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In this thesis, we describe plausible lattice-based constructions with properties that approx-

imate the sought-after multilinear maps in hard-discrete-logarithm groups. The security of

our constructions relies on seemingly hard problems in ideal lattices, which can be viewed

as extensions of the assumed hardness of the NTRU function.

These new constructions radically enhance our tool set and open a floodgate of applica-

tions. We present a survey of these applications.
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CHAPTER 1

Introduction

The aim of cryptography is to design primitives and protocols that withstand adversarial
behavior. Information theoretic cryptography, how-so-ever desirable, is extremely restrictive
and most non-trivial cryptographic tasks are known to be information theoretically impossi-
ble. In order to realize sophisticated cryptographic primitives, we forgo information theoretic
security and assume limitations on what can be efficiently computed. In other words we at-
tempt to build secure systems conditioned on some computational intractability assumption
such as – factoring [RSA78], discrete log [Knu97], decisional Diffe-Hellman [DH76], learning
with errors [Reg05] and many more (see [Ver13]).

Last decade has seen a push towards using structured assumptions such as the ones
based on bilinear maps, for realizing sophisticated cryptographic goals otherwise considered
impossible according to folklore. For example, bilinear pairings have been used to design
ingenious protocols for tasks such as one-round three-party key exchange [Jou00], identity-
based encryption [BF01], and non-interactive zero-knowledge proofs [GOS06]. By now the
applications of bilinear maps have become too numerous to name.

Boneh and Silverberg [BS03] showed that cryptographic groups equipped with multilinear
maps would have even more interesting applications, including one-round multi-party key
exchange and very efficient broadcast encryption. However they presented strong evidence
that such maps should be hard to construct. In particular, they attempted to construct
multilinear maps from abelian varieties (extending known techniques for constructing bilin-
ear maps), but identified serious obstacles, and concluded that “such maps might have to
either come from outside the realm of algebraic geometry, or occur as ‘unnatural’ computable
maps arising from geometry.” Since then, the persistent absence of cryptographically use-
ful multilinear maps has not stopped researchers from proposing applications of them. For
example, Rückert and Schröder [RS09] use multilinear maps to construct efficient aggregate
and verifiably encrypted signatures without random oracles. Papamanthou, Tamassia and
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Triandopoulos [PTT10] show that “compact” multilinear maps give very efficient authen-
ticated data structures. Recently, Rothblum [Rot13] used multilinear maps to construct a
counterexample to the conjecture that all bit-encryption schemes are [CL01, BRS03] circu-
larly secure (secure when bit-encryptions of the secret key are also given out).

1.1 Our Results

In this work [GGH13a, GGH12] we put forth new plausible lattice-based constructions
with properties that approximate the sought after multilinear maps. The multilinear analog
of the decision Diffie-Hellman problem appears to be hard in our construction, and this
allows for their use in cryptography. These construction open doors to a providing solutions
(see Section 2 for details) to a number of important open problems.

Functionality. Our multilinear maps are approximate in the sense that they are “noisy.”
Furthermore they are bounded to a polynomial degree. For very high degree, in our maps, the
“noisiness” overwhelms the signal, somewhat like for ciphertexts in somewhat homomorphic
encryption [Gen09a] schemes. In light of their noisiness, one could say that our multilinear
maps are indeed “unnatural” computable maps arising from geometry. As a consequence,
our multilinear maps differ quite substantially from the “ideal” multilinear maps envisioned
by Boneh and Silverberg[BS03].

The boundedness of our encodings has interesting consequences, both positive and nega-
tive. On the positive side, it hinders an attack based on Boneh and Lipton’s subexponential
algorithm for solving the discrete logarithm in black box fields [BL96]. This attack cannot
be used to solve the “discrete log” problem in our setting, since their algorithm requires
exponentiations with exponential degree. On the negative size, the dependence between the
degree and parameter-size prevents us from realizing applications such as the ones envisioned
by [PTT10] because they need “compact” maps. Similarly, so far we were not able to use our
maps to realize Rothblum’s counterexample to the circular security of bit encryption con-
jecture [Rot13]. That counterexample requires degree that is polynomial, but a polynomial
that is always just out of our reach of our parameters.1

Security. The security of the multilinear-DDH problem in our constructions relies on new
hardness assumptions, and we provide an extensive cryptanalysis to validate these assump-
tions. To make sure that our constructions are not “trivially” insecure, we prove that
our constructions are secure against adversaries that merely run an arithmetic straight-line
[Kal85a, Kal85b] program.

We also analyze our constructions with respect to the best known averaging, algebraic and
lattice attacks. Many of these attacks have been published before [CS97, HKL+00, Gen01,

1Note that our original multilinear maps were insufficient for these applications but however one can use
obfuscation [GGH+13b] along with fully homomorphic encryption to realize special multilinear maps that
at least heuristically will suffice for these applications.
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GS02, Szy03, HGS04, NR06, NR09, DN12b] in the context of cryptanalysis of the NTRU
[HPS01, HHGP+03] and GGH [GGH97] signature scheme. We also present new attacks on
principal ideal lattices, which arise in our constructions, that are more efficient than (known)
attacks on general ideal lattices. Our constructions remain secure against all of the attacks
that we present, both old and new.

Finally we note that some problems that are believed hard relative to contemporary
bilinear maps are easy with our construction (see Section 7.5).

1.2 Brief Overview

In his breakthrough result, Gentry [Gen09a] constructed a fully-homomorphic encryption
scheme that enabled arbitrary computation on encrypted data without being able to decrypt.
However for many applications, the ability to perform arbitrary computation on encrypted
data along with the ability to check if two ciphertexts encrypt the same message is essential.
In his scheme, Gentry relied on “noise” to hide messages. The presence of noise, which helps
hide messages without restricting arbitrary computation on them, seems to be in conflict with
the goal of equality checking. In our constructions we overcome this obstacle by introducing
techniques that enable equality testing even in the presence of noise. Here we present an
overview of our construction.

Our constructions work in polynomial rings and use principal ideals in these rings (and
their associated lattices). In a nutshell, an instance of our construction has a secret short
ring element g ∈ R, generating a principal ideal I = 〈g〉 ⊂ R. In addition, it has an integer
parameter q and another secret z ∈ R/qR, which is chosen at random (and hence is not
small).

We think of a term like gx in a discrete-log system as an “encoding” of the “plaintext
exponent” x. In our case the role of the “plaintext exponents” is played by the elements
in R/I (i.e. cosets of I), and we “encode” them via division by z in Rq. In a few more
details, our system provides many levels of encoding, where a level-i encoding of the coset
eI = e + I is an element of the form c/zi mod q where c ∈ eI is short. It is easy to see
that such encodings can be both added and multiplied, so long as the numerators remain
short. More importantly, we show that it is possible to publish a “zero testing parameter”
that enables to test if two elements encode the same coset at a given level, without violating
security (e.g., it should still be hard to compute x from an encoding of x at higher levels).
Namely, we add to the public parameters an element of the form pzt = h · zκ/g mod q for a
not-too-large h, where κ is the level of multilinearity. We show that multiplying an encoding
of zero (at the κth level) by pzt (mod q) yields a small element, while multiplying an encoding
of a non-zero by pzt (mod q) yields a large element. Hence we can distinguish zero from
non-zero, and by subtraction we can distinguish two encodings of the same element from
encodings of two different elements.

Our schemes are somewhat analogous to graded algebras, hence we sometimes call them
graded encoding schemes. Our schemes are quite flexible, and for example can be modified
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to support the analog of asymmetric maps by using several different z’s. On the other hand,
other variants such as composite-order groups turn out to be insecure with our encodings
(at least when implemented in a straightforward manner).

Other related work. Building upon our constructions Coron, Lepoint and Tibouchi [CLT13]
provide an alternate construction of multilinear maps that works over the integers instead
of ideal lattices, similar to the fully homomorphic encryption scheme of [vDGHV10]. The
security of these constructions also relies on new assumptions.

1.3 Organization

We define formally our notion of a “approximate” multilinear maps which we call graded
encoding schemes (termed after the notion of graded algebra), as well an abstract notion
of our main hardness assumption (which is a multilinear analog of DDH) in Chapter 3. In
Chapter 3 we restrict ourselves to the “symmetric setting” and then later in Appendix A we
extend our definition to the “asymmetric” setting.

Then in Chapter 4 we provide some background on number theory and lattices necessary
for understanding our construction and the security analysis. Our construction is presented
in Chapter 6 and a high level security analysis provided in Chapter 7. We provide details on
the cryptanalysis tools used and developed in this work (needed for Chapter 7) in Chapter 9.
Additional number theory background useful for understanding this chapter is provided in
Chapter 8.

Finally, as an example application of our multilinear maps we provide a construction
of one-round multi-party key-exchange protocol in Chapter 10. Since their introduction
multilinear maps have subsequently been used for realizing many new applications. A survey
of all these applications is presented in Chapter 2.
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CHAPTER 2

Survey of Applications

Albeit noisy, our multilinear maps radically enhance our tool set and open a floodgate of
applications. For example, our multilinear maps provide as a special case a new candidate
for bilinear maps that can be used to compile a countless number of applications based on
bilinear maps to ones based on lattice assumptions. One-round multi-party key-exchange is
another classical example. Diffie and Hellman in their seminal paper [DH76] provided the
first construction of a one-round two-party key-exchange protocol which was then general-
ized to the three party setting by Joux [Jou00] using Weil and Tate pairings. Boneh and
Silverberg [BS03] showed how this result could be extended to get a one-round n-party key-
exchange protocol if multilinear maps existed. Our approximate multilinear maps suffice for
instantiating this construction giving the first realization of this primitive. In Chapter 10
we provide details on this construction.

Our candidate construction of multilinear maps through a sequence of works have enabled
realization of many cryptographic goals otherwise considered impossible according to folklore.
This progress has ultimately led us to candidate constructions [GGH+13b] of general purpose
program obfuscation, a fundamental concept in cryptography. Program obfuscation first
formalized in [BGI+01, BGI+12], aims to make a computer program “unintelligible” while
preserving its functionality. Researchers have contemplated many applications of general-
purpose obfuscation, at least as far back as the work of Diffie and Hellman in 1976.1 We will
present the development of these ideas chronologically.

1Diffie and Hellman suggested the use of general-purpose obfuscation to convert private-key cryptosystems
to public-key cryptosystems.
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2.1 How flexible can we make access to encrypted data?

Starting with Access Control. Enabling encryption by arbitrary parties motivated the
invention of public key encryption [DH76, RSA78]. However, enabling fine-grained decryp-
tion capabilities has remained an elusive goal [Sha85, SW05, GPSW06]. Shamir [Sha85]
proposed the problem of non-interactively associating identities with encrypted data, and
later Sahai and Waters [SW05] asked if an encrypter at the time of encryption can non-
interactively embed any arbitrary decryption policy into his ciphertext. So far, the realiza-
tions of this primitive, referred to as attribute based encryption, were limited to access-control
policies expressed by formulas. In [GGH+13c] we showed how multilinear maps could be
used to overcome these barriers and provided a construction that allows for arbitrary access-
control policies. Concurrent and independent of this work Gorbnov et al. [GVW13] provided
a solution without using our multilinear maps. This result is fascination as it relies only on
the sub-exponential harness of the learning with errors (LWE) assumption.

Limits of Access Control – Witness Encryption. Encryption in all its myriad flavors
has always been imagined with some known recipient in mind. But, what if the intended
recipient of the message is not known and may never be known to the encrypter? For
example, consider the task of encrypting to someone who knows a solution to a crossword
puzzle that appeared in the The New York Times. Or, in general, a solution to some NP
search problem which he might know or might acquire over a period of time. The encrypter
on the other hand may even be unaware of the existence of a solution.

In [GGSW13] we proposed the concept of witness encryption which captures this intuition
and realized it based on our noisy multilinear maps. Witness Encryption is closely related to
the notion of computational secret sharing for NP-complete access structures, first posed by
Rudich in 1989 [Rud89] (see [Bei11]). As observed by Rudich, this primitive already suffices
for converting private-key cryptosystems to public-key ones.

Witness encryption has found applications elsewhere as well. Most prominently, Gold-
wasser et al. [GKP+13] used (a variant of) witness encryption for constructing a variant of
attribute-based encryption scheme for polynomial-time Turing machines, where the sizes of
secret keys depend only on the size of the Turing machine (rather than its runtime). Further-
more in these constructions, the decryption algorithm has an input-specific runtime rather
than worst-case runtime (at the price of revealing this runtime).

Computation in addition to access control – Functional Encryption. All primitive
described above enabled encrypters with the ability to specify who can decrypt. However
at the same time these tools do not provide for a mechanism to specific what a decrypter
can learn. A decrypter learns either the entire message or nothing about it. Going further
one could ask questions that combine non-interactively computing on encrypted data with
its access management (or functional encryption) [BSW11, O’N10]. More specifically, in
functional encryption, ciphertexts encrypt inputs x and keys are issued for functions f . The
striking feature of this system is that given an encryption of x, the key corresponding to f
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can be used to obtain f(x) but nothing else about x. Furthermore, any arbitrary collusion
of key holders relative to many functions fi does not yield any more information about x
beyond what is “naturally revealed” by each of them individually (i.e. fi(x) for all i). Prior
work on functional encryption has been extremely limited in power, with the state of the
art roughly limited to the inner-product construction of Katz et al. [KSW08].2 Again using
multilinear maps, in a recent work we [GGH+13b] resolved this long standing open problem
giving a construction of functional encryption for general circuits.3,4

2.2 Program Obfuscation

Computing on encrypted data and revealing specific functions of it already has the flavor
of program obfuscation, first studied formally by Barak et al. [BGI+01, BGI+12]. Despite
its potential for far-reaching applications, positive results for obfuscation have largely been
limited to relatively simple classes of functions such as point functions [Can97, CMR98,
LPS04, Wee05, CD08, BC10], testing hyperplane membership [CRV10] and a few other
simple programs [HRSV07, HMLS07, Had10, CCV12]. Multilinear maps have helped change
this landscape dramatically:

- Indistinguishability Obfuscation. Multilinear maps have been used to construct
new candidate constructions for a general purpose obfuscator [GGH+13b] satisfying the
indistinguishability obfuscation notion. An indistinguishability obfuscator [BGI+01],
denoted iO, for a class of circuits C guarantees that given two equivalent circuits
C1 and C2 (in the sense that they compute the same function) from the class C,
the two distribution of obfuscations iO(C1) and iO(C2) should be computationally
indistinguishable.

Goldwasser et al. [GR07], provide strong philosophical argument supporting the mean-
ingfulness of this notion. In particular they show that (efficiently computable) indistin-
guishability obfuscators achieve the notion of Best-Possible Obfuscation: Informally,
a best-possible obfuscator guarantees that its output hides as much about the input
circuit as any other circuit (of a certain size).

- Virtual Black-Box Obfuscation. Virtual black box obfuscation [BGI+01] (VBB in
short) is the strongest notion of obfuscation considered in the literature. This concept
requires that the obfuscated program behaves like a “black-box,” in the sense that
it should not leak information about the program except its input output behaviour.
Multilinear Maps have been used to realize VBB obfuscation for functions such as
conjunctions [BR13b] and dynamic point function [GGHR13].

2However, there are constructions that achieve only limited-collusion notions [SS10, GVW12, GKP+12,
GKP+13] of security.

3We note that the [GGH+13b] construction gets a weaker indistinguishability notion of security for
functional encryption. However this can be upgraded to natural simulation-based definitions of security
using the work of De Caro et al. [CIJ+13].

4The latest version of the paper builds functional encryption from indistingushability obfuscation but we
note that historically speaking these results are were actually obtained in the opposite order.

7



Our inability to provide more general results can be explained by the negative results
of [BGI+01], who showed that there exist families of “unobfuscatable” functions for
which the VBB definition is impossible to achieve in the plain model. However this
result does not apply to the setting of generic multilinear attacks, in which case the
VBB notion can actually be realized [BR13a, BR13c, BGK+13]. These works provide
evidence that no algebraic attacks (that respect multilinear maps) against these candi-
date constructions leak anything beyond what could be leaked in a black-box manner
and provide heuristic evidence that these obfuscation mechanisms offer strong security
for “natural” functions.

Other applications of Indistinguishability Obfuscation. Indistinguishability Obfus-
cation has been used in surprisingly unrelated settings (we refer the reader to [SW13] for a
thorough survey) and has helped achieve many new feasibility results:

- Deniable Encryption. Deniable encryption, a primitive introduced by Canetti et
al. [CDNO97], requires that a sender forced into revealing to the adversary its message
and randomness, should be able to convincingly provide “fake” randomness that can
explain any alternative message that it would like to pretend that it sent. All schemes
for this in the literature requires some kind of pre-planning by the party that must
later issue a denial. In a recent work, using indistinguishability obfuscation Sahai et
al. [SW13] construct the first scheme that does not rely on pre-planning.

- Round Optimal Multiparty Secure Computation. One fundamental complexity
measure of an MPC protocol is its round complexity. Asharov et al. [AJLA+12] re-
cently constructed the first three-round protocol for general MPC in the CRS model.
Using indistinguishability obfuscation [GGHR13] we show how the same result can be
achieved with only two rounds of communication.

2.3 Other Applications

Constrained Pseudorandom Functions. In a recent work, Boneh et al. [BW13], have
used multilinear maps to construct a new variant of pseudorandom functions (PRFs) that
they call constrained PRFs. In a standard PRF there is a master key that enables one to
evaluate the function at all points in the domain of the function. On the other hand, in a
constrained PRF it is possible to derive constrained keys from the master key. A constrained
key enables the evaluation of the PRF at a certain subset of the domain and nowhere else.
In the same work Boneh et al. [BW13] show that constrained PRFs can be used to construct
other useful primitives such as identity based key exchange and a broadcast encryption
system with optimal ciphertext size.

