists a solution to dual of value at least  $z^*$ .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y.

$$\begin{pmatrix} A^{\tilde{T}} \\ -b^{T} \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

If none, then Farkas B says  $\exists x, \lambda \ge 0.$  $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ 

$$egin{array}{ccc} c^{\mathcal{T}} & -z^* \end{pmatrix} egin{pmatrix} x \ \lambda \end{pmatrix} < 0$$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^*\lambda < 0$ Case 1:  $\lambda > 0$ .  $A(\frac{x}{\lambda}) = b$ ,  $c^T(\frac{x}{\lambda}) < z^*$ . Better Primal!!

Case 2: 
$$\lambda = 0$$
.  $Ax = 0, c^T x < 0$ .  
Feasible  $\tilde{x}$  for Primal.  
(a)  $\tilde{x} + \mu x \ge 0$  since  $\tilde{x}, x, \mu \ge 0$ .  
(b)  $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$ . Feasible  $c^T(\tilde{x} + \mu x) = x^T \tilde{x} + \mu c^T x \rightarrow -\infty$  as  $\mu \rightarrow \infty$   
Primal unbounded!

See you on Tuesday.