
Lecture 1

February 14

1.1 Max Cut

Given a graph G = (V,E), our goal is to maximize
∑

(i,j)∈E wi,j · 1[(i, j) is a cut]. This has applications in,
for example, VLSI. This is NP-Complete, so we will use an approximation.

Greedy: Here is a randomized algorithm. Place each vertex on one side of the cut with probability 1/2
independently. Then,

ALG =
∑

wi,j1[ALG cuts (i, j)],

E[ALG] =
∑

(i,j)∈E

wi,jP[ALG cuts (i, j)]

=
∑

(i,j)∈E

wi,j ·
1

2
=

1

2
|E| ≥ 1

2
·OPT.

When we see vertex vi, put it in S or T , maximizing the number of edges cut.

Claim: This also gives a 1/2-approximation.

Proof : At each step, we cut at least 1/2 of the edges.

1.1.1 LP for Max Cut

We will have a variable xi for each i ∈ V , xi ∈ {0, 1}. zi,j is the indicator for cutting (i, j) ∈ E. We have
the constraints

zi,j ≤ xi + xj ,

zi,j ≤ 2− xi − xj ,

with the objective

max
∑

(i,j)∈E

wi,j · zi,j .

To perform the LP relaxation, we let xi ∈ [0, 1].

An Integrality Gap (α) means ∃G OPT(G) ≤ α · LP(G). The gap instance here is xi = 1/2 ∀i ∈ V .
Max-Cut has a 1/2-integrality gap. Consider Kn. The LP cuts(

n

2

)
=
n(n− 1)

2
=
n2

2
(1−O(1))

1

LECTURE 1. FEBRUARY 14 2

edges, whereas

OPT =
(n

2

)2
=
n2

4
.

Hence,

OPT ≤ 1

2
LP.

This is no better than the greedy algorithm!

Theorem 1.1 (Chan, Lee, Raghavendra, Steurer). There is no polynomial-sized LP for max cut with
integrality gap better than 1/2.

In fact, we need ≥ nlogn constraints. The technique is to show that we might as well use a specific LP
(Sherali Adams). This result has been improved to require ≥ 2εn constraints.

1.2 Semidefinite Programming (SDP)

A common mantra is:

SDP↔ quadratic programming,

LP↔ integer linear programming.

This is generally not a very good mantra, but suitable for today.

Here is the QP for max cut:

xi ∈ {±1} ↔ x2i = 1,

zi,j =
1

2
(1− xi · xj),

max
∑

(i,j)∈E

wi,j ·
1

2
(1− xixj).

From zi ∈ Z, we will now have vi ∈ Rn. The SDP is

v1, . . . , vn ∈ Rn,

〈vi, vi〉 = 1↔ ‖vi‖22 = 1,

max
∑

wi,j ·
1

2
(1− 〈vi, vj〉),

where n = |V |.

1. Why can we solve this?

2. What is the advantage? What’s going on?

This is indeed a relaxation. If x1 = 1, then a feasible solution is to take the column vector with a 1 in the
first entry and 0s otherwise; similarly for x2 = −1.

Consider vi, vj , unit vectors.

‖vi − vj‖22 = ‖vi‖22 + ‖vj‖22 − 2〈vi, vj〉
= 2(1− 〈vi, vj〉).

LECTURE 1. FEBRUARY 14 3

Since we have ‖vi‖2 = 1, our objective is actually

max
1

2

∑
wi,j‖vi − vj‖22.

The interpretation is that the SDP pushes vectors apart on the sphere when the corresponding vertices are
connected by an edge.

The SDP can achieve an ≈ 0.878-approximation, which is > 1/2.

The algorithm chooses a random hyperplane, setting xi = 1 for all vi above the hyperplane and xi = −1 for
all vi below the hyperplane.

ALG =
∑

wi,j1[ALG cuts i, j]

E[ALG] =
∑

wi,j · P[ALG cuts i, j]

The probability that an edge is cut is proportional to the angle between the vectors θ(vi, vj). Hence,
P[i, j cut] = θ(vi, vj)/π.

=
∑

wi,j
θ(vi, vj)

π

One has cos(θ(i, j)) = 〈vi, vj〉.

=
∑

wi,j
arccos(〈vi, vj〉)

π

One can prove analytically that for all −1 ≤ x ≤ 1, arccos(x)/π ≥ 0.878((1/2)(1− 〈vi, vj〉)).

≥
∑

wi,j · 0.878

(
1

2
(1− 〈vi, vj〉)

)
= 0.878 · SDP ≥ 0.878 ·OPT.

If the Unique Games Conjecture (UCG) is true, then it is NP-Hard to improve over 0.878.

Raghavendra: “If the näıve SDP has integrality gap α, then assuming UGC, it is NP-Hard to improve over
α.”

1.3 Solving SDPs

1.3.1 Positive Semidefinite Matrices

Why can we (efficiently) solve for vectors?

Definition 1.2. A positive semidefinite matrix (PSD) A is a n × n symmetric matrix such that
all eigenvalues of A are non-negative.

There are equivalent definitions.

A is PSD ⇐⇒ A = V V > ⇐⇒ x>Ax ≥ 0 ∀x ∈ Rn.

We have

A =
∑

λi · uiu>i (spectral theorem)

LECTURE 1. FEBRUARY 14 4

= U


. . . 0

λi

0
. . .

U>

= U


. . . 0√

λi

0
. . .




. . . 0√
λi

0
. . .

U>
= V V >

because λi ≥ 0.

If A = V V >, then

x>Ax = x>V V >x

=
∥∥V >x∥∥2

2

≥ 0.

If x>Ax ≥ 0 ∀x ∈ Rn, for any eigenvector ui ∈ Rn,

u>i Aui = λi ≥ 0.

Let Ai,j = 〈vi, vj〉. We can rewrite the SDP as

max
∑

(i,j)∈E

wi,j ·
1

2
(1−Ai,j)

Ai,i = 1,

Ai,j = Aj,i ∀i, j,
A is PSD (A � 0).

1.3.2 Ellipsoid Algorithm

Given any convex set K ⊆ Rn, the algorithm finds some x ∈ K. If the objective value is OBJ = m, then we
can use binary search to find the optimal objective value.

We need as input an “oracle” for separating hyperplanes. (This is why convexity is necessary.) We repeatedly
guess points and ask the oracle for separating hyperplanes. The runtime is logarithmic in the “niceness of
K”. Convex sets can only be exponentially bad, so the overall runtime is a polynomial.

We already know that the linear constraints give us a convex set. We will prove that the set of PSD matrices
is convex.

K is convex ⇐⇒ ∀x1, x2 ∈ K c · x1 + (1− c) · x ∈ K ∀0 < c < 1. Let X1, X2 ∈ {PSD matrices}. Then, for
all v ∈ Rn, we must prove

v>(cX1 + (1− c)X2)v ≥ 0

(recall that A is PSD ⇐⇒ v>Av ≥ 0 ∀v). However, we have

v>(cX1 + (1− c)X2)v = c︸︷︷︸
≥0

· v>X1v︸ ︷︷ ︸
≥0

+ (1− c)︸ ︷︷ ︸
≥0

· v>X2v︸ ︷︷ ︸
≥0

≥ 0,

so cX1 + (1− c)X2 is also PSD.

	February 14
	Max Cut
	LP for Max Cut

	Semidefinite Programming (SDP)
	Solving SDPs
	Positive Semidefinite Matrices
	Ellipsoid Algorithm