Removing Random Oracles. A sequence of works [FHPS13, HSW13] have used multilin-
ear maps to provide standard model constructions of primitives previously known only using
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random oracles [BR93, CGH98]. In particular, Freire et al. [FHPS13] give new constructions
of programmable hash functions (PHFs), an abstraction of random oracles that can also be
instantiated in the standard model [HK08]. They then use these constructions to realize stan-
dard model versions of several primitive, such as Boneh-Franklin identity-based encryption
scheme [BF01], the Boneh-Lynn-Shacham [BLS04] signature scheme, and the Sakai-Ohgishi-
Kasahara identity-based non-interactive key exchange (ID-NIKE) scheme [SOK00]. These
constructions can also be made hierarchical.

In the same vein, Hohenberger et al. [HSW13] provide standard model proofs for schemes
with full domain hash structure [BR93, BR96] again in an attempt to avoid the random oracle
heuristic [BR93, CGH98]. In particular they build an identity-based aggregate signature
scheme that admits unrestricted aggregation.
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CHAPTER 3

Multilinear Maps and Graded Encoding Systems

In this chapter we define formally our notion of a “approximate” multilinear maps, which
we call graded encoding schemes (termed after the notion of graded algebra).

To make the analogy and differences from multilinear maps more explicit, we begin by
recalling the notion of cryptographic multilinear maps of Boneh and Silverberg [BS03] (using
a slightly different syntax).

3.1 Cryptographic Multilinear Maps

Below we define cryptographic multilinear maps.

Definition 3.1 (Multilinear Map). For κ + 1 cyclic groups G1, . . . , Gκ, GT (written addi-
tively) of the same order p, an κ-multilinear map e : G1 × · · · ×Gκ → GT has the following
properties:

1. For elements {gi ∈ Gi}i=1,...,κ, index i ∈ [κ] and integer α ∈ Zp, it holds that

e(g1, . . . , α · gi, . . . , gκ) = α · e(g1, . . . , gκ).

2. The map e is non-degenerate in the following sense: if the elements {gi ∈ Gi}i=1,...,κ,
are all generators of their respective groups, then e(g1, . . . , gκ) is a generator of GT .

Boneh and Silverberg considered in [BS03] only the symmetric case G1 = · · · = Gκ.
The asymmetric case with different Gi’s (as defined above) has also been considered in the
literature, e.g., by Rothblum in [Rot13]. Unlike the above notion that allows for pairing of
only batches of κ encodings at the time, we can consider a more general setting that allows
for pairing any subset of encodings together as explained later in Section 3.2.
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3.1.1 Efficient Procedures

To be useful for cryptographic applications, we need to be able to manipulate (representations
of) elements in these groups efficiently, and at the same time we need some other manip-
ulations to be computationally hard. Specifically, a cryptographic multilinear map scheme
consists of efficient procedures for instance-generation, element-encoding validation, group-
operation and negation, and multilinear map, MMP = (InstGen,EncTest, add, neg,map).
These procedures are described below.

Instance Generation. A randomized algorithm InstGen that takes the security parame-
ter λ and the multi-linearity parameter κ (both in unary), and outputs (G1, . . . , GT , p, e, g1, . . . , gκ).
Here the Gi’s and GT describe the groups, p ∈ Z is their order, e : G1×· · ·×Gκ → GT

describes an κ-multilinear map as above, and gi ∈ {0, 1}∗ for i = 1, . . . , κ encode gen-
erators in these groups. To shorten some of the notations below, we denote params =
(G1, . . . , GT , p, e).

Element Encoding. Given the instance params from above, an index i ∈ [κ], and a
string x ∈ {0, 1}∗, EncTest(params, i, x) decides if x encodes an element in Gi (and
of course the gi’s output by the instance-generator are all valid encodings). Similarly
EncTest(params, κ+ 1, x) efficiently recognizes description of elements in GT .

It is usually assumed that elements have unique representation, namely for every i
there are only p different strings representing elements in Gi. Below we therefore
identify elements with their description, e.g. referring to “x ∈ Gi” rather than “x is a
description of an element in Gi”.

Group Operation. Given x, y ∈ Gi, add(params, i, x, y) computes x+y ∈ Gi and neg(params, i, x)
computes −x ∈ Gi. This implies also that for any α ∈ Zp we can efficiently compute
α · x ∈ Gi.

Multilinear Map. For {xi ∈ Gi}i=1,...,κ, map(params, x1, . . . , xκ) computes e(x1, . . . , xn) ∈
GT .

Another property, which was used by Papamanthou et al. [PTT10], is compactness,
which means that the size of elements in the groups (as output by the instance generator)
is independent of κ. Looking ahead we note that our multilinear maps do not satisfy this
requirement, and are therefore unsuitable for the application in [PTT10]. For the same
reasons we find our multilinear maps unsuitable for application of [Rot13].

3.1.2 Hardness Assumptions

For the multilinear map to be cryptographically useful, at least the discrete logarithm must
be hard in the respective groups, and we usually also need the multilinear-DDH to be hard.
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Multilinear Discrete-log (MDL). The Multilinear Discrete-Log problem is hard for a
schemeMMP , if for all κ > 1, all i ∈ [κ], and all probabilistic polynomial time algorithms,
the discrete-logarithm advantage of A,

AdvDlogMMP,A,κ(λ)
def
= Pr

[
A(params, i, gi, α · gi) = α : (params, g1, . . . , gl)← InstGen(1λ, 1κ), α← Zp

]
,

is negligible in λ

Multilinear DDH (MDDH). For a symmetric scheme MMP (with G1 = G2 = · · · ),
the Multilinear Decision-Diffie-Hellman problem is hard for MMP if for any κ and every
probabilistic polynomial time algorithms A, the advantage of A in distinguishing between
the following two distributions is negligible in λ:

(params, g, α0g, α1g, . . . , ακg, (
κ∏
i=0

αi) · e(g . . . , g))

and (params, g, α0g, α1g, . . . , ακg, α · e(g, . . . , g))

where (params, g)← InstGen(1λ, 1κ) and α, α0, α1, . . . , ακ are uniformly random in Zp.

3.2 Graded Encoding Schemes

The starting point for our new notion is viewing group elements in multilinear-map schemes
as just a convenient mechanism of encoding the exponent: Typical applications of bilinear
(or more generally the envisioned multilinear) maps use α ·gi as an “obfuscated encoding” of
the “plaintext integer” α ∈ Zp. This encoding supports limited homomorphism (i.e., linear
operations and a limited number of multiplications) but no more.

In our setting we retain this concept of a somewhat homomorphic encoding, and have
an algebraic ring (or field) R playing the role of the exponent space Zp. However we will
dispose of the algebraic groups, replacing them with “unstructured” sets of encodings of ring
elements.

Perhaps the biggest difference between our setting and the setting of cryptographic mul-
tilinear maps, is that our encodings are randomized, which means that the same ring-element
can be encoded in many different ways. In our notion we do not even insist that the “plain-
text version” of a ring element has a unique representation. This means that checking if two
strings encode the same element may not be trivial, indeed our constructions rely heavily on
this check being feasible for some encodings and not feasible for others.

Another important difference is that our system lets us multiply not only batches of κ
encodings at the time, but in fact any subset of encodings. This stands in stark contrast to
the sharp threshold in multi-linear maps, where one can multiply exactly κ encodings, no
more and no less. A consequence of the ability to multiply any number of encodings is that
we no longer have a single target group, instead we have a different “target group” for any
number of multiplicands. This yields a richer structure, roughly analogous to graded algebra.
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In its simplest form (analogous to symmetric maps with a single source group), we have
levels of encodings: At level zero we have the “plaintext” ring elements α ∈ R themselves,
level one corresponds to α · g in the source group, and level-i corresponds to a product of i
level-1 encodings (so level-κ corresponds to the target group from multilinear maps).

For the sake of simplicity, in this section we will restrict to the case of symmetric mul-
tilinear maps and provide the extensions of these definitions to the asymmetric setting in
Appendix A.

Definition 3.2 (κ-Graded Encoding System). A κ-Graded Encoding System consists of a

ring R and a system of sets S = {S(α)
i ⊂ {0, 1}∗ : α ∈ R, 0 ≤ i ≤ κ, }, with the following

properties:

1. For every fixed index i, the sets {S(α)
i : α ∈ R} are disjoint (hence they form a partition

of Si
def
=
⋃
α S

(α)
v ).

2. There is an associative binary operation ‘+’ and a self-inverse unary operation ‘−’ (on

{0, 1}∗) such that for every α1, α2 ∈ R, every index i ≤ κ, and every u1 ∈ S(α1)
i and

u2 ∈ S(α2)
i , it holds that

u1 + u2 ∈ S(α1+α2)
i and − u1 ∈ S(−α1)

i

where α1 + α2 and −α1 are addition and negation in R.

3. There is an associative binary operation ‘×’ (on {0, 1}∗) such that for every α1, α2 ∈ R,

every i1, i2 with i1 + i2 ≤ κ, and every u1 ∈ S
(α1)
i1

and u2 ∈ S
(α2)
i2

, it holds that

u1 × u2 ∈ S(α1·α2)
i1+i2

. Here α1 · α2 is multiplication in R, and i1 + i2 is integer addition.

Clearly, Definition 3.2 implies that if we have a collection of n encodings uj ∈ S
(αj)
ij

,

j = 1, 2 . . . , n, then as long as
∑

j ij ≤ κ we get u1 × · · · × un ∈ S
(
∏
j αj)

i1+···+in .

3.2.1 Efficient Procedures, the Dream Version

To be useful, we need efficient procedures for manipulating encodings well as as hard com-
putational tasks. To ease the exposition, we first describe a “dream version” of the efficient
procedures (which we do not know how to realize), and then explain how to modify them to
deal with technicalities that arise from our use of lattices in the realization.

Instance Generation. The randomized InstGen(1λ, 1κ) takes as inputs the parameters λ, κ,
and outputs (params,pzt), where params is a description of a κ-Graded Encoding Sys-
tem as above, and pzt is a zero-test parameter for level κ (see below).

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S(α)
0 for

a nearly uniform element α ∈R R. (Note that we require that the “plaintext” α ∈ R
is nearly uniform, but not that the encoding a is uniform in S

(α)
0 .)

13



Encoding. The (possibly randomized) enc(params, i, a) takes a “level-zero” encoding a ∈
S

(α)
0 for some α ∈ R and index i ≤ κ, and outputs the “level-i” encoding u ∈ S(α)

i for
the same α.

Addition and negation. Given params and two encodings relative to the same index,
u1 ∈ S

(α1)
i and u2 ∈ S

(α2)
i , we have add(params, i, u1, u2) = u1 + u2 ∈ S

(α1+α2)
i , and

neg(params, i, u1) = −u1 ∈ S(−α1)
i .

Multiplication. For u1 ∈ S(α1)
i1

, u2 ∈ S(α2)
i2

such that i1+i2 ≤ κ, we have mul(params, i1, u1, i2, u2) =

u1 × u2 ∈ S(α1·α2)
i1+i2

.

Zero-test. The procedure isZero(params, u) output 1 if u ∈ S(0)
κ and 0 otherwise. Note that

in conjunction with the subtraction procedure, this lets us test if u1, u2 ∈ Sκ encode
the same element α ∈ R.

Extraction. This procedure extracts a “canonical” and “random” representation of ring
elements from their level-κ encoding. Namely ext(params,pzt, u) outputs (say) s ∈
{0, 1}λ, such that:

(a) For any α ∈ R and two u1, u2 ∈ S(α)
κ , ext(params,pzt, u1) = ext(params,pzt, u2),

(b) The distribution {ext(params,pzt, u) : α ∈R R, u ∈ S(α)
κ } is nearly uniform over

{0, 1}λ.

3.2.2 Efficient Procedures, the Real-Life Version

Our realization of the procedures above over ideal lattices uses noisy encodings, where the
noise increases with every operation and correctness is only ensured as long as it does not
increase too much. We therefore modify the procedures above, letting them take as input
(and produce as output) also a bound on the noise magnitude of the encoding in question.
The procedures are allowed to abort if the bound is too high (relative to some maximum
value which is part of the instance description params). Also, they provide no correctness
guarantees if the bound on their input is “invalid.” (When B is a noise-bound for some
encoding u, we say that it is “valid” if it is at least as large as the bound produced by
the procedure that produced u itself, and moreover any encoding that was used by that
procedure (if any) also came with a valid noise bound.) Of course we also require that
these procedure do not always abort, i.e. they should support whatever set of operations
that the application calls for, before the noise becomes too large. Finally, we also relax the
requirements on the zero-test and the extraction routines. Some more details are described
next:

Zero-test. We sometime allow false positives for this procedure, but not false negatives.
Namely, isZero(params,pzt, u) = 1 for every u ∈ S(0)

κ , but we may have isZero(params,pzt, u) =

1 also for some u /∈ S(0)
κ . The weakest functionality requirement that we make is that
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for a uniform random choice of α ∈R R, we have

Pr
α∈RR

[
∃ u ∈ S(α)

κ s.t isZero(params,pzt, u) = 1
]

= negl(λ). (3.1)

Additional requirements are considered security features (that a scheme may or may
not possess), and are discussed later in this section.

Extraction. We replace1 the properties (a)-(b) from above dream version by the weaker
requirements:

(a′) For a randomly chosen a← samp(params), if we run the encoding algorithm twice
to encode a at level κ and then extract from both copies then we get:

Pr

 ext(params,pzt, u1)
= ext(params,pzt, u2)

:
a← samp(params)
u1 ← enc(params, κ, a)
u2 ← enc(params, κ, a)

 ≥ 1− negl(λ).

(b′) The distribution {ext(params,pzt, u) : a ← samp(params), u ← enc(params, κ, a)}
is nearly uniform over {0, 1}λ.
We typically need these two conditions to hold even if the noise bound that the encoding
routine takes as input is larger than the one output by samp (upto some maximum
value).

3.2.3 Hardness Assumptions

Our hardness assumptions are modeled after the discrete-logarithm and MDDH assumptions
in multilinear groups. For example, the most direct analog of the discrete-logarithm problem
is trying to obtain a level-zero encoding a ∈ S

(α)
0 for α ∈ R from an encoding relative to

some other index i > 0.

The analog of MDDH in our case roughly says that given κ + 1 level-one encoding of
random elements it should be infeasible to generate a level-κ encoding of their product, or
even to distinguish it from random. To formalize the assumption we should specify how to
generate level-κ encodings of the “the right product” and of a random element. One way to
formalize it is by the following process. (Below we suppress the noise bounds for readability):

1. (params,pzt)← InstGen(1λ, 1κ)
2. For i = 0, . . . , κ:
3. Choose ai ← samp(params) // level-0 encoding of random αi ∈R R
4. Set ui ← enc(params, 1, ai) // level-1 encoding of the αi’s
5. Set ã =

∏κ
i=0 ai // level-0 encoding of the product

6. Choose â← samp(params) // level-0 encoding of a random element

1Our construction from Chapter 6 does not support full canonicalization. Instead, we settle for
ext(params,pzt, u) that has a good chance of producing the same output when applied to different encoding
of the same elements.
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7. Set ũ← enc(params, κ, ã) // level-κ encoding of the product
8. Set û← enc(params, κ, â) // level-κ encoding of random

(We note that with the noise bound, it may be important that the encoding routines
for both ã and â get as input the same bound, i.e., the largest of the bounds for ã and
â.) The GDDH distinguisher gets all the level-one ui’s and either ũ (encoding the right
product) or û (encoding a random element), and it needs to decide which is the case. In
other words, the GDDH assumption says that for any setting of the parameters, the following
two distributions, defined over the experiment above, are computationally indistinguishable:

DGDDH = {(params,pzt, {ui}i, ũ)} and DRAND = {(params,pzt, {ui}i, û)}.

Zero-test security. In some settings we may be concerned with adversaries that can
generate encodings in a malicious way and submit them to the zero-test procedure. In such
settings, the statistical property from Equation (3.1) is not sufficient, instead we would like
the zero-test to accept only encoding of zero at the right level. This can be statistical (i.e.
no false positive exist) or computational (i.e. it is hard to find them).

Definition 3.3. A graded-encoding system enjoys statistical zero-test security if the only
strings that pass the zero-test are encodings of zero, except with a negligible probability over
the instance generation. That is, for every κ:

Pr
params,pzt

[∃ u /∈ S(0)
κ s.t. isZero(params,pzt, u) = 1] ≤ negligible(λ),

where the probability is taken over (params,pzt) ← InstGen(1λ, 1κ). And we say that the
graded-encoding system enjoys computational zero-test security if for every adversary A and
parameters as above:

Pr
(params,pzt)←InstGen(1λ,1κ)
u←A(params,pzt)

[
u /∈ S(0)

κ but isZero(params,pzt, u) = 1
]
≤ negligible(λ).
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CHAPTER 4

Preliminaries I : Lattices

We denote set of complex number by C, real numbers by R, the rationals by Q and the
integers by Z. For a positive integer n, [n] denotes the set {1, . . . , n}. We extend any real
function f(·) to a countable set A by defining f(A) =

∑
x∈A f(x).

By convention, vectors are assumed to be in column form and are written using bold
lower-case letters, e.g. x. The ith component of x will be denoted by xi. We will use xT

to denotes the transpose of x. For a vector x in Rn or Cn and p ∈ [1,∞], we define the

`p norm as ‖x‖p =
(∑

i∈[n] |xi|p
)1/p

where p < ∞, and ‖x‖∞ = maxi∈[n] |xi| where p = ∞.

Whenever p is not specified, ‖x‖ is assumed to represent the `2 norm (also referred to as the
Euclidean norm).

Matrices are written as bold capital letters, e.g. X, and the ith column vector of a matrix
X is denoted xi. The length of a matrix is the norm of its longest column: ‖X‖ = maxi ‖xi‖.
For notational convenience, we sometimes view a matrix as simply the set of its column
vectors. Finally we will denote the transpose and the inverse (if it exists) of a matrix X
with XT and X−1 respectively.

The natural security parameter throughout the thesis is λ, and all other quantities are
implicitly assumed to be functions of λ. We use standard big-O notation to classify the
growth of functions, and say that f(λ) = Õ(g(λ)) if f(λ) = O(g(λ) · logc λ) for some fixed
constant c. We let poly(λ) denote an unspecified function f(λ) = O(λc) for some constant
c. A negligible function, denoted generically by negl(λ), is an f(λ) such that f(λ) = o(λ−c)
for every fixed constant c. We say that a function is overwhelming if it is 1− negl(λ).

The statistical distance between two distributions X and Y over a domain D is defined
to be 1

2

∑
d∈D |Pr[X = d] − Pr[Y = d]|. We say that two ensembles of distributions {Xλ}

and {Yλ} are statistically indistinguishable if for every λ the statistical distance between Xλ
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and Yλ is negligible in λ.

Two ensembles of distributions {Xλ} and {Yλ} are computationally indistinguishable if
for every probabilistic poly-time (in λ) machine A, |Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]|
is negligible in λ. The definition is extended to non-uniform families of poly-sized circuits in
the standard way.

4.1 Lattices

A lattice Λ is an additive discrete sub-group of Rn, i.e., it is a subset Λ ⊂ Rn satisfying the
following properties:

(subgroup) λ is closed under addition and subtraction,

(discrete) there is an ε > 0 such that any two distinct lattice points x 6= y ∈ Λ are at
distance at least ‖x− y‖ ≥ ε.

Let B = {b1, . . . , bk} ⊂ Rn consist of k linearly independent vectors in Rn. The lattice
generated by the B is the set

L(B) = {Bz =
k∑
i=1

zibi : z ∈ Zk},

of all the integer linear combinations of the columns of B. The matrix B is called a basis
for the lattice L(B). The integers n and k are called the dimension and rank of the lattice.
If n = k then L(B) is called a full-rank lattice. We will only be concerned with full-rank
lattices, hence unless otherwise mentioned we will assume that the lattice considered is full-
rank. Notice the similarity in the definition of a lattice with the definition of vector space
generated by B:

span(B) = {B · x : x ∈ Rn}.
Also the fundamental parallelepiped of B, denoted as P(B) is defined as

P(B) = {Bx : x ∈ [0, 1)k}.

The minimum distance λ1(Λ) of a lattice Λ is the length (in the Euclidean `2 norm, unless
otherwise indicated) of its shortest nonzero vector: λ1(Λ) = minx6=0,x∈Λ ‖x‖. More generally,
the ith successive minimum λi(Λ) is the smallest radius r such that Λ contains i linearly
independent vectors of norm at most r. We write λ∞1 to denote the minimum distance
measured in the `∞ norm (which as mentioned earlier, is defined as ‖x‖∞ = max |xi|).

For lattices Λ′ ⊆ Λ, the quotient group Λ/Λ′ (also written as Λ mod Λ′) is well-defined
as the additive group of distinct cosets v + Λ′ for v ∈ Λ, with addition of cosets defined in
the usual way.

The dual lattice of a full-rank lattice Λ, denoted Λ∗, is defined to be

Λ∗ = {x ∈ Rn : ∀v ∈ Λ, 〈x,v〉 ∈ Z}.
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In general, we define

Λ∗ = {x ∈ span(B) : ∀v ∈ Λ, 〈x,v〉 ∈ Z},

where B is a basis for Λ. If B is a basis of Λ, then we have that B∗ = B(BTB)−1 is a
basis of Λ∗. For the special case, when Λ is a full rank lattice we have that B∗ = (B−1)T is
a basis of Λ∗.

4.2 Gaussians on Lattices

Review of Gaussian measure over lattices presented here follows the development by prior
works [Reg04, AR05, MR07, GPV08, AGHS12]. For any real s > 0, define the (spherical)
Gaussian function ρs : Rn → (0, 1] with1 parameter s as:

∀x ∈ Rn, ρs(x) = exp(−π〈x,x〉/s2) = exp(−π‖x‖2/s2).

For any real s > 0, and n-dimensional lattice Λ, define the (spherical) discrete Gaussian
distribution over Λ as:

∀x ∈ Λ, DΛ,s(x) =
ρs(x)

ρs(Λ)
.

This generalizes to ellipsoid Gaussians, where the different coordinates are jointly Gaus-
sian but not independent, where we replace the parameter s2 ∈ R by a symmetric positive
definite2 covariance matrix in Rn×n. For any rank-n matrix S ∈ Rm×n, the ellipsoid Gaussian
function on Rn parameterized by a nonsingular matrix S is defined by

∀x ∈ Rn, ρS(x) = exp
(
− π · 〈S−1x,S−1x〉

)
= exp

(
− π · xT (STS)−1x

)
.

Clearly this function only depends on STS and not on the particular choice of S. Note that
for any nonsingular matrix S the symmetric matrix STS is positive definite because

xTSTSx = xTST (xTST )T = 〈xTST ,xTST 〉 = ‖(xTST )‖2 > 0

for all x ∈ Rn. Notice that the spherical case can be obtained by setting S = sIn, with In
the n-by-n identity matrix. Normalizing, ellipsoid discrete Gaussian distribution over lattice
Λ with parameter S is

∀ x ∈ Λ, DΛ,S(x) =
ρS(x)

ρS(Λ)
.

1The Gaussian function can be defined more generally as being centered around a specific vector c instead
of 0 as done here. The simpler definition considered here suffices for our purposes.

2A symmetric matrix is a square matrix that is equal to its transpose. A symmetric n × n real matrix
M is said to be positive definite, written M > 0, if zTMz is positive for all non-zero z ∈ Rn.
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Smoothing Parameter. Micciancio and Regev [MR07] introduced a lattice quantity
called the smoothing parameter, and related it other lattice parameters.

Definition 4.1 (Smoothing Parameter, [MR07, Definition 3.1]). For an n-dimensional lat-
tice Λ, and positive real ε > 0, we define its smoothing parameter denoted ηε(Λ), to be the
smallest s such that ρ1/s(Λ

∗ \ {0}) ≤ ε.

Intuitively, for a small enough ε, the number ηε(Λ) is sufficiently larger than a fundamental
parallelepiped of Λ so that sampling from the corresponding Gaussian “wipes out the internal
structure” of Λ. The following Lemma 4.3 and Corollary 4.4 formally provide this claim.
The bounds on ηε(Λ) are specified by Lemma 4.2. Finally Lemma 4.5 provides bounds on
the length of a vector sampled from a Gaussian.

Lemma 4.2 ([MR07, Lemma 3.3]). For any n-dimensional lattice Λ and positive real ε > 0,
we have that

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λn(Λ).

The following lemma explains the name “smoothing parameter.”

Lemma 4.3 ([MR07, Lemma 4.1]). For any lattice Λ, ε > 0, s ≥ ηε(Λ), and c ∈ Rn, the
statistical distance between Ds +c mod Λ and the uniform distribution modulo Λ is at most
ε/2.

Corollary 4.4 ([GPV08, Corollary 2.8]). Let Λ,Λ′ be n-dimensional lattices, with Λ′ ⊆ Λ.
Then for any ε ∈ (0, 1

2
), any s ≥ ηε(Λ

′), the distribution of (DΛ,s mod Λ′) is within a
statistical distance at most 2ε of uniform over (Λ mod Λ′).

Lemma 4.5 ([MR07, Lemma 4.4] and [BF11b, Proposition 4.7]). For any n-dimensional
lattice Λ, and s ≥ ηε(Λ) for some negligible ε, then for any constant δ > 0 we have

Pr
x←DΛ,s

[
(1− δ)s

√
n

2π
≤ ‖x‖ ≤ (1 + δ)s

√
n

2π

]
≥ 1− negl(n).

Next we present a generalization of Lemma 4.5 to the setting of ellipsoidal Gaussians [AGHS12].
Specifically Lemma 4.6 claims that the size of vectors drawn from DΛ,S is roughly bounded
by the largest singular value of S. Recall that the largest and least singular values of a full
rank matrix S ∈ Rm×n are defined as σ1(S) = sup(US) and σn(S) = inf(US), respectively,
where US = {‖Su‖ : u ∈ Rn, ‖u‖ = 1}.

Lemma 4.6 ([AGHS12, Lemma 3]). For a rank-n lattice Λ, constant 0 < ε < 1 and matrix
S such that σn(S) ≥ ηε(L), we have:

Pr
x←DΛ,S

[
‖x‖ ≤ σ1(S)

√
n
]
≥ 1− negl(n).
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4.3 Sampling from Discrete Gaussian

In this section we will recall different mechanisms of sampling from discrete gaussian distri-
butions and some of their properties.

GPV Sampling Algorithm. The GPV sampler [GPV08] provides a polynomial-time
procedure for sampling from the discrete Gaussian distribution over a lattice Λ. More pre-
cisely, given a basis B of Λ, and a sufficiently large s (related to the “quality” of B), the
GPV algorithm outputs a sample from a distribution statistically close to DΛ,s. Informally
speaking, the sampling algorithm is “zero-knowledge” in the sense that it leaks no informa-
tion about its input basis B (aside from a bound on its quality), because DΛ,s is defined
without reference to any particular basis. This zero-knowledge property accounts for its
broad utility in lattice-based cryptography. This sampling algorithm has been improved by
Peikert [Pei10], however for concreteness we stick with the GPV sampling algorithm.

Theorem 4.7 ([GPV08, Theorem 4.1]). There is a probabilistic polynomial-time algorithm
that, given a basis B of an n-dimensional lattice Λ = L(B), a parameter s ≥ ‖B̃‖·ω(

√
log n),

outputs a sample from a distribution that is statistically close to DΛ,s. Here B̃ denotes the
Gram-Schmidt orthogonalization of B.3

Discrete Gaussian Leftover Hash Lemma. A recent work [AGHS12] considers an
alternate way of sampling from a gaussian distribution. The process begins by choosing
“once and for all” m points in a lattice Λ, drawn independently from a “wide enough discrete
Gaussian” choosing an appropriate parameter s, namely xi ← DΛ,s for i ∈ [m]. Once the
xi’s are fixed, they are arranged as the rows of an m-by-n matrix X = (x1|x2| . . . |xm)T , and
we consider the distribution EX,s′ , induced by choosing an integer vector v from a discrete
spherical Gaussian over Zm with parameter s′ and outputting y = XTv,

EX,s′
def
= {XTv : v ← DZm,s′}.

[AGHS12] proved that with high probability over the choice of X, the distribution EX,s′ is
statistically close to the ellipsoid Gaussian DΛ,s′X .

Theorem 4.8 ([AGHS12, Theorem 3]). Let Λ be a lattice Λ ⊂ Rn and B a matrix whose
rows form a basis of Λ, and denote χ = σ1(B)/σn(B). Also let ε be negligible in n, and let
m, s, s′ be parameters such that s ≥ ηε(Zn), m ≥ 10n log(8(mn)1.5sχ) and s′ ≥ 4mnχ ln(1/ε).

Then, when choosing the rows of an m-by-n matrix X from the spherical Gaussian over Λ,
X ← (DΛ,s)

m, we have with all but probability 2−O(m) over the choice of X, that the statistical
distance between EX,s′ and the ellipsoid Gaussian DΛ,s′X is bounded by 2ε.

3In the Gram-Schmidt orthogonalization B̃ of B, the vector b̃i is the projection of bi orthogonally to
span(b1, . . . , bi−1). As a point of comparison, ‖B̃‖ is always at most ‖B‖, and in some cases can be sub-
stantially smaller.

21



Lemma 4.9 ([AGHS12, Lemma 8]). There exists a universal constant K > 1 such that for
all m ≥ 2n, ε > 0 and every n-dimensional real lattice Λ ⊂ Rn, the following holds: Choosing
the rows of an m-by-n matrix X independently at random from a spherical discrete Gaussian
on Λ with parameter s > 2Kηε(Λ), namely X ← (DΛ,s)

m, we have

Pr
[
s
√

2πm/K < σn(X) ≤ σ1(X) < sK
√

2πm
]
> 1− (4mε+O(exp(−m/K))).
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CHAPTER 5

Preliminaries II : Algebraic Number Theory Background

Algebraic number theory is the study of number fields. Here we review the background
essential for understanding our encoding scheme. We consider the special case of cyclotomic
number fields as a special example of particular interest. Much of our description here follows
[LPR10], and we refer the reader to [Jan96, Ste04, Oss08, Wes99] for detailed background
reading. Additional background will be necessary for our study of cryptanalysis and is
recalled later in Chapter 8.

5.1 Number Fields and Ring of Integers

An algebraic number field (or simply number field) K is a finite (and hence algebraic) field
extension of the field of rational numbers Q. In this section we will recall definition of some
of these elementary notions.

Definition 5.1 (Algebraic Number and Algebraic Integer). We say that ζ ∈ C is an alge-
braic number if it is a root of a polynomial f(x) ∈ Q[x]. Furthermore, we say that that ζ is
an algebraic integer if additionally f(x) is a monic (a polynomial whose leading coefficient
is 1) polynomial in Z[x].

Definition 5.2 (Minimal Polynomial). The minimal polynomial of ζ is the monic polyno-
mial f(x) ∈ Q[x] of least positive degree such that f(ζ) = 0.

The conjugates of ζ are defined by all the roots of its minimal polynomial.

Proposition 5.3 ([Ste04, Lemma 5.1.3]). If ζ is an algebraic integer, then the minimal
polynomial of ζ is in Z[x].

23



Proposition 5.4 ([Ste04, Proposition 5.1.5]). The set of all algebraic integers form a ring,
i.e., the sum and product of two algebraic integers is again an algebraic integer.

Now we are ready to define the notion of a number field and its ring of integers.

Definition 5.5 (Number Field and Ring of Integers). A number field is a field extension
K = Q(ζ) obtained by adjoining an algebraic number ζ to the field of rationals Q. The ring
of integers of a number field K is the ring

OK = {x ∈ K : x is an algebraic integer.}

Let the minimal polynomial f(x) of ζ have degree n. Then because f(ζ) = 0, there is a
natural isomorphism between Q[x] mod f(x) and K, given by x 7→ ζ, and the number field
K can be seen as an n-dimensional vector space over Q with basis {1, ζ, . . . , ζn−1}. This is
called the power basis of K.

The case of Cyclotomic Number Fields. Let ζm = e2π
√
−1/m ∈ C denote a primitive

m-th root of unity. (Recall that an mth root of unity is said to be a primitive root if it is
not a kth root for some 0 < k < m.)

Definition 5.6 (Cyclotomic Polynomial). The m-th cyclotomic polynomial, denote by Φm(x),
is defined as the product

Φm(x) =
∏
k∈Z∗m

(x− ζkm).

Observe that the values ζk run over all the primitive mth roots of unity in C, thus Φm(x)
has degree n = ϕ(m), where ϕ(m) denotes the Euler’s totient or phi function. Recall that
if m is a positive integer, then ϕ(m) is the number of integers in the set {1, 2, . . . ,m} that
are relatively prime to m.

It is easy to see that Φm(x) is monic. It is also known (a nontrivial result due to Gauss)
that Φm(x) is in Z[x] and is irreducible over Q. Therefore ζm is an algebraic integer with
the minimal polynomial Φm(x).

The cyclotomic polynomial Φm(x) may be computed by (exactly) dividing xn− 1 by the
cyclotomic polynomials of the proper divisors of n previously computed recursively (setting,
Φ1(x) = x− 1) by the same method:

Φm(x) =
xm − 1∏
d|m
d<m

Φd(x)
.

Two useful facts about cyclotomic polynomials are that Φm(x) = xm−1
x−1

= xm−1 + . . .+ x+ 1

for prime m, and Φm(x) = Φm0(xm/m0) where m0 is the radical of m, i.e., the product of all
primes diving m. For instance, Φ8(c) = x4 + 1 and Φ9(x) = x6 + x3 + 1. We will be most
interested in the case when m ≥ 2 is a power of 2 in which case Φm(x) = xm/2 +1. (However,
not all cyclotomic polynomials have 0-1, or even small coefficients: e.g., Φ6(x) = x2 − x+ 1,
Φ3·5·7 has a −2 coefficient, and Φ3·5·7·11·13(x) has coefficients with magnitudes as large as 22.)
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Definition 5.7. The mth cyclotomic field Q(ζm) (with m > 2) is obtained by adjoining ζm
to Q.

Proposition 5.8 ([Jan96, p 48, Proposition 4.3]). The ring of integers in Q(ζm) is Z(ζm).
This ring Z(ζm) is called the cyclotomic ring.

5.2 Embeddings and Geometry

In this section we will recall various geometric interpretations of a number field and most
importantly define different notion of norm essential for our study.

Canonical Embedding. A number field K = Q(ζ) of degree1 n has [Wes99, p 9, Propo-
sition 2.1] exactly n field homomorphisms σi = K ↪→ C that fix every element of Q. Con-
cretely, these embeddings map ζ to each of its conjugates; it can be verified that these are
the only field homomorphisms from K to C because ζ’s conjugates are the only roots of ζ’s
minimal polynomial f(x). An embedding whose image lies in R (corresponding to a real
root of f(x)) is called a real embedding ; otherwise (for a complex root of f(x)) it is called
a complex embedding. Because complex roots of f(x) come in conjugate pairs, so too do
the complex embeddings. The number of real embeddings is denoted s1 and the number of
pairs of complex embeddings is denoted by s2, so we have n = s1 + 2s2. The pair (s1, s2) is
called the signature of K. By convention, we let {σj}j∈[s1] be the real embeddings, and order
the complex embeddings so that σs1+s2+j = σs1+j for j ∈ [s2]. The canonical embedding
σ : K → Rs1 × C2s2 is defined as

σ(x) = (σ1(x), . . . , σn(x)).

The canonical embedding σ is a field homomorphism from K to Rs1 × C2s2 , where mul-
tiplication and addition in Rs1 × C2s2 are component-wise (since σ is a ring homomor-
phism). Due to the pairing of the complex embeddings, σ maps into the following space
H ⊆ Rs1 × C2s2 ⊂ Cn:

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j,∀j ∈ [s2]}.

By identifying elements of K with their canonical embeddings in H, we can speak of
geometric canonical norms on K. Specifically, we define the `p canonical norm of x, denoted

as ‖x‖canp as ‖σ(x)‖p =
(∑

i∈[n] |σi(x)|p
) 1
p

for p <∞, and as maxi∈[n] |σi(x)| for p =∞. (As

always we assume the `2 norm when p is omitted.)

1Recall that a number field K = Q(ζ) is isomorphic to Q[x]/f(x) where f(x) is the minimal polynomial
of ζ. The degree of K defined to be the value [K : Q], is same as [Ste04, p 28] the degree of the polynomial
f(x). (More generally, if K ⊂ L are number fields, we let [L : K] denote the dimension of L viewed as a
K-vector space.)
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Field Norm. The (field) norm of an element a ∈ K is defined as N(a) = NK/Q(a) =∏
i∈[n] σi(a).2 Note that the [Wes99, p 43, proof of Lemma 3.2] norm of an algebraic integer

is in Z.

Coefficient Embedding. There is also a coefficient embedding τ : K → Qn. As mentioned
earlier, since f(ζ) = 0, there is an isomorphism between Q[x] mod f(x) and K given by
x → ζ. So, K can be represented as a n-dimensional vector space over Q using the power
basis {1, ζ, . . . , ζn−1}, and τ maps an element of K to its associated coefficient vector. When
identifying an element a ∈ K as a coefficient vector, i.e., τ(a) we denote it as a boldface
vector a. Note that the addition of vectors is done component-wise, while the multiplication
is done as polynomials modulo f(x). We define the coefficient norm of a as the norm of
the vector a. Specifically, we define the `p coefficient norm of a, denoted as ‖a‖p or ‖a‖p as(∑

i∈[n] a
p
i

) 1
p

for p <∞, and as maxi∈[n] |ai| for p =∞. (As always we assume the `2 norm

when p is omitted.)

Relationship between Coefficient and Canonical Embeddings. The conversion of
an element in K = Q[ζm] (n = φ(m)) from its coefficient representation to the canonical
one can be seen as the multiplication of the coefficients of the polynomial by a specific Van-
dermonde matrix. More specifically, if a is an element of K in the coefficient representation
then Vm · a is exactly the canonical representation where Vm ∈ Cn×n such that its ith row is
the vector (1, ζjim, ζ

2ji
m , . . . , ζ

(n−1)ji
m ) for all ji ∈ Z∗m. The matrix Vm when m is a power of 2 is

special in the sense that the matrix 1
n
Vm is unitary. This means that conversions between the

canonical embedding and the coefficient representation corresponds to just a rigid rotation
and a scaling.

Multiplicative Expansion Factor. We define the multiplicative expansion factor γMult

to denote (as in [Gen09a, p. 71]) the maximal value of ‖a×b‖‖a‖·‖b‖ for any a, b ∈ K. (See [LM06]

for a different definition of the expansion factor for multiplication.) The dependence of γMult

value on the underlying field K is understood.

Next we will argue (also see [Gen09a, Lemma 7.4.3] and [GH10, Section 2.2]) that for
the field K = Q[x]/(xn + 1), γMult can be upper bounded by

√
n.

Lemma 5.9. Let K = Q[x]/(xn + 1), for any positive integer n. ∀a, b ∈ K and c = a× b
we have that

‖c‖ ≤
√
n · ‖a‖ · ‖b‖.

Proof. Consider the ith coefficient ci of c. First observe that for each i, ci is obtained as a
dot product of a and some reordering of entries of b (additionally the signs of some entries
can also be reversed). Therefore we have ci ≤ ‖a‖ · ‖b‖. This allows us to conclude that
‖c‖ ≤

√
n · ‖a‖ · ‖b‖.

2More generally, the relative norm NK/L(a) of an element a ∈ K over a subfield L ⊂ K is
∏
σi∈S σi(a),

where S consists of the K-embeddings σi that fix every element in L.
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Example. Continuing with our example of the mth cyclotomic number field where K =
Q(ζm) for m > 2, there are 2s2 = n = ϕ(m) complex canonical embeddings (and no real
ones), which are given by σi(ζm) = ζ im for i ∈ Z∗m. (It is convenient to index the embeddings
by elements of Z∗m instead of [n].) For an element x = ζj ∈ K in the power basis of K,
all the embeddings of x have magnitude 1, and hence ‖x‖can2 =

√
n and ‖x‖can∞ = 1. Also

considering the coefficient embedding ‖x‖2 = 1.

5.3 Ideals in the Ring of Integers

The ring of integers OK , of a number field K of degree n, is a free Z-module (see [Wes99,
p 39, Theorem 2.22]) of rank n, i.e., the set of all Z-linear combinations of some integral
basis {b1, . . . , bn} ⊂ OK . Such a set is called an integral basis, and it is also a Q-basis for K.
As usual, there are infinitely many such bases when n > 1.

Continuing with our example of the mth cyclotomic number field K = Q(ζm) of degree
n = ϕ(m), the power basis {1, ζm, . . . , ζn−1

m } of K also happens to be an integral basis of the
cyclotomic ring OK = Z[ζm]. (In general, it is unusual for the power basis of a number field
to generate the entire ring of integers.)

Definition 5.10 (Ideal). An (integral) ideal I ⊆ OK is a nontrivial (i.e., nonempty and
nonzero3) additive subgroup that is closed under multiplication by OK – that is, r · g ∈ I for
any r ∈ OK and g ∈ I. A fractional ideal I ⊂ K is a set such that d · I is an integral ideal
for some d ∈ OK. The inverse I−1 of an ideal I is the set {a ∈ K : a · I ⊆ OK}.

An ideal I in OK is finitely generated as the set of all K-linear combinations of some
generators g1, g2, . . . ∈ OK , denoted I = 〈g1, g2, . . .〉. (In fact, it is know that two genera-
tors [Ste04, Proposition 9.1.7] always suffice.)

Definition 5.11. An ideal I is principal if I = 〈g〉 for g ∈ OK – that is, if one generator
suffices.

More useful to us is the fact [Oss08, Proposition 1.6.1] that an ideal (integral or fractional)
is also a free Z-module of rank n, i.e., it is generated as the set of all Z-linear combinations
of some basis {b1, . . . , bn} ⊂ OK .

Definition 5.12. Let I,J be ideal of a ring R. Their sum is the ideal

I + J = {a+ b : a ∈ I, b ∈ J }

and their product IJ is ideal generated by all products of elements in I with elements in
J , or

IJ = 〈a · b : a ∈ I, b ∈ J 〉.

Two ideals I,J ⊆ OK are said to be coprime (or relatively prime) if I + J = OK .

3Some texts also define the trivial set {0} as an ideal, but in this work it is more convenient to exclude it.
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5.4 Prime Ideals - Unique Factorization and Distributions

In this section we will define the notion of prime ideals and recall some of their properties.
A prime ideal shares many important properties of a prime number in Z.

Definition 5.13. An ideal p ( OK is prime if whenever a, b ∈ OK and ab ∈ p then either
a ∈ p or b ∈ p.

Unique Factorization. As per unique-prime-factorization theorem, we have that every
integer greater than 1 is either prime itself or is the product of prime numbers. Similar in
any ring of integers OK of the number field K has unique factorization of ideals into prime
ideals.

Proposition 5.14 (Unique Factorization of Ideals [Ste04, Theorem 6.1.9]). Suppose I is an
integral ideal of OK. Then I can be written as a product

I = p1 . . . pn

of prime ideals of OK, and this representation is unique up to order.

Ideal Norm and some of its properties. Now we will define the norm of an ideal and
mention some of the properties about the norms of prime ideals.

Definition 5.15. If I is an ideal of a ring of integers OK, we define the norm of I to be

N(I) = |OK/I|

where |OK/I| dentes the size of the quotient ring OK/I.

It is know that [Wes99, p 60, Lemma 2.2] N(IJ ) = N(I)N(J ).

In OK , an [Ste04, Proposition 6.1.4] ideal p is prime if and only if it is maximal, i.e., if
the only proper superideal of p is OK itself, which implies that the quotient ring OK/p is a
finite field of order N(p).

Proposition 5.16 ([Oss08, Corollary 1.6.9]). For a in a ring of integers OK, let p = 〈a〉 be
the principal ideal generated by a, then we have that N(I) = |N(a)|.

Suppose p is an ideal of a ring of integers OK , and N(p) = p for some prime integer p ∈ Z.
Then we have that [Oss08, Lemma 1.6.7] p is prime in OK . Note that, many prime ideals do
not have prime norms. In fact [Oss08, Lemma 4.6.1] if p is a prime ideal in a ring of integers
OK , then N(p) = pn for some prime p ∈ Z and n ∈ N.
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Distribution of Prime ideals. The distribution of prime ideals in number fields is quite
analogous to the distribution of primes in the integers. Just as the prime number theorem
states that the number of primes less than x is approximately x/ lnx, we have Landau’s
prime ideal theorem.

Theorem 5.17 (Landau’s prime number theorem [BS96, Theorem 8.7.2]). Let K be an
algebraic number field of degree n. Let πK(x) denote the number of prime ideals whose norm
is ≤ x. Let ξ(x) = (ln x)3/5(ln lnx)−1/5. There is a c > 0 (depending on K) such that

πK(x) = Li(x) +O(xe−cξ(x)) ∼ x

lnx
,

where Li(x) =
∫ t

2
dt
ln t

.

Furthermore the prime ideals in the above theorem are dominated by the ideals of norm
a prime number. Assuming the Generalized Riemann Hypothesis (GRH) [BS96, Conjecture
8.7.3], a stronger statement [BS96, Theorem 8.7.4] can be made but the above mentioned
unconditional statement suffices for our purposes.

In our constructions we will need results on the distribution of prime ideals that are
also principal. From prime number theorem for arithmetic progressions, we know that the
number of primes less that or equal to x and congruent to a mod n (where a and n are co-
prime), is x/(φ(n) lnx). Similarly one of the consequences of Chebotarëv’s density4 theorem
(see for example [Ste10, Proof of Lemma 4]) is that the among all the prime ideals in a
number field K, 1

h
of them are principal, where h is the class number of K.

We refer the reader to [Lan90, p 77] for a general analytic formula for computing the
class number of any number field K. The class number5 of the n-th cyclotomic field K,
factors as h+ times h−, where h+ is the class number of the maximal real subfield of K.
The Brauer-Siegel theorem (see [Was97, Theorem 4.20]) implies that log(h−) grows roughly
as 1

4
φ(n) log n as n → ∞. However, h+ tends to be rather small. For n a power of 2, it is

conjectured that h+ =1. This is true for n = 2k with k ≤ 7, and also for k = 8 if we assume
GRH. This provides for theoretical evidence that principal prime ideals exist. However since
the class number is already exponential this does not suffice for our purposes.

Nevertheless restricting the Landau’s prime number theorem to principal ideals we can
heuristically expect that with noticeable probability a random principal ideal will have a
prime norm.

Conjecture 5.18. Let K be the n-th cyclotomic field for n a power of 2. For every σ =
poly(n) there is a constant c > 1 such that for sufficiently large n we have that

Pr
f←DZn,σ

[N(f) ≥ 2O(n) and is prime] ≥ 1

nc
.

4Just like Landau’s prime number theorem is a generalization of the prime number theorem, we have
the Chebotarëv’s density theorem [BS96, Theorem 8.7.9] with generalizes the prime number theorem for
arithmetic progressions [BS96, Theorem 8.4.2] to number fields. Chebotarëv’s density theorem is a very
technical result building on field theory and we do not delve into stating it formally. We refer the reader
to [SL96] for a very down to earth introduction to Chebotarëv’s Density Theorem.

5We would like to thank Alice Silverberg and Lawrence Washington for pointing [SW13] these facts about
class number of cyclotomic fields to us.
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Smart and Vercauteren [SV10] and Boneh and Freeman [BF11a] follow a similar heuristic
in their applications. Experimental results supporting this heuristic have been provided by
Smart and Vercauteren [SV10].

5.5 Ideal Lattices

Recall that a number field K = Q(ζ) is isomorphic to Q[x]/f(x) where f(x) is the minimal
polynomial of ζ. Also recall that any ideal I of OK is a free Z-module, i.e., it is generated
as the set of all Z-linear combinations of some basis B = {b1, . . . , bn} ⊂ OK . Therefore
under the coefficient embedding τ , the ideal I of OK yields a rank-n lattice τ(I) having
basis {b1, . . . , bn}, where each bi = τ(bi). Obviously, addition is done component-wise in the
coefficients, and multiplication is polynomial multiplication modulo the polynomial f(x).
We call I an ideal lattice to stress its dual interpretation as both an ideal and a lattice.
When visualizing it as a lattice we speak of, e.g., the minimum distance λ1(I) of an ideal,
etc.

As pointed out earlier the mth cyclotomic ring with n = ϕ(m) happens to be exactly
Z[ζm] which corresponds to the lattice Zn.

Proposition 5.19 ([LPR12, p 22]). For any ideal I of the mth cyclotomic ring (with n =
ϕ(m)) we have λn(I) = λ1(I).

We will sketch the argument here. Consider the mth cyclotomic field such that n = ϕ(m).
Observe that multiplying a shortest nonzero element v ∈ I by 1, ζ, . . . , ζn−1 gives n linearly
independent elements of the same length. This allows us to conclude the above proposition.

Invertibility of ring elements. Let R denote the 2nth cyclotomic ring and let Rq denote
R/qR for a prime q. We note that Rq is also a ring and not all elements in it are invertible.
Let R×q denote the set of elements in Rq that are invertible. We next provide a lemma of
Stehlé and Steinfeld that points out that a (large enough) random element is Rq is also in
R×q with large probability.

Lemma 5.20 ([SS11, Lemma 4.1]). Let n ≥ 8 be a power of 2 such that xn + 1 splits
into n linear factors modulo q ≥ 5. Let σ ≥

√
n ln(2n(1 + 1/δ))/π · q1/n, for an arbitrary

δ ∈ (0, 1/2). Then
Pr

f←DZn,σ
[f mod q /∈ R×q ] ≤ n(1/q + 2δ).
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CHAPTER 6

The New Encoding Schemes

We will first describe our system for the “symmetric setting” (i.e. corresponding to Defi-
nition 3.2 in Section 3.2.) Later in Section 6.3 we explain how to handle the general case
(Definition A.3 in Appendix A). There we will also consider other extensions. In this chap-
ter we focus on functionality, leaving much of the discussion on security considerations to
Chapter 7.

An instance of our basic construction is parameterized by the security parameter λ and
the required multi-linearity level κ ≤poly(λ). Based on these parameters, we choose the 2nth
cyclotomic ring R = Z[x]/(xn + 1) where n is a power of 2 (n is set large enough to ensure
security), a modulus q that defines Rq = R/qR (with q large enough to support function-
ality), and another parameter m (chosen so that we can apply Theorem 4.8). The specific
constraints that these parameters must satisfy are discussed in Section 6.2, an approximate
setting to keep in mind is n = Õ(κλ2), q = 2κλ and m = O(n2).

6.1 The Basic Graded Encoding Scheme

We start by giving some intuition behind our scheme. An instance of our scheme relative
to the parameters above encodes elements of a quotient ring QR = R/I, where I is a
principal prime ideal I = 〈g〉 ⊂ R, generated by a “short” vector g. Namely, the “ring
elements” that are encoded in our scheme are cosets of the form e + I for some vector e.
The short generator g itself is kept secret, and no “good” description of I is made public in
our scheme. In addition, our system depends on another secret element z, which is chosen
at random in Rq (and hence is not short).

A level-zero (“plaintext”) encoding of a coset e + I ∈ R/I is just a short vector in that
coset (which must exist, since the generator g is short and therefore the basic cell of I is
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quite small). For higher-level encodings, a level-i encoding of the same coset is a vector of
the form c/zi ∈ Rq with c ∈ e + I short. Specifically, for i ∈ {0, 1, . . . , κ} the set of all
level-i encodings is Si = {c/zi ∈ Rq : ‖c‖ < q1/8}, and the set of level-i encodings of the

“plaintext element” e + I is S
(e+I)
i = {c/zi ∈ Rq : c ∈ e + I, ‖c‖ < q1/8 }. Throughout the

construction we use the size of the numerator as the “noise level” in the encoding. Namely,
with each level-i encoding c/zi we produce also an upper bound on ‖c‖.

Instance generation: (params,pzt)← InstGen(1λ, 1κ). Our instance-generation procedure
chooses at random the ideal-generator g and denominator z, as well as several other vectors
that are used in the other procedures and are described later in the section. The denomi-
nator z is chosen uniformly at random in Rq, and hence is not “small” with overwhelming
probability. Using Lemma 5.20 we have that z is invertible in Rq with overwhelming proba-
bility.

We simply draw g from a discrete Gaussian over Zn, say g ← DZn,σ with σ =
√
λn

repeatedly till we have that:

(i) ‖g‖ ≤ σ
√
n and g is invertible in Rq.

(ii) ‖g−1‖ ≤ nc+1.5 (in K) for an appropriate constant c. (Recall that we denote K =
Q[x]/(xn + 1). The reason that we need g−1 ∈ K to be short is explained when we
describe the zero-testing procedure.)

(iii) N(g) is a prime ≥ 2O(n).

From Lemma 6.1 we can conclude that the above described rejection sampling procedure
succeeds in polynomially many trials. Condition (iii) from above, Proposition 5.16 and the
discussion there after imply that I = 〈g〉 is a principal prime ideal.

Once we have g, z, we choose and publish some other elements in Rq that will be used
for the various procedures below. Specifically we have m + 1 elements x1, . . . ,xm,y that
are used for encoding, and an element pzt that is used as a zero-testing parameter. These
elements are described later. Finally we also choose a random seed s for a strong randomness
extractor. The instance-generation procedure outputs params = (n, q,y, {xi}i, s) and pzt.

Lemma 6.1. If g ← DZn,σ, then assuming Conjecture 5.18 there exists a constant c such
that (i), (ii) and (iii) from above are simultaneously satisfied with a noticeable probability.

Proof. We will proceed by obtaining bounds on probabilities that each of the above condi-
tions (i), (ii) and (iii) individually holds. Subsequently the lemma follows by a union bound
argument.

(i) It follows directly from Lemma 4.5 and Lemma 5.20 that condition (i) is satisfied with
overwhelming probability.

(ii) Now we argue that with good probability g−1 in the field of fractions K is also rather
short. We will argue this by looking at g in terms of the canonical embedding. As
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pointed in Section 5.2, the canonical embedding representation can be obtained by
multiplying the coefficient representation with the matrix V2n. And this transformation
for a power of 2 cyclotomic corresponds to just a rigid rotation and a scaling (thus the
spherical Gaussian distribution is not affected by the transformation). Therefore we
have that sampling g from DZn,σ and considering the canonical embedding is the same
as sampling directly the canonical representation for an appropriately scaled gaussian
parameter σ′, which in our case is at least ω(1). This implies that roughly with
probability 1−o(1/nc+1), evaluating g at any complex 2n’th root of unity ζ ∈ C yields
g(ζ) which is greater than 1/nc+1.

Next by taking a union bound, with probability 1−o(1/nc) we have g−1(ζ) = 1/g(ζ) <
nc+1 for all the primitive 2n’th roots of unity ζ, which means that ‖g−1‖can∞ < nc+1.
This implies an upper bound of ‖g−1‖∞ < nc+1 as well (because for every a ∈ K we
have that ‖a‖∞ ≤ ‖a‖can∞ ; see for example [DPSZ11, Theorem 7 and Discussion on
p. 39] for a detailed proof). Hence a bound of ‖g−1‖ < nc+1.5.

(iii) Conjecture 5.18 implies that there exists a constant c such that condition (iii) is satisfied
with probability at least 1

nc
.

Putting the above bounds together and taking a union bound implies the claimed lemma.

Sampling level-zero encodings: d← samp(params). To sample a level-zero encoding of a

random coset, we just draw a random short element in R, d← DZn,σ′ , where σ′ = σn
√
λ (for

σ that was used to sample g). In Lemma 6.2 we argue that the sampled value d corresponds
to a random coset of I. Finally note that by Lemma 4.6 the size of this level-zero encoding
is bounded by σ′

√
n (and we use this as our noise-bound for this encoding).

Lemma 6.2. Let I = 〈g〉 and σ′ ≥
√
λn‖g‖, then we have that the distribution d mod I

where d← DZn,σ′ is close to uniform over Zn mod I, up to negligible distance.

Proof. We can safely assume that λ1(I) ≤ ‖g‖. Next according to Proposition 5.19 we
have that λn(I) = λ1(I). This along with Lemma 4.2 allows us to conclude that with
overwhelming probability

η2−λ(I) ≤
√

ln(2n(1 + 1/ε))

π
· ‖g‖

≤
√

ln(2n(1 + 1/ε))

π
· ‖g‖

≤
√
λn‖g‖

Finally since we have that σ′ ≥ η2−λ(I), therefore by Corollary 4.4 we can conclude
that the induced distribution over the cosets of I is close to uniform, up to a negligible
distance.
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Encodings at higher levels: ui ← enc(params, i,d). To allow encoding of cosets at higher
levels, we publish as part of our instance-generation a level-one encoding of 1+I, namely an
element y = [a/z]q where a ∈ 1+I is short. A simplistic method of doing that is drawing a←
D1+I,σ′′ , for some parameter σ′′, then computing y from a. (Later we describe a somewhat
more involved procedure, which we believe is more secure, see details in Section 7.4.) Given
a level-zero encoding d as above, we can multiply it by y over Rq to get u1 := [yd]q. (We use
the notation [·]q to denote operations in Rq.) Note that u1 = [da/z]q, where da ∈ d + I as
needed. Note that the size of the numerator da of u1 can be bounded by γMult‖d‖·‖a‖ (recall
that γMult can be bounded by

√
n using Lemma 5.9) and we use this as our noise-bound for

this encoding. More generally we can generate a level-i encoding as ui := [dyi]q = [dai/zi]q.
The numerator dai is obviously in d+I, and its size can again be bounded (using Lemma 5.9)

by γ
i/2
Mult‖d‖ · ‖a‖i.

The above encoding is insufficient, however, since from u1 and y it is easy to get back d by
simple division in Rq. We therefore include in the public parameters also the “randomizers”
xi, these are just random encodings of zero, namely xi = [bi/z]q where the bi’s are short
elements in I. A simplistic procedure for choosing these randomizers would be to draw these
elements as bi ← DI,σ′′′ (where σ′′′ will be set later so that we can use Theorem 4.8) and
publish xi = [bi/z]q. (Later we describe a somewhat more involved procedure, which we
believe is more secure, see details in Section 7.4.) Below we denote by X the matrix with
the vectors xi as rows, namely X = (x1| . . . |xm)T . We also use B to denote the matrix with
the numerators bi as rows, i.e., B = (b1| . . . |bm)T .

We use the xi’s to randomize level-one encodings: Given u′ = [c′/z]q with noise-bound ‖c′‖ <
γ, we draw anm-vector of integer coefficients r ← DZm,σ∗ for large enough σ∗ (e.g. σ∗ = 2λγ),
and output

u := [u′ + Xr]q =

[
u′ +

m∑
i=1

rixi

]
q

(
=

[
c′ +

∑
i ribi

z

]
q

)
.

We write Br as a shorthand for
∑

i ribi and similarly Xr as a shorthand for
∑

i rixi.

Since all the bi’s are in the ideal I, then clearly c′+
∑

i ribi is in the same coset of I as c′

itself. Moreover since (using Lemma 4.9) ‖bi‖ < poly(n,m) therefore we have that ‖Br‖ <
σ∗poly(m,n). If indeed ‖c′‖ < γ, then we can conclude that ‖c′ + Br‖ < γ + σ∗poly(m,n)
(and we use this as our noise-bound for this encoding.)

We also claim that the distribution of u is nearly independent of original u′ (except of
course its coset). To see why, note that if the bi’s are chosen from a wide enough spherical
distribution (specifying a constraint on σ′′′) then we can use Theorem 4.8 to conclude that Br
is close to a wide ellipsoid Gaussian. With our choice of σ∗ the “width” of that distribution
is much larger than the original c′, hence the distribution of c′ + Br is nearly independent
of c′, except in the coset that it belongs to. In particular for this to work we will need σ∗ to
be super-polynomially larger than the noise bound of c′.

Adding and multiplying encodings. It is easy to see that the encoding as above is ad-
ditively homomorphic, in the sense that adding encodings yields an encoding of the sum.
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This follows since if we have many short cj’s then their sum is still short, ‖
∑

j cj‖ � q,
and therefore the sum c =

∑
j cj = [

∑
j cj]q ∈ Rq belong to the coset

∑
j(cj + I). Hence,

if we denote uj = cj/z ∈ Rq then each uj is an encoding of the coset cj + I, and the sum
[
∑

j uj]q is of the form c/z where c is still a short element in the sum of the cosets.

Moreover, since I is an ideal then multiplying upto κ encodings can be interpreted as an
encoding of the product, by raising the denominator to the appropriate power. Namely, for
uj = cj/z ∈ Rq as above, we have

u =

[
κ∏
j=1

uj

]
q

=

[∏
j cj

zκ

]
q

.

As long as the cj’s are small enough to begin with, we still have ‖
∏

j cj‖ � q, which means
that [

∏
j cj]q =

∏
j cj (where the product

∏
j cj is computed in R), hence [

∏
j cj]q belongs

to the product coset
∏

j(cj + I).

Thus, if each uj is a level-1 encoding of the coset cj + I with short-enough numerator,
then their product is a level-κ encoding of the product coset. We note that just like level-1
encoding, level-κ encoding (and in fact any of the intermediate level encoding) also offers
additive homomorphism.

Zero testing: isZero(params,pzt,uκ)
?
= 0/1. Since the encoding is additively homomorphic,

we can test equality between encodings by subtracting them and comparing to zero. To
enable zero-testing, we generate the zero-testing parameter as follows: We draw a “somewhat
small” ring element h ← DZn,√q, such that h /∈ I and set the zero-testing parameter as
pzt = [hzκ/g]q. (Later we describe a somewhat more involved procedure, which we believe
is more secure, see details in Section 7.4.) To test if a level-κ encoding u = [c/zκ]q is an
encoding of zero, we just multiply it in Rq by pzt and check whether the resulting element
w = [pzt · u]q is short (e.g., shorter than q3/4). Namely, we use the test

isZero(params,pzt,u) =

{
1 if ‖[pztu]q‖∞ < q3/4

0 otherwise
(6.1)

In Lemma 6.3 we will argue that encodings of zero (such that the numerator is less than
q1/8) always pass the zero test. Next in Lemma 6.5 we argue that encodings of non-zero
cosets pass the zero test only with a negligible probability.

Lemma 6.3. For any u = [c/zκ]q such that ‖c‖ < q1/8 and c ∈ I = 〈g〉, such that

‖g−1‖ < q1/8

n3/2 (in K) we have that ‖[pztu]q‖∞ < q3/4 where h← DZn,√q, and pzt = [hzκ/g]q.

Proof. To see why this works, we note that

w = pzt · u =
hzκ

g
· c
zκ

= h · c/g (all the operations in Rq).

If u is an encoding of zero then c is a short vector in I (containing elements gr for r ∈ R),
which means that it is divisible by g in R. Hence the element c/g ∈ R is the same as the
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element c ·g−1 ∈ K. Next we have that c ·g−1 is at most ‖c‖ · ‖g−1‖ ·γMult (recall that using
Lemma 5.9 γMult can be bounded

√
n). Next we have that ‖w‖ ≤ ‖h‖ · ‖c‖ · ‖g−1‖ · γ2

Mult,
which for our choice of parameter is q1/2 ·

√
n ·q1/8 · ‖g−1‖ ·n < q3/4 (Note that by Lemma 4.5

we have that ‖h‖ ≤ q1/2 ·
√
n with overwhelming probability). This immediately also gives

an upper bound on the `∞ norm of w.

If u is an encoding of a non-zero coset, then c is a short vector in some coset of I. In this
case we have w = [c · h/g]q, where c,g are small (and h is “somewhat small”). Intuitively,
since [h/g]q is large with high probability then for a “random enough” c we expect the size of
w to be large. More formally, we argue below (Lemma 6.4) that when choosing a uniformly
random coset of I = 〈g〉, there are no short elements c in that coset such that [c · h/g]q is
small. This will allow up to conclude Lemma 6.5.

Lemma 6.4. Let w = [c · h/g]q and suppose ‖g · w‖ and ‖c · h‖ are each at most q/2.
Suppose 〈g〉 is a prime ideal. Then, either c or h is in the ideal 〈g〉.

Proof. Since g ·w = c ·h mod q, and since ‖g ·w‖ and ‖c ·h‖ are each at most q/2, we have
g ·w = c ·h exactly. We also have an equality of ideals 〈g〉·〈w〉 = 〈c〉·〈h〉, and, since 〈g〉 is a
prime ideal and our cyclotomic ring is a unique factorization domain (see Proposition 5.14),
we have that 〈g〉 divides either 〈c〉 or 〈h〉 (or both). The result follows.

Lemma 6.5. Let q = nω(1), and 〈g〉 be a prime ideal such that ‖g‖ = poly(n). Sample
h← DZn,√q such that h /∈ 〈g〉. Then, there is no ε > 0 and c /∈ I such that ‖c‖ < q1/8 and
‖[c · h/g]q‖ < q1−ε.

Proof. We are give than ‖c‖ < q1/8 and have ‖h‖ < √q · n (with overwhelming probability
using Lemma 4.5). Hence, using Lemma 5.9 we have that ‖c · h‖ < q1/8+1/2 · n < q/2. Also
for the sake of contradiction assume that that w = [c ·h/g]q is such that ‖w‖ < q1−ε. Then
again we have that ‖w ·g‖ < q1−ε · ‖g‖

√
n < q/2 as ‖g‖ = poly(n) and q = nω(1). Now using

Lemma 6.4, we have that either c or h is in the ideal 〈g〉, which is a contradiction.

Extraction: s← ext(params,pzt, uκ). To extract a “canonical” and “random” representa-
tion of a coset from an encoding u = [c/zκ]q, we just multiply by the zero-testing parameter
pzt, collect the (log q)/4 − λ most-significant bits of each of the n coefficients of the result,
and apply a strong randomness extractor to the collected bits (using the seed from the public
parameters). Namely

ext(params,pzt,u) = Extracts(msbs([u · pzt]q)) (msbs of coefficient representation).

This works because for any two encodings u,u′ of the same coset we have

‖pztu− pztu
′‖∞ = ‖pzt(u− u′)‖∞ < q3/4,

so we expect pztu, pztu
′ to agree on their (log q)/4 − λ most significant bits. (There is a

negligible (in λ) chance that u and u′ are such that pztu and pztu
′ are on opposite sides
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of a boundary, such that they have different MSBs.) On the other hand, by Lemma 6.5, we
know that we cannot have ‖pzt(u−u′)‖ < q1−ε when u−u′ encodes something nonzero, and
therefore (since λ � log q/4) the values pztu and pztu

′ cannot agree on their (log q)/4 − λ
MSBs.

This means, however, that no two points in the basic cell of I agree on their collected bits
when multiplied by pzt, so the collected bits from an encoding of a random coset have min-
entropy at least log |R/I|. We can therefore use a strong randomness extractor to extract a
nearly uniform bit-string of length (say) blog |R/I|c − λ.

6.2 Setting the parameters

In this section we provide the parameters for the basic setting that should be set so that all
the constraints required by the scheme are met. A overview is presented in Table 6.2.

Parameter Constraints Value Set

σ By Lemma 6.1, ‖g‖ ≤ σ
√
n, ‖g−1‖ ≤ nc+1.5.

√
nλ

σ′ By Lemma 6.2, σ′ ≥
√
nλ · ‖g‖. λn3/2

σ∗ Super-polynomially larger than γ the size of the
numerator of encoding being randomized. 2λγ
By Theorem 4.8, σ∗ > poly(n,m)

q Multiplication of κ encoding should
have small numerator. q ≥ 28κλnO(κ)

By Lemma 6.5, q > nω(1).

By Lemma 6.3, ‖g−1‖ < q1/8

n3/2 .

m Constrained by Theorem 4.8. O(n2)

Table 6.1: Parameters for our graded encoding scheme.

• The basic Gaussian parameter σ that we use to draw the ideal generator, g ← DZn,σ,

needs to be set to satisfy σ ≥ η2−λ(Zn), which means that we have σ =
√
λn. Then

as argued in Lemma 6.1 we have that the size of g is bounded with overwhelming
probability by ‖g‖ ≤ σ

√
n = n

√
λ.

• Once we have the ideal lattice I = 〈g〉, the Gaussian parameter σ′ by Lemma 6.2 we
should have σ′ ≥ ‖g‖

√
λn. Given the bound from above bound on the size of g, it is

sufficient to set σ′ = λn3/2, which means that the size of level-zero elements is bounded
with overwhelming probability by λn2.

• Recall that σ′′ and σ′′′ are the the size of the numerators of y and the xi. Theorem 4.8
requires that σ′′′ be larger that η2−λ(Zn). In Section 7.4 we show an alternate (more
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secure) procedure for generation of y and the xi’s and the that the size of the numer-
ators in y and the xi’s generated by that procedure will be bounded by σ ˙poly(n) with
high probability.

• The Gaussian parameter σ∗ that we use to draw the coefficient vector r during re-
randomization of newly generated level-1 encodings, must be large enough so that: (1)
The resulting distribution on

∑
rixi is to close to a wide ellipsoid Gaussian encodings of

zero. Thus Theorem 4.8 requires that σ∗ > poly(n,m, λ). (2) The resulting distribution
on
∑
rixi is such that it “drowns” the numerator ad of the initial encoding ad/z and

setting σ∗ = 2λ is suffices for this purpose. For this value of σ∗, a re-randomized level-
one encoding is of the form [c/z]q with the size of c is bounded by ‖c‖ ≤ 2λ ·poly(n,m).

• A level-κ encoding is obtained by multiplying κ level-one encodings (which will always
be re-randomized). Hence it is of the form [c/zκ]q with c of size bounded with high
probability by ‖c‖ ≤ (2λ · poly(n))κ = 2κλ · nO(κ). To use Lemma 6.5 for level-κ
encodings, we need ‖c‖ ≤ q1/8, so it is sufficient to set q ≥ 28κλ · nO(κ). With this

choice the constraints from Lemma 6.5 (q > nω(1)) and Lemma 6.3 (‖g−1‖ < q1/8

n3/2 ) are
easily satisfied.

• Finally, we need m to be sufficiently large so that we can use Theorem 4.8, which we
can do here by setting m = O(n2).

• Finally, in order to get λ-level security against lattice attacks, we roughly need to set
the dimension n large enough so that q < 2n/λ, which means that n > Õ(κλ2).

6.3 Extensions and Variants

Some applications of multi-linear maps require various modifications to the basic encoding
scheme from above, such as “assymetric maps” that have difference source groups. We briefly
describe some of these variants below.

Avoiding prime ideals. Note that in certain application it may not be essential for the
ideal I to be a prime. For example, for the application (as explained in Chapter 10) of
one-round N -party key-exchange it suffices to have a principal ideal I such that its norm
has large prime factors.

Another re-randomization approach. Recall that the re-randomization approach as
described the in the basic variant of the scheme involved publishing encodings of zero which
can then be added to the encoded term to re-randomize it. A different approach is to re-
randomize y first, by setting y′ := y + Xr and then encode via the re-randomized encoding
of 1, namely as u1 := [y′d]q. This does not have the information-theoretic same-distribution
guarantee as provided by the basic variant of the scheme (since the distributions [y′d]q and
[y′d′]q may differ, even if d,d′ are both short and in the same coset). But on the plus side,
it is more convenient to use this re-randomization method for encoding at high levels i > 1:
After computing the randomized y′, we can use it by setting ui := [d(y′)i]q.
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Extending re-randomization. Note that in the basic variant of the scheme we used the
matrix X to randomize level-one encodings. Using similar pubic parameter Xi now consisting
of encoding of zero at the ith level, we can generalize the re-randomization procedure to work
at any level i ≤ κ. In particular we abstract this procedure as reRand(y, i,u′): Given u′ =
[c′/zi]q with noise-bound ‖c′‖ < γ, we draw an m-vector of integer coefficients r ← DZm,σ∗

for large enough σ∗ (e.g. σ∗ = 2λγ), and output u := [u′+Xir]q as a re-randomized version
of u. Using the same argument as in the basic variant of the scheme we can conclude that
the distribution generated in this way will be independent of c′, except in the coset that it
belongs to.

Note that for some applications (e.g. [GGH+13c]) it might be useful to use the re-
randomization operation multiple times. Here we consider the case in which ` re-randomizations
(for some constant `) are needed. Furthermore in between these re-randomization steps we
might have some (say, some constant) addition and multiplication operations on the interme-
diate encodings. One way to achieve this would be to use σ∗ = 2λ

j
when performing the jth

re-randomization (for any j). In other words sample r from DZm,σ∗ where σ∗ = 2λ
j

and use it
to re-randomize the encoding that has been obtained after j−1 previous re-randomizations.
Furthermore observe that the addition and multiplication of encodings increases noise by a
small factor which will be wiped clean with re-randomizations. In this setting where at most
` re-randomizations are needed we will need q > 28κλ`nO(κ)

. Finally, in order to get λ-level
security against lattice attacks, we will need to set the dimension n such that n > Õ(κλ1+`).

Asymmetric encoding. Now we will describe our construction for general graded encod-
ings (Definition A.3 in Appendix A).

In this variant we still choose just one ideal generator g, but several different denominators
zj

r← Rq, j = 1, . . . , τ . Then, a vector of the form c/zj ∈ Rq with c short is a level-one
encoding of the coset c+I relative to the “j’th dimension”. In this case we use vectors rather
than integers to represent the different levels, where for an index w = 〈w1, . . . , wτ 〉 ∈ Nτ
and a coset c′ + I, the encodings of c′ + I relative to the index w are

S(c′+I)
w =

{
c/z∗ : c ∈ c′ + I, ‖c‖ < q1/8, z∗ =

τ∏
i=1

zwii

}
.

To enable encoding in this asymmetric variant, we provide the public parameters yj =
[aj/zj]q and {xi,j = [bi,j/zj]q}i for all j = 1, 2, . . . , κ, with short ai ∈ 1 + I and bi,j ∈ I.
To enable zero-test relative to index 〈v1, . . . , vτ 〉 ∈ Nτ we provide the zero-test parameter
pzt = (h ·

∏τ
i=1 zvii )/g ∈ Rq. The parameters for this variant will have to be set in order

to provide functionality up to
∑

i vi levels. In particular, we will need q > 28κλ
∑
i vinO(κ)

and

n > Õ(κλ
1+

∑
i vi ).

Providing zero-test security. In applications that require resilience of the zero test even
against invalid encodings, we augment the zero-test parameter by publishing many elements
pzt,i = [hiz

κ/g]q for several different hi’s. As part of our new zero-test we require that a
level-κ encoding must pass the zero-test relative to all the parameters pzt,i.
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Consider a purported encoding u = c/zκ where in this case we do not assume necessarily
that ‖c‖ < q1/8 (as would be true for a valid encoding). Applying multiple zero-testers, we
obtain

pzt,1u = hic/g, . . . , pzt,tu = htc/g .

This t-dimensional vector lies in a lattice L generated by the vector (h1, . . . ,ht) modulo q,
Note that since ‖hi‖ � q for all i, the vector (h1, . . . ,ht) is quite short modulo q. Moreover,
by making t large enough (but still polynomial), we can ensure that all of the vectors in L
whose lengths are much less than q are unreduced (small) multiples of (h1, . . . ,ht). Therefore,
if the encoding passes the multiple zero-test, c/g must be small, and therefore u has the
form of an encoding of zero.

Avoiding Principal Ideals. In light of the fact that some of the attacks in Chapter 9 rely
on the fact that I is a principal ideal, it makes sense to seek a scheme that can use also
“generic” (non-principal) ideals according to a nice canonical distribution. Unfortunately,
we do not know how to do this, since we do not know how to generate a general ideal I
according to a nice distribution together with short vectors (e.g., within poly(n) of the first
minima) in each of I and I−1.

We note that we can at least adapt the zero-test to general ideals, should the other
problems be resolved. We can replace the single zero-test parameter pzt = [hzκ/g]q by n
parameters, pzt,i = [hiz

κ · f i]q, where the vectors f i are “in spirit” just a small basis of
the fractional ideal I−1 (but they are mapped to Rq via 1

x
∈ K 7→ x−1 ∈ Rq). We note

that a similar approach also addresses the (small) possibility that ‖g−1‖ is not small. Since
g−1 ⊂ R, we can reduce g−1 modulo the integral basis of R to obtain short elements of I−1,
and hence zero-testers that are sufficiently small.
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CHAPTER 7

Security of Our Constructions

The security of our graded encoding systems relies on new, perhaps unconventional assump-
tions, and at present it seems unlikely that they can be reduced to more established assump-
tions, such as learning-with-errors (LWE) [Reg05], or even the NTRU hardness assumption
[HPS98]. Given that the construction of multilinear maps has been a central open problem
now for over a decade, we feel that exploring unconventional assumptions for this purpose is
well worth the effort, as long as this exploration is informed by extensive cryptanalysis.

Simplistic Attacks. We begin our cryptanalysis with a “sanity check,” arguing that sim-
plistic attacks that only compute rational functions in the system parameters cannot recover
any “interesting quantities”, and in particular cannot break our DDH analog. In particular,
we consider “simplistic” generic attacks that operate on the encodings of params and the
problem instance using only simple operations – add, subtract, multiply, divide. That is, we
model [Kal85a, Kal85b] attackers as arithmetic straight-line programs (ASLPs). This model
is analogous[Sho97b] to the generic group model, which is often used as a “sanity check”
in the analysis of group-based cryptosystems. As an example in our case, an ASLP can
generate the element pztx

κ
i , which equals hgκ−1b′i

κ where b′i = bi/g. We want to check that
an ASLP cannot generate anything “dangerous.”

We prove that an ASLP cannot solve GCDH. We do this by defining a weight function
w for rational functions, such that everything in the GCDH instance has weight zero, but
a GCDH solution has weight 1. The weight function behaves much like polynomial degree.
For example, the term [a/z]q in params has weight 0, since we set w(a) = 1 = w(z). As
another example, w(pzt) = w(h) + κ · w(z) − w(g), which equals 0, since we set w(g) = 1
and w(pzt) = 1 − κ. To vastly oversimplify the remainder of our analysis, we show that,
given terms of weight 0 (as in the GCDH instance), an ASLP attacker can only produce
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more terms of weight 0, and thus not a GCDH solution. (See Lemma 7.5 for a more accurate
statement.)

Non-generic attacks. More realistically, we consider (non-generic) averaging, algebraic
and lattice attacks. To make this investigation broadly accessible, in this chapter we will
start by presenting the different attack scenarios that we need to be worried about. More
specifically, we identify seemingly useful quantities that can be computed from the public
parameters, and other quantities that if we could compute them then we could break the
scheme. We describe averaging and lattice-reduction attacks that can perhaps be useful
in recovering some of these “interesting targets,” and propose countermeasures to render
these attacks less dangerous. While describing the attacks themselves we do not delve
into the number theoretic details which are deferred to Chapter 9, where they are studied
extensively. Many of these attacks arose in the cryptanalysis of NTRU signature schemes
[HKL+00, HPS01, HHGP+03], but a couple of them are new (and will be of broader interest).

Undoubtedly there is a lot of meat here for cryptanalysts. But the bottom line is that
we have extended the best known attacks (see Chapter 9) and still not found an attack that
is threatening to our constructions.

7.1 Our Hardness Assumption

In our constructions, the attacker sees the public parameters params = (y, {xi}mi=1), where
y = [a/z]q is a level-1 encoding of 1 + I and each xi = [bi/z]q is a level-1 encoding of
0 + I. Recall (from Table 6.2) that I = 〈g〉 where ‖g‖ = poly(n) = qo(1), and a level-i
encoding of a coset α + I is an element of the form u = [c/zi]q where c ∈ α + I is short,
typically ‖c‖ = qo(1) (and always ‖c‖ < q1/8). In addition the attacker also sees a zero-testing
parameter at level κ of the form pzt = [hzκ/g]q with ‖h‖ = q1/2+o(1).

Expressing the abstract GDDH assumption from Chapter 3 in terms of our specific con-
struction, we get the following computational assumptions (below we state both the search
and the decision versions). Consider the following process, on parameters λ, n, q, κ, σ =
poly(n), σ∗ = σ · 2λ (as described in Chapter 6):

1. (y, {xi}i,pzt)← InstGen(1n, 1κ)
2. For i = 0, . . . , κ
3. Choose ei ← DZn,σ and f i ← DZn,σ // ei,f i in random ηi + I, φi + I
4. Set ui =

[
eiy +

∑
j rijxj

]
q

where rij ← DZ,σ∗ // encode only the ηi’s

5. Set u∗ = [
∏κ

i=1 ui]q // level-κ encoding

6. Set v = [e0 · u∗]q // encoding of the right product
7. Set v′ = [f 0 · u∗]q // encoding of a random product

Definition 7.1 (GCDH/GDDH). The (graded) CDH problem (GCDH) is, on input ((y, {xi}i,pzt),
u0, . . . ,uκ) to output a level-κ encoding of

∏
i ei +I, specifically w ∈ Rq such that ‖[pzt(v−
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w)]q‖ < q3/4. 1 The graded DDH problem (GDDH) is to distinguish between v and v′, or
more formally between the distributions

DGDDH = {(y, {xi}i,pzt),u0, . . . ,uκ,v} and DRAND = {(y, {xi}i,pzt),u0, . . . ,uκ,v
′}.

7.2 Simplistic Models of Attacks

We begin our cryptanalysis effort by considering “simplistic” generic attacks. Roughly, these
are attacks in which we just take the terms the public parameters, add, subtract, multiply,
and divide them, and hope to get something useful out of it. In other words, we consider
arithmetic straight-line programs (ASLP) [Kal85a, Kal85b] over the ring Rq as our model of
attack.

We argue that such simplistic attacks are inherently incapable of solving GCDH. To that
end we consider the different terms from the public parameters as formal variables, and
show that all of the rational functions that the attacker can derive have a special form.
Then we argue that any term of this form that expresses a solution to GCDH must refer to
a polynomial of large size and cannot serve as a correct solution.

Before presenting this analysis, we remark that a slightly less simplistic attack model is
the black-box field (BBF) model of Boneh and Lipton [BL96]. In that model, the attacker can
still compute terms that are rational functions in the given parameters, but now it can also
test whether two terms are equal (and in our case perhaps also see the results of applying the
zero test on two terms). Although we do not have any bounds on the security of our scheme
in this model, we note that Boneh and Lipton’s generic BBF algorithm for solving discrete
log does not extend to our setting to solve our “discrete log” problem. The reason is that
their algorithm requires black-box exponentiations of high (exponential) degree, whereas
our encodings only permit the evaluation of polynomially-bounded degree, after which the
“noise” in our encodings overwhelms the signal.

7.2.1 Hardness of GCDH in the Arithmetic Straight-Line Program Model

Our ASLP analysis resembles potential-function analysis to some extent. We assign some
weight to terms from the public parameters and the GCDH instance that the attacker gets
as input (and think of this weight as our “potential”). We then characterize the weight of
the terms that the attacker can compute using an ASLP on these input terms, and argue
that terms of this weight are not useful for solving GCDH.

Notation. First, we establish some terminology. Recall that a rational function is a ratio
of two (multivariate) polynomials, and that the set of rational functions in some variables
is closed under addition, subtraction, multiplication and division. We denote the rational
functions over the set of variables V over a ring R by RR(V ).

1This formulation allows the adversary to output even an invalid encoding, as long as it passes the equality
check.

43



Definition 7.2 (Weight of Variables and Rational Functions). Consider a set of variables
V = {x1, . . . , xt} over some ring R, and a weight function on these variables w : V → Z.
This weight function is inductively extended rational functions in these variables over R,
w∗ : RR(V )→ Z as follows:

• For any constant c ∈ R, w∗(c) = 0, and for any variable x ∈ V w∗(x) = w(x);

• ∀a ∈ RR(V ), w∗(−a) = w∗(a) and if a 6≡ 0 then w∗(1/a) = −w∗(a);

• ∀a, b ∈ RR(V ), s.t. a + b is not equivalent to any simpler function, w∗(a + b) =
max{w∗(a), w∗(b)}.

• ∀a, b ∈ RR(V ), s.t. ab is not equivalent to any simpler function, w∗(ab) = w∗(a) +
w∗(b).

It can be shown that this extension w∗ is well defined over the ring of integers in any
number field. One example of such a weight function is the degree of the polynomial in
the variables in V , when w(x) is set to 1 for each x ∈ V . Below we identify w∗ with w and
denote both by w(·).
Definition 7.3 (Homogeneous Weight-Balanced Rational Function for weight function w(·)).
We say that a rational function r(x1, . . . , xt) = p(x1, . . . , xt)/q(x1, . . . , xt) is homogeneous
for weight function w(·) if p and q are such that each one of their monomials has the same
weight. We say that r is homogeneous weight-balanced for weight function w(·) if it is
homogeneous and has weight zero.

We use the following easy fact:

Fact 7.4. Let r1(x1, . . . , xt) and r2(x1, . . . , xt) be homogeneous balanced rational functions
for weight function w(·). Then −r1, 1/r1, r1 + r2 and r1 · r2 are all homogeneous balanced
rational functions for weight function w(·).

Intuition. Using the above definitions, our basic strategy will be to treat the relevant
elements in our scheme as formal variables and assign a weight and a size to them. Weights
will be assigned such that all the terms that the adversary sees are homogenous weight-
balanced rational functions. Fact 7.4 then implies that the terms that an ASLP attacker can
produce must also be homogenous weight-balanced rational function. On the other hand the
assigned size value lower-bounds the expected size of that element in the actual scheme. The
main lemma in our analysis asserts that any element obtained as weight-balanced rational
function, which is equivalent to

∏κ
i=0 ei/z

κ (mod I), must have numerator of size more
than

√
q. This means that when multiplied by the zero-testing parameter we get reduction

modulo q, hence such term will not pass the equality test.

Size of terms. Below we use the following rules for the evolution of the size: If a, b are
an elements of size sz(a), sz(b), respectively, then we have sz(−a) = sz(a), sz(1/a) = q,
sz(a + b) = sz(a) + sz(b) and sz(ab) = sz(a) · sz(b). (The convention of sz(1/a) = q captures
the intuition that the inverse of a small Rq element has size roughly q.)
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Weight and size of elements in our scheme. Recall that a GCDH attacker gets as
input the terms a/z, {bi/z}mi=1,hzκ/g, and {ej/z}κj=0 (all in Rq), where we have I = 〈g〉,
bi ∈ I for all i and a ∈ 1 + I.

To ensure that all the terms that the attacker gets are homogenous weight-balanced
rational functions, we set w(z) = w(g) = w(a) = 1 and also w(bi) = 1 for all i and w(ej) = 1
for all j. Finally, to make the zero-test parameter weight-balanced we set w(h) = 1 − κ.
We note that h is the only element that has negative weight. (If we wish to consider the
decomposition bi = rig, then w(ri) = 0, and similarly if we decompose a = rg + 1 then
w(r) = 0.)

For our analysis below, it is sufficient to assign size c for some constant c > 0 to all the
“small” elements, size just over

√
q to the mid-size element h, and size q to the random

element z. Namely we have sz(z) = q, sz(g) = sz(a) = c, sz(bi) = c for all i, sz(ej) = c for
all j and sz(h) =

√
q.

