

Maximum matching and simplex.

Strong Duality.

Later. Actually. No. Now ...ish.
Special Cases:
min-max 2 person games and experts.
Max weight matching and algorithm
Approximate: facility location primal dual.
Today: Geometry!

Convex Separator.
Farkas
Strong Duality!!!!! Maybe

Convex Body and point.

For a convex body P and a point $b, b \in P$ or hyperplane separates P from b.
v, α, where $v \cdot x \leq \alpha$ and $v \cdot b>\alpha$.
point p where $(x-p)^{T}(b-p)<0$

Proof.

For a convex body P and a point $b, b \in A$ or there is point p where $(x-p)^{\top}(b-p)<0$

Proof: Choose p to be closest point to b in P.
Done or $\exists x \in P$ with $(x-p)^{T}(b-p) \geq 0$

$(x-p)^{T}(b-p) \geq 0$
$\rightarrow \leq 90^{\circ}$ angle between $\overrightarrow{x-p}$ and $\overrightarrow{b-p}$.
Must be closer point b on line from p to x.
All points on line to x are in polytope.
Contradicts choice of p as closest point to b in polytope.

$A x=b, x \geq 0$
$[11$

$\left[\begin{array}{ccc}11 & 0 & 11 \\ 0 & 11 & 11\end{array}\right] x x=\left[\begin{array}{c}-11 \\ -11\end{array}\right]$

y where $y^{\top}(b-A x)<y^{\top}(0)<0$ for all $x \geq 0 \rightarrow y^{\top} b<0$ and $y^{\top} A \geq 0$ Farkas A: Solution for exactly one of:
(1) $A x=b, x \geq 0$
(2) $y^{\top} A \geq 0, y^{\top} b<0$.

Squared distance to b from $p+(x-p) \mu$ point between p and x
$(|p-b|-\mu|x-p| \cos \theta)^{2}+(\mu|x-p| \sin \theta)^{2}$ θ is the angle between $x-p$ and $b-p$.

Simplify:
$|p-b|^{2}-2 \mu|p-b||x-p| \cos \theta+(\mu|x-p|)^{2}$
Derivative with respect to $\mu \ldots$
$-2|p-b||x-p| \cos \theta+2\left(\mu|x-p|^{2}\right)$.
which is negative for a small enough value of μ (for positive $\cos \theta$.)

Farkas 2

Farkas A: Solution for exactly one of:
(1) $A x=b, x \geq 0$
(2) $y^{\top} A \geq 0, y^{\top} b<0$.

Farkas B: Solution for exactly one of:
(1) $A x \leq b$
(2) $y^{\top} A=0, y^{\top} b<0, y \geq 0$

Generalization: exercise.

Theorems of Alternatives

inear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.
From $A x=b$ use row reduction to get, e.g., $0 \neq 5$
That is, find y where $y^{\top} A=0$ and $y^{\top} b \neq 0$.
Space is image of A. Affine subspace is columnspan of A. y is normal. y in nullspace for column span.
$y^{\top} b \neq 0 \Longrightarrow b$ not in column span.
There is a separating hyperplane between any two convex bodies.
Idea: Let closest pair of points in two bodies define direction.

Strong Duality

(From Goemans notes.)

Primal P $z^{*}=\min c^{T} x$	Dual $\mathrm{D}: w^{*}=\max b^{T} y$
$A x=b$	$A^{T} y \leq c$
$x \geq 0$	

Weak Duality: x, y-feasible P, D: $x^{\top} c \geq b^{\top} y$.

$$
\begin{aligned}
x^{T} c-b^{T} y & =x^{T} c-x^{T} A^{T} y \\
& =x^{T}\left(c-A^{T} y\right) \\
& \geq 0
\end{aligned}
$$

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{\top} A \leq c, b^{\top} y \geq z^{*}$.
Want y.
$\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}}$
If none, then Farkas B says
$\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}c^{T} & -z^{*}\end{array}\right)\binom{x}{\lambda}<0$
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$
$\exists x, \lambda$ with $A x-b \lambda=0$ and $c^{t} x-z^{*} \lambda<0$

Case 1: $\lambda>0 . A\left(\frac{x}{\lambda}\right)=b, c^{T}\left(\frac{x}{\lambda}\right)<z^{*}$. Better Primal!!
Case 2: $\lambda=0 . A x=0, c^{T} x<0$.
Feasible \tilde{x} for Primal.
(a) $\tilde{x}+\mu x \geq 0$ since $\tilde{x}, x, \mu \geq 0$.
(b) $A(\tilde{x}+\mu x)=A \tilde{x}+\mu A x=b+\mu \cdot 0=b$. Feasible
$c^{T}(\tilde{x}+\mu x)=x^{\top} \tilde{x}+\mu c^{\top} x \rightarrow-\infty$ as $\mu \rightarrow \infty$
Primal unbounded!

See you on Tuesday.

