
Crazy Picture.

Maximum matching and simplex.
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maxx +y +z
x ≤ 1

x +z ≤ 1 a = 1
z +y ≤ 1 b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0 c = 1

Blue constraints intersect.Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .
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Augmenting Path. Via Gaussian Elimination!

Convex Separator.

Farkas

Strong Duality!!!!! Maybe.

Linear Equations.

Ax = b

A is n×n matrix...

..has a solution.

If rows of A are linearly independent.
yT A 6= 0 for any y

..or if b in subspace of A.

x1

x2

x3

ok b

bad b

Strong Duality.

Later. Actually. No. Now ...ish.
Special Cases:

min-max 2 person games and experts.
Max weight matching and algorithm.
Approximate: facility location primal dual.

Today: Geometry!

Convex Body and point.

For a convex body P and a point b, b ∈ P or hyperplane separates P
from b.

v ,α, where v ·x ≤ α and v ·b > α.

point p where (x−p)T (b−p)< 0

bp
x



Proof.

For a convex body P and a point b, b ∈ A or there is point p where
(x−p)T (b−p)< 0

bp
x

Proof: Choose p to be closest point to b in P.

Done or ∃ x ∈ P with (x−p)T (b−p)≥ 0

bp

xx

P

(x−p)T (b−p)≥ 0
→ ≤ 90◦ angle between −−−→x−p and

−−−→
b−p.

Must be closer point b on line from p to x .

All points on line to x are in polytope.

Contradicts choice of p as closest point to b in
polytope.

More formally.
bp

xx
P

Squared distance to b from p+(x−p)µ
point between p and x
(|p−b|−µ|x−p|cosθ)2 +(µ|x−p|sinθ)2

θ is the angle between x−p and b−p.

b
|p−b|− `cosθ

Distance to new point.

p

θ

p+µ(x−p)

`= µ|x−p| `sinθ

`cosθ

x
Simplify:
|p−b|2−2µ|p−b||x−p|cosθ +(µ|x−p|)2.

Derivative with respect to µ ...
−2|p−b||x−p|cosθ +2(µ|x−p|2).

which is negative for a small enough value of µ (for positive cosθ .)

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0 6= 5.
That is, find y where yT A = 0 and yT b 6= 0.
Space is image of A. Affine subspace is columnspan of A.

y is normal. y in nullspace for column span.
yT b 6= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Ax = b, x ≥ 0[
1 0 1
0 1 1

]
x =

[
1
1

][
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3
Coordinates s = b−Ax .

x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0)< 0 for all x ≥ 0 → yT b < 0 and yT A≥ 0.
Farkas A: Solution for exactly one of:

(1) Ax = b,x ≥ 0
(2) yT A≥ 0,yT b < 0.

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0
(2) yT A≥ 0,yT b < 0.

Farkas B: Solution for exactly one of:
(1) Ax ≤ b
(2) yT A = 0,yT b < 0,y ≥ 0.

Strong Duality

(From Goemans notes.)

Primal P z∗ = mincT x
Ax = b
x ≥ 0

Dual D :w∗ = maxbT y

AT y ≤ c

Weak Duality: x ,y - feasible P, D: xT c ≥ bT y .

xT c−bT y = xT c−xT AT y

= xT (c−AT y)
≥ 0



Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A≤ c,bT y ≥ z∗.

Want y .(
AT

−bT

)
y ≤

(
c
−z∗

)
.

If none, then Farkas B says
∃x ,λ ≥ 0.
(
A −b

)(x
λ

)
= 0

(
cT −z∗

)(x
λ

)
< 0

∃x ,λ with Ax−bλ = 0 and ctx−z∗λ < 0

Case 1: λ > 0. A( x
λ ) = b, cT ( x

λ )< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞
Primal unbounded!

See you on Tuesday.