Lemma 7.5. Consider the GCDH instance Γ = (a/z, {bi/z}mi=1,hzκ/g, {ej/z}κj=0) with
weights and sizes as above. Assume that q is a prime. Let A be an arithmetic straight-line
program. If A(Γ) = c/zk such that [c]q ≡

∏κ
j=0 ej (mod I) then sz([c]q) >

√
q.

Proof. By Fact 7.4 and the weights of elements in Γ, A can produce only homogenous weight-
balanced rational functions of the variables. Since w(z) = 1, this implies w(c) is κ. Going
forward, the intuition is since

∏κ
j=0 ej has weight κ + 1, the only way to get c to have the

correct weight is to make it divisible by h, since it is the only variable with negative weight.
But this makes the size of c at least

√
q.

Formally we prove below that any homogeneous balanced rational function d that satisfies
d ≡ c (mod q) and d ≡

∏κ
j=0 ej (mod I) much have size at least

√
q, so in particular this

must hold for [c]q.

Since c and d are homogeneous and d ≡ c (mod q), there exist two homogeneous rational
functions s, s′ such that c = sd + s′ with s ≡ 1 (mod q) and s′ ≡ 0 (mod q). Since c is
homogeneous therefore we have

w(c) = w(s) + w(d) = w(s′).

Similarly since d ≡
∏κ

j=0 ej (mod I) then we must have d = r
∏κ

j=0 ej + r′ for homoge-
neous rational functions r, r′ that satisfy r ≡ 1 (mod I) and r′ ≡ 0 (mod I), and again we
have

w(d) = w(r) + κ+ 1.

Putting the two weight equations together, we thus have w(c) = w(s)+w(r)+κ+1. At the
same time, by Fact 7.4 we know that A can only produce weight-balanced rational terms,
so w(c/zκ) = 0. Therefore w(c) = w(zκ) = κ, which implies that w(s) + w(r) = −1. This
implies that either w(s) < 0 or w(r) < 1.

Considering the size of d, we first note that if d = p/p′ for a nontrivial denominator p′

then sz(d) ≥ q and there is nothing more to prove. Below we therefore assume that the
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denominator p′ is trivial, i.e. d is a simple polynomial. Since d = r
∏κ

j=0 ej + r′, then
also r′ is a simple polynomial and the only terms that we can have in the denominator of r
are the ej’s. But we know that r ≡ 1 (mod I) so the same ej’s must be in its numerator,
making r too a simple polynomial. We conclude that r, r′ must both be simple polynomials,
and sz(d) = sz(r) · sz(

∏
j ej) + sz(r′).

Returning to the weight, we now have two cases to analyze: either w(s) < 0 or w(r) ≤ 0.

• If w(r) ≤ 0, then since the only variable with non-positive weight in our scheme is h,
it must be that h divides r. Hence we get sz(c) ≥ sz(d) ≥ sz(r) ≥ sz(h) ≥ √q.

• Considering the other case w(s) < 0, we note s ≡ 1 (mod q) but none of the terms
in our system are equivalent to 1 modulo q. The only way to get a homogeneous
rational function s ≡ 1 (mod q) is if w(s) is divisible by q− 1. Since the weight of s is
negative and divisible by q − 1, then in particular we have w(s) ≤ −q + 1. Therefore,
w(r) ≥ q − 2. For Γ, weights, and sizes as defined above, clearly sz(r), and hence
sz(d), exceeds

√
q.

7.3 Cryptanalysis Beyond the Generic Models

Below we attempt “real cryptanalysis” of our scheme, using state of the art tools in algebraic
cryptanalysis and lattice reduction. Throughout this section we consider in particular the
GDDH assumption, hence we assume that the attacker is given the following inputs, all
relative to the random element z ∈ Rq and the ideal I = 〈g〉 ⊂ R, with ‖g‖ ≈ σ

√
n.

• y = [a/z]q, a level-one encoding of 1, namely a ∈ 1 + I and ‖a‖ ≥ σ
√
n.

• xi = [bi/z]q, m randomizing terms s.t. ∀i, bi ∈ I and ‖bi‖ ≥ σ
√
n. Below it will be

convenient to denote bi = b′i · g, where b′i is of size similar to bi.

• pzt = [hzk/g]q the zero-test parameter with ‖h‖ ≈ √qn;

• uj = [ej/z]q, κ+ 1 level-one encodings of random elements where ∀j, ‖ej‖ ≈ 2λσ
√
n;

• w = [c/zk]q, the “challenge element” with allegedly ‖c‖ < q1/8 and c ≡
∏κ

j=0 ej
(mod I).

Our parameter setting is n = Õ(κλ2) and q ≈ 2n/λ. In the analysis below we consider as
a “real break” any method that has a heuristically significant chance of distinguishing the
challenge w from a level-κ encoding of a random element different from

∏
j ej.
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7.3.1 Easily computable quantities

Using only algebraic transformations (with no need for lattice reduction), it is easy to com-
pute from the given parameters also the following quantities:

• Taking different κ-products including some number r ≥ 1 of the xi’s, some number
s ≥ 0 of the uj’s and some power of y, and multiplying these products by the zero-test
parameter pzt, we get many different elements of the form

v =

[(
r∏

k=1

xik

)
·

(
s∏

k=1

ujk

)
· yκ−r−s · pzt

]
q

=

(
r∏

k=1

b′ik

)
· gr−1 ·

(
s∏

k=1

ejk

)
· aκ−r−s · h (7.1)

Importantly, the right-hand-side in Equation (7.1) is not reduced modulo q, because it
is a product of the mid-size h by exactly κ short elements, hence its size is smaller
than q.

• All the v’s of the form of Equation (7.1) have a common factor h, but if we choose the
other elements at random then with high probability they will have no other common
factors. Hence after seeing enough of them we can expect to get a basis for the principal
ideal lattice 〈h〉.
A similar argument implies that we can also compute bases for the principal ideals
〈h · ej〉 for every j ∈ {0, 1, . . . , κ} and also bases for 〈h · g〉 and 〈h · a〉.

• Given a basis for 〈h〉, we can get a basis for the fractional principal ideal 〈1/h〉 (where
1/h is the inverse of h in the number field K).

• Using the bases for 〈h · g〉 and 〈1/h〉, we can compute a basis for our principal ideal
I = 〈g〉. Similarly we can also compute a basis for 〈a〉 and bases for all the principal
ideals 〈ej〉.

The above tells us that we cannot expect to hide the ideal I itself, or the ideals generated
by any of the other important elements in our scheme. It may still be hard, however, to find
the short generators for these ideals, or any short elements in them. Indeed this difficulty is
the sole reason for the conjectured security of our schemes.

7.3.2 Using averaging attacks

Averaging attacks are described in Sections 9.1 through 9.4, roughly speaking they allow
us, after seeing many elements of the form ri ·a for the same a but many different “random”
ri’s (e.g., that are independent of a), to get a good approximation of a (or some related
quantities from which we can derive a).
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In our case, if we use simplistic Gaussian distributions to choose all our public parameters,
then we expect to be able to apply these tools with elements from Equation (7.1), in order
to get approximations for h or h · gr for various r’s. The tools from the literature do not
quite work “right out of the box” because the terms that we want to recover are not very
short. Specifically they have size more than

√
q, so techniques from the literature may

need to average super-polynomial (or even exponential) number of samples to get useful
approximations.

In Section 9.5, however, we describe a new method that can recover elements such as
h or h · gr from approximations that are not very accurate. The level of accuracy needed
to apply Theorem 9.11 still requires super-polynomial number of samples, but only just: It
is heuristically enough to use only nO(log logn) samples. Indeed this potential attack is the
reason for the slightly involved method of choosing the randomizers in Section 6.1, which is
based on the countermeasures discussed in Section 7.4 below.

Another potential problem in using these attacks is that our public parameters only
include a small number of terms, whereas averaging attacks typically need a much larger
number of samples. However, the attacker can get many more samples by taking sums and
products of terms from the public parameters, and it seems likely that such samples will be
“independent enough” to serve in the averaging attacks.

Below we show how recovering (small multiples of) the terms g or 1/h, can be used to
break our scheme, and also a plausible method of using a small multiple of h · gr for a large
value of r. We remark that for the cases of having a small multiple of g or 1/h we can show
a real working attack, but for the case of having a small multiple of h · gr we only have a
“somewhat plausible approach” that does not seem to lead to a real attack.

7.3.3 Cryptanalysis with extra help

A short element in 〈g〉. We begin by showing that knowing any short element in the
ideal I = 〈g〉 would enable the attacker to break our scheme. Any short element in I has the
form d ·g for a short d (because g−1 ∈ K is short). We begin the attack by multiplying in Rq

the short d · g by the zero-test parameter pzt, thus getting the modified zero-test parameter
p′zt = [d ·h ·zκ]q. Then we multiply the modified zero-test parameter by both the “challenge
element” w and by the product of κ of the random encodings uj.

In the case where w is indeed an encoding of the right product, we would have w =
(cg +

∏κ
j=0 ei)/z

κ for some not-too-big c (i.e., ‖c‖ < q1/8). Hence in this case we would get
the two elements

v1 := [p′zt ·w]q = d · h ·

(
c · g +

κ∏
j=0

ej

)
and v2 :=

[
p′zt ·

κ∏
j=1

uj

]
q

= d · h ·
κ∏
j=1

ej.

Our next goal is to “divide v1 by v2 modulo I” in order to isolate the element e0. For that
purpose, we use our knowledge of a basis of I and compute the Hermite normal form (HNF)
of that lattice. Recall that the HNF basis has the form of a upper-triangular matrix, and
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with good probability the first entry on the main diagonal is the norm of I (denoted N(I))
and all the other entries are 1. Below we assume that this is indeed the case.

We can reduce both v1 and v2 modulo the HNF basis of I, and if the basis has the above
special form then we get two integers ν1 = [v1]HNF(I) ∈ Z and ν1 = [v1]HNF(I) ∈ Z. Clearly
we have

ν1 ≡ v1 ≡ dh
κ∏
j=0

ej (mod I), and ν2 ≡ v2 ≡ dh

κ∏
j=1

ej (mod I)

Assuming that ν2 is co-prime to N(I), we can now compute over the integers η = ν1 ·
ν−1

2 mod N(I). Observing that we always have N(I) ∈ I, we therefore get (for some τ ∈ Z)

η · ν2 = ν1 + τ · N(I) ≡ ν1 (mod I).

At the same time we also have

e0 · ν2 ≡ e0 · v2 ≡ v1 ≡ ν1 (mod I).

Since ν2 is co-prime with N(I) then it is also co-prime with the ideal generator g, and hence
the two equalities above imply that η ≡ e0 (mod I).

Finally, we can reduce η modulo the rotation basis of d · g, which is a basis consisting of
only short vectors (because d ·g itself is short). This yields a short element e′0 = η+ t ·dg ≡
η ≡ e0 (mod I). We observe that the short e′0 is functionally equivalent to the coset e0

which was encoded in u0. (At least, it is functionally equivalent when d · g is short enough;
if it is not short enough, the attack may fail.)

In particular we can use it to verify that the challenge element is indeed an encoding of
the right product: we just multiply u′0 = e′0 · y to get a level-one encoding, then check that
u0 − u′0 is a level-one encoding of zero. (Or course this test will fail in the random case,
since the element that we recover will be in the coset of f 0 not in the coset of e0.)

A small multiple of 1/h. Recall that we can compute from the public parameters a basis
for the fractional ideal 〈1/h〉. If we could find a “somewhat short” element in that lattice,
namely an element v = d/h with ‖d‖ � √q, then we can mount the following simple attack:

Multiplying the zero-test parameter by v, we get the “higher-quality” zero-test parameter
p′zt = [pzt · v]q = [dzκ/g]. Once we have this higher-quality parameter, we can square it and
multiply by one of the randomizers to get

p′′zt = [(p′zt)
2x0]q = [d2z2κ/g2 · b′0g]q = [d2b′0z

2κ/g]q.

If ‖d‖ is sufficiently short so that ‖d2b′0‖ � q, then we can use p′′zt as a zero-test parameter
at level 2κ. In particular we can distinguish whether the challenge element is an encoding
of the right product or a random product by computing the level-(κ + 1) encoding of the
product

∏κ
j=0 uj, mapping w to level κ + 1 by multiplying with y, then use the level-2κ

zero-test parameter p′′zt to check if these two elements are indeed in the same coset.
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A small multiple of hgr. If we could compute an element hgr (for a large value of r)
or a not-too-big multiple of it, say v = dhgr such that ‖v‖ � q, then the following line of
attack becomes “somewhat plausible,” though it does not seem to lead to a real attack.

Extracting the r’th root of v we get v′ = r
√
dh · g. We note that when dh is “random

and independent of gr”, then r
√
dh (over the number-field K) tends to a (known) constant

as r increases. 2 We can therefore hope that for a large enough value of r the fractional
element r

√
v will provide a good enough approximation of g, and then we could perhaps use

an algorithm such as the one from Section 9.5 to recover g exactly.

It seems, however, that this line of attack as described does not work in our case. The
reason is that we cannot hope to get approximations of hgr for r ≥ κ−1, and our dimension
n is always much larger than κ, so this method inherently cannot produce good enough
approximations. Still perhaps it can be used in conjunction with other tools.

7.4 Some Countermeasures

As explained above, the most potent attacks that we found against our scheme make use
of averaging attacks, using samples that we get by multiplying the zero-test parameter by
products of κ other elements from the public parameters. We note that for the purpose
of defending against averaging attacks we can ignore the GDDH instance, since it can be
generated by the attacker itself just from the public parameters. (At least as long as the
averaging part does not use the challenge element w.)

Fortunately, Gentry, Peikert and Vaikuntanathan (GPV) [GPV08] have already given us
an approach to defeat this sort of averaging attacks. One of the key conceptual insights of
[GPV08] is that using any good basis B of a lattice Λ (e.g., a lattice where ‖B‖ is less than
some bound β) can generate samples from the lattice according to a canonical Gaussian
distribution (with deviation tightly related to β). Thus, the sampled lattice points do not
reveal anything about the sampler’s particular basis B aside from an upper bound on ‖B‖.
We will use a similar approach, where we derive all the elements in the public parameters
from a small set of elements, using a GPV-type procedure.

Specifically, we give out (potentially many) encodings of 0 {x′i = b′i · g/z}. Let us ig-
nore, for the moment, the fact that these encodings live in Rq, and instead pretend that we
present them to the attacker as elements b′ig/z in the overlying cyclotomic field. (Of course,
we are giving the attacker an additional advantage here.) Then, all of the encodings are in
the fractional principal ideal lattice J = 〈g/z〉. If we simply chose the b′i values randomly
and independently, it is conceivable that an averaging/transcript attack could recover g/z.
However, we instead follow [GPV08] by generating the encodings {bi} according to a Gaus-
sian distribution over the fractional ideal lattice, using an efficient discrete Gaussian sampler
[GPV08, Pei10, DN12a]. By the same argument as [GPV08], such encodings (presented in
characteristic zero) reveal nothing in particular about the term g/z that is being used to

2An easy example: If U ∈R [0, B] then Pr[U > 9
10B] = 0.1. However if U ∈R [0, B100] then Pr[ 100

√
U >

9
10B] ≈ 1.
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generate the encodings. More formally we have:

As argued in Lemma 6.1 note that when choosing g← DZn,σ we get ‖g−1‖ < nc+1.5 (in K)
with a noticeable probability and we re-choose g until this condition is met. Similarly, one can
show that with probability noticeable probability over the choice of z we have ‖z−1‖ < n2/q
(in K), so in our instance generation we re-choose z until this condition is met. When this
condition is met, then we have ‖g/z‖ < σn3/q (using Lemmas 5.9 and 6.1). Additionally
since we have ‖B̃‖ ≥ ‖B‖, therefore we can use the GPV procedure (Theorem 4.7) to
sample elements from J according to the Gaussian distribution x′i ← DJ ,s with parameter
s = σn3.5/q (say).

We note that the elements that we draw are of the form x′i = b′i · g/z for some (integral)
b′i ∈ R. Moreover we can bound the size of the b′i’s by ‖b′i‖ ≤ n‖x′i‖ · ‖z‖ · ‖1/g‖ <
n(σn4/q) · q

√
n · nc+1.5 = nc+7σ.

Next we map these elements to Rq by setting xi = [b′ig/z]q. Denoting the numerator by
bi = b′ig, we can bound its size by ‖bi‖ =

√
n‖b′i‖ · ‖g‖ < nc+7.5σ · σ

√
n = σ2nc+8. Sampled

this way, we know that the randomizers xi do not provide any more power to the attacker
beyond the ability to sample elements from J according to DJ ,s.

3 Finally, we note that
the public parameter y corresponding to an encoding of 1 can also be sampled in a similar
manner.

We set h in a similar way. Again, we use [GPV08] to prevent the attacker analyzing
the zero-tester h · zκ/g geometrically to extract useful information about h, or the other
terms, individually. Roughly, once g and z are chosen, one chooses h according to an
ellipsoid Gaussian of the same “shape” as g/zκ, so that the distribution of the zero-tester is
a spherical Gaussian.

An alternative heuristic countermeasure. Although we prefer to use the GPV-type
approach above, we note for completeness that another plausible line of defense against
averaging attacks is to actually decrease the number of elements made public, perhaps as
few as only two. Namely we can publish only two elements x1 = [b′1g/z]q and x2 = [b′2g/z]q,
perhaps chosen according to the procedure above conditioned on b′1,b

′
2 being co-prime. To

re-randomize a level-one encoding u, we can then choose two small elements a1,a2 and set
u′ = u + a1 · x1 + a2 · x2. One drawback of this method is that we can no longer use
Theorem 4.8 to argue that the output distribution of reRand is nearly independent of its
input, instead we need to use yet another computational assumption (and a rather awkward
one at that). Another drawback is that it is not at all clear that the attacker cannot just
take many terms of the form a1 ·x1 +a2 ·x2 (for many random pairs (a1,a2)) to use for the
samples of the averaging attacks.

3We expect it be even slightly less powerful, since these samples are mapped into Rq before the attacker
sees them.
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7.5 Easiness of other problems

In light of the apparent hardness of our CDH/DDH analog, we could optimistically hope to
get also the analog of other hardness assumptions in bilinear maps, such as decision-linear,
subgroup membership, etc. Unfortunately, these problems turn out to be easy in our setting,
at least with the simple encoding methods.

To see why, observe that publishing level-1 encodings of 0 and 1 enables some “weak
discrete log” computation at any level strictly smaller than κ. Specifically, consider one
particular encoding of zero xj = [bj/z]q (where bj = cjg for some cj), which is given in
the public parameters together with an encoding of one y = [a/z]q and the zero-testing
parameter pzt = [hzκ/g]q. Given a level-i encoding with 1 ≤ i � κ, u = [d/zi]q, we can
multiply it by xj, pzt, and some power of y to get

f = [u · xj · pzt · yκ−i−1]q =

[
d

zi
· cj · g

z
· hzκ

g
· a

κ−i−1

zκ−i−1

]
q

= d · cj · h · aκ−i−1︸ ︷︷ ︸
�q

= d · cj · h︸ ︷︷ ︸
∆j

(mod I).

We stress that the right-hand-side of the equality above is not reduced modulo q. This
means that from a level-i encoding u of an element d + I, we can get a “plaintext version”
of d · ∆j from some fixed ∆j (that depends only on the public parameters but not on u).
This “plaintext version” is not small enough to be a valid level-zero encoding (because ∆j is
roughly the size of h, so in particular ∆j >

√
q). Nonetheless, we can still use it in attacks.

For starters, we can apply the above procedure to many of the level-one encodings of
zero from the public parameters, thereby getting many elements in the ideal I itself. This
by itself still does not yield a basis of I (since all these elements have the extra factor of h),
but as shown in Section 7.3.1 we can remove this extra factor and nonetheless compute a
basis for I. This is not a small basis of course, but it tells us that we cannot hope to hide
the plaintext space R/I itself.

Next, consider the subgroup membership setting, where we have g = g1 ·g2, we are given
a level-1 encoding u = [d/z]q and need to decide if d ∈ 〈g1〉. Using the procedure above
we can get f = d · ∆j, which belongs to the ideal 〈g1〉 if d does. Taking the GCD of the
ideals 〈f〉 and I will then give us the factor 〈g1〉 with high probability. It follows that the
subgroup membership problem is easy for the encoding method above.

Finally, consider getting a matrix of elements A = (ai,j)i,j, all encoded at some level
i � κ. Using the method above we can get a “plaintext version” of ∆j ·M , which has the
same rank as A. Since the decision linear problem is essentially a matrix rank problem, this
means that this problem too is easy for this encoding method.

At this point it is worth stressing again that these attacks do not seem to apply to the
GDDH problem, specifically because in that problem we need to make a decision about a
level-κ encoding, and the “weak discrete log” procedure from above only applies to encoding
at levels strictly below κ.
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Alternatives. The attacks above make it clear that providing encodings of zero in the
public parameters (in conjunction with the zero-testing parameter) gives significant power
to the adversary. One interesting method to counter these attacks is to use a different
randomization tool that can be applied even when we do not have these encodings of zero in
the public parameters. For more details on this, we refer the reader to the subsequent work
on functional encryption [GGH+13b] where such tools have been developed.
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CHAPTER 8

Preliminaries III: Computation in a Number Field

In this chapted we will recall notions that will be useful in understanding the cryptanalysis
survey presented in the next chapter.

The group of units UK associated to a number field K is the group of elements of OK
that have an inverse in OK . An element a ∈ OK is a unit if and only if N(a) = ±1. The unit
group may contain torsion units (roots of unity) and nontorsion units. By the Dirichlet Unit
Theorem, the group of nontorsion units is finitely generated and has rank (where rank refers
to maximal number of multiplicatively independent elements) is exactly equal to s1 + s2− 1.

Let σ : K → Rs1 × C2s2 be the canonical embedding defined in Section 5.2. Then the
logarithmic embedding λ : UK → Rs1+s2 is a homomorphism from a multiplicative group to
an additive group given by λ(a) = (ln |σ1(a)|, . . . , ln |σs1+s2(a)|). The kernel of λ consists of
the torsion units in K. For every unit u ∈ UK , since N(u) = ±1, we have

∑
i∈[s1] ln |σi(u)|+

2
∑

i∈[s2] ln |σs1+i(u)| = 0. This implies that units have rank only s1 + s2 − 1.

Returning to our example of the mth cyclotomic number field K = Q(ζm) has a maximal
real subfield K+ = Q(ζm + ζ−1

m ), and thus all elements in K+, are real numbers. It has index
2 in K; its degree is n/2. The ring of integers [Was82, Proposition 2.16] OK+ of K+ is simply
Z[ζm + ζ−1

m ]. The embeddings σ1, σ−1 both fix every element in K+, and the relative norm
NK/K+(a) of a ∈ K is σ1(a) · σ−1(a) = a · a.

The group of units UK in the cyclotomic number field K = Q(ζm) has rank s2 − 1 =
n/2 − 1. Since the signature of the real subfield K+ is (n/2, 0), the rank of the real units
UK+ = UK ∩OK+ is also n/2−1. For m a prime power, UK is generated by ζm and UK+ . For
m a prime power, an explicit set of generators of UK is {±ζm, (1− ζkm)/(1− ζm) : k ∈ Z∗m}.
To see that ε = (1− ζkm)/(1− ζm) is a unit, observe that ε = 1 + ζm + . . .+ ζk−1

m ∈ OK and
NK/Q(ε) =

∏
`∈Z∗m

(1− ζ`m)/
∏

`∈Z∗m
(1− ζ`m) = 1. Ramachandra [Ram67] explicitly described

a full-rank set of independent units for the case that m not a prime power.
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In the coefficient embedding, where a ∈ OK is viewed as a polynomial a(x) ∈ Z[x]/Φm(x),
we have an extension of Fermat’s Little Theorem: a(x)Q = a(xQ) mod Q for any prime Q.
When Q = 1 mod m, this becomes aQ = a mod Q.

8.1 Some Computational Aspects of Number Fields and Ideal Lat-
tices

An element v ∈ K can be represented in its canonical embedding conveniently in terms of
the integral basis for OK . Given v ∈ K represented in its canonical embedding, it is efficient
to convert it to its coefficient embedding, or vice versa – via linear transformations corre-
sponding to multipoint interpolation and evaluation. “Efficient” means in time polynomial
in n, log ∆K , and the bit-length of v. (Here, ∆K is the discriminant of K. For the important
case of the m-th cyclotomic field of degree n = φ(m), we have ∆K ≤ nn.) Given v1, v2 ∈ K,
represented in either their canonical or their coefficient embeddings, it is efficient to compute
v1 + v2, v1 · v2, and v1/v2. To handle denominators, the inverse 1/v2 can be represented as
v′2/N(v2) where v′2 ∈ OK .

Like all lattices, an ideal lattice has a canonical basis called its Hermite Normal Form
(HNF). The HNF basis of a lattices is unique and can be computed efficiently from any other
basis of the lattice. The HNF basis has nice efficiency properties – in particular, it can be
expressed in at most O(n log d) bits, where d is the absolute value of the determinant of a
basis of the lattice [Mic01]. It also has nice security properties, in the sense that it reveals
no information that cannot be derived in polynomial time from any other basis [Mic01]. For
ideal lattices in the canonical embedding, the HNF basis is an integer lattice representing a
linear transformation of the integral basis of OK . The determinant of the HNF basis equals
the norm of the ideal. Given HNF bases of ideals I1, I2, one can efficiently compute an HNF
basis for the ideals I1 + I2, I1 · I2, I1/I2. Various other natural operations on ideals and
bases are also efficient. An example: one can efficiently reduce an element v ∈ K modulo a
basis B – that is, find the element w ∈ K with v−w ∈ I and w ∈ P(B), where P(B) is the
parallelepiped associated to B.

8.2 Computational Hardness Assumptions over Number Fields

Hard problems involving ideal lattices often have both algebraic and geometric aspects.

Geometrically, we can specialize standard lattice problems – such as the shortest vector
problem (SVP), shortest independent vector problem (SIVP), closest vector problem (SVP),
the bounded distance decoding problem (BDDP), etc. – to ideal lattices. The celebrated
LLL algorithm [LLL82] finds somewhat short vectors in (general) lattices:

Fact 8.1. Let B = {b1, . . . , bn} be a basis of a lattice Λ. Given B, the LLL algorithm
outputs a vector v ∈ L satisfying ‖v‖2 ≤ 2n/2 · det(Λ)1/n. The algorithm runs in time
polynomial in the size of its input.
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Schnorr and others have described other lattice reduction algorithms with a variety of trade-
offs; for example, [Sch87] proves the following:

Fact 8.2. Let B = {b1, . . . , bn} be a basis of a lattice Λ. Given B and integer k, Schnorr’s
algorithm [Sch87] outputs a vector v ∈ Λ satisfying ‖v‖2 ≤ kO(n/k) · det(Λ)1/n in time kO(k).

The asymptotics of lattice reduction algorithms are still similar to [Sch87], and thus attacks
on ideal lattices using purely geometric tools are limited.

Algebraically, we can consider problems such as the factorization of ideals, the structure
of the class group and unit group, etc. Subexponential classical algorithms are known for
factoring ideals, computing the class group and unit group, and computing a generator of a
principal ideal (the Principal Ideal Generator Problem (PIGP)). Polynomial-time quantum
algorithms are known for the latter three problems when the degree of the field is constant
[Hal05, SV05].

Factoring ideals reduces to factoring integers, hence is subexponential-time classically
[LLMP90] and polynomial-time quantumly [Sho97a]. In particular, for any monogenic ring
R = Z[x]/(f(x)) such as OK for a cyclotomic field K, there is an efficient algorithm to find
all of the prime ideals in R with norms that are a power of a prime p. The algorithm resorts
to the following theorem.

Theorem 8.3 (Kummer-Dedekind, from [Ste08]). Suppose f(x) =
∏

i gi(x)ei mod p for
prime integer p. The prime ideals pi in Z[x]/(f(x)) whose norms are powers of p are precisely
pi = (p, gi(x)).

There are polynomial time algorithms for factoring polynomials in Zp[x] – e.g., by Kaltofen
and Shoup [KS98]. Therefore, at least for monogenic rings, factoring an ideal with norm N
efficiently reduces to factoring the integer N .

Peikert and Rosen [PR07] provided a reduction of an average-case lattice problem to
the worst-case hardness of ideal lattice problem, where the lossiness of the reduction was
only logarithmic over fields of small root discriminant. Gentry [Gen10] showed that ideal
lattice problems are efficiently self-reducible (in some sense) in the quantum setting. This
worst-case/average-case reduction exploited, among other things, efficient factorization of
ideals via Kummer-Dedekind. Lyubashevsky, Peikert and Regev [LPR10] defined a deci-
sion problem called “ring learning with errors” (RLWE) and showed that an attacker that
can solve RLWE on average can be used to solve ideal lattice problems, such as SIVP, in
the worst case. (Earlier, Regev [Reg05] found an analogous worst-case/average-case connec-
tion between the learning with errors (LWE) problem and problems over general lattices.)
They relied heavily on the algebraic structure of ideal lattice problems – in particular, on
underlying ring automorphisms – to construct their search-to-decision reduction.
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CHAPTER 9

Survey of Lattice Cryptanalysis

Here we provide a survey of relevant cryptanalysis techniques from the literature, and also
provide two new attacks that we developed in the course of this work. More specifically we
consider:

• Averaging Attacks: Averaging attacks – described in Sections 9.1 through 9.4 –
allow us, after seeing many elements of the form ri · a for the same a but many
different “random” ri’s, to get a good approximation of a (or some related quantities
from which we can derive a). We will describe the attack itself in Sections 9.1 and 9.2
and consider extensions in Sections 9.3 and 9.4. In particular:

– In Section 9.1 we present a known attack [HKL+00, GS02] that given a set S = {v·
yi}, where v,y1,y2, . . . are ring elements, uses “averaging” to recover v ·v, where
v = v(x−1) is the conjugate of v. These attacks have recently been significantly
generalized to lattices with symmetry [Len13].

– Next in Section 9.2 we present the Gentry-Szydlo [GS02] algorithm that recovers
v from v · v and a basis of the ideal 〈v〉.

– In Sections 9.3 and 9.4 we consider extensions of averaging attacks [NR09, DN12b].

In our case, one might attempt to mount such an averaging attack on the (possibly
many) encodings of 0 {xi = b′ig/z} that we provide in params. For example, the
attacker can derive the values {[pztx

κ
i ]q = hgκ−1 · b′i

κ} as described in Section 7.3.1.
Conceivably, depending on the particular distributions of the parameters, the attacker
could use averaging to remove the b′i’s and recover hgκ−1.

We have a couple of defenses against this averaging attack. First, for our constructions
it seems that hgκ−1 (and other terms that could conceivably be obtained through av-
eraging as explained in Section 7.3.1) do not seem to be useful to the attacker (see
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Section 7.3.3). Second, as described in Section 7.4, we choose our params accord-
ing to distributions designed to make averaging attacks useless. More precisely, we
adapt an observation of Gentry, Peikert and Vaikuntanathan [GPV08] in the context
of lattice-based signatures – namely, that we can use a “good” lattice basis to generate
a transcript of lattice points according to a canonical distribution that reveals noth-
ing about the particular good basis that we are using (aside from the fact that it is
“good”). We generate our params according to such canonical distributions.

• Closest principal ideal generator problem: In Section 9.5 we provide a polynomial-
time algorithm that solves the closest principal ideal generator problem in certain cases.
Specifically, it can recover a generator of a principal ideal I = 〈g〉 from a basis of I and
an ε-approximation of the generator g, for small enough ε – namely, ε ≤ n−Ω(log logn).
This helps make the averaging attacks described above more robust.

We review Coppersmith-type attacks [Cop96b, Cop96a] and their relation to our setting
in Section 9.6.

• Dimension-Halving Attack: In Section 9.7 we describe a “dimension-halving at-
tack” on principal ideal lattices, demonstrating that one needs to double the dimension
of principal ideal lattices (compared to general ideal lattices) to preserve security.

9.1 Averaging Attacks

In the so-called “averaging attack,” the attacker is given a set S = {v ·yi}, where v,y1,y2, . . .
are ring elements, and its goal is to use “averaging” to recover v ·v, where v = v(x−1) is the
conjugate of v. It was used by Kaliski (in connection with patent [HKL+00]) and Gentry and
Szydlo [GS02] in attacks against NTRU signature schemes [HKL+00, HPS01]. We review the
averaging attack here. Along the way, we update the attack so that it works within the ring
of integers of any cyclotomic field. (Previously, the attack focused on the ring Z[x]/(xm−1),
as used by NTRU signature schemes.)

Now we will describe how the averaging attack works. The distributions of v and the
yi’s may vary, but let us suppose for concreteness that the challenger samples v′ and {y′i}
according to Gaussian distributions v′ ← DZm,σ and y′i ← DZm,σ′ , interprets these as co-
efficient vectors of polynomials in Z[x]/(xm − 1), and finally sets v ← v′ mod Φm(x) and
yi ← y′i mod Φm(x).

Now, consider the average:

Ar = (1/r)
r∑
i=1

(v · yi) · (v · yi) = (v · v) ·

(
(1/r)

r∑
i=1

yi · yi

)
.

Under the canonical embedding, we have:

σ(Ar) = σ(v · v) · σ(Yr), where Yr =

(
(1/r)

r∑
i=1

yi · yi

)
.

58



Toward understanding σ(Yr), first consider a single vector σ(yi · yi) in the summation.
Recall that, since we are working in a cyclotomic field, the embeddings are all complex and
come in conjugate pairs (σj, σ−j), where σj for j ∈ Z∗m denotes the embedding σj(ζm) = ζjm.
Moreover, for any a in the cyclotomic field, the values σj(a) and σ−j(a) are conjugate
complex numbers, and therefore σj(a) · σ−j(a) is a non-negative real number. Now, notice
that σj(a) · σ−j(a) = σj(a) · σj(a) = σj(a ·a). This means that each vector σ(yi · yi) in the
summation consists entirely of non-negative real numbers!

It is clear that, for any j, the average σj(Yr) = 1/r
∑r

i=1 σj(yi · yi) converges toward
some positive number (rather than tending toward 0). Moreover, by symmetry, it converges
to the same positive number for all j. Therefore, Ar converges to s · v · v for some known
positive real scalar s.

The imprecision of the average decreases with 1/
√
r. If the coefficients of v are only

polynomial in size, then the averaging attack needs only a polynomial number of samples
to obtain all of the coefficients of v · v to within less than 1/2, whereupon the attacker can
round to obtain v · v exactly.

As we describe in Section 9.5, in fact even if the coefficients of v are large, an ε-
approximation of v · v, together with a basis of the ideal 〈v · v〉, is sufficient to recover
v · v exactly when ε is some inverse-quasi-polynomial function of m. (Note that it is easy
to generate a basis of the ideal 〈v · v〉 from a basis of the ideal 〈v〉, and that the latter (as
mentioned previously) can likely be generated from S.)

If the averaging attack is successful and we recover v·v, then we can then use an algorithm
by Gentry and Szydlo [GS02] that takes v · v and a basis of the ideal 〈v〉, and outputs the
actual element v in polynomial time. This attack is described in the next section.

9.2 Gentry