

Farkas 2

Farkas A: Solution for exactly one of: (1) $Ax = b, x \ge 0$ (2) $y^T A \ge 0, y^T b < 0$. **Farkas B:** Solution for exactly one of:

(1) $Ax \le b$ (2) $y^T A = 0, y^T b < 0, y \ge 0.$

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., $0 \neq 5$. That is, find y where $y^T A = 0$ and $y^T b \neq 0$. Space is image of A. Affine subspace is columnspan of A. y is normal. y in nullspace for column span. $y^T b \neq 0 \implies b$ not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Strong Duality

(From Goemans notes.)

Primal P $z^* = \min c^T x$ Ax = b $x \ge 0$ Weak Dual D : $w^* = \max b^T y$ $A^T y \le c$ Weak Duality: x, y- feasible P, D: $x^T c \ge b^T y$.

```
x^{T}c - b^{T}y = x^{T}c - x^{T}A^{T}y= x^{T}(c - A^{T}y)\geq 0
```

Strong duality If P or D is feasible and bounded then $z^* = w^*$. Primal feasible, bounded, value z^* . **Claim:** Exists a solution to dual of value at least z^* . $\exists y, y^T A \leq c, b^T y \geq z^*.$ Want y. $\begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ y $\leq \begin{pmatrix} c \\ -z^* \end{pmatrix}$ See you on Tuesday. If none, then Farkas B says $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$ $\exists x, \lambda \ge 0.$ $\begin{pmatrix} A & -b \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^T(\frac{x}{\lambda}) < z^*$. Better Primal!! Case 2: $\lambda = 0$. Ax = 0, $c^T x < 0$. Feasible \tilde{x} for Primal. (a) $\tilde{x} + \mu x \ge 0$ since $\tilde{x}, x, \mu \ge 0$. (b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$. Feasible $c^{T}(\tilde{x} + \mu x) = A^{T}\tilde{x} + \mu c^{T}x \rightarrow -\infty$ as $\mu \rightarrow \infty$ Primal unbounded!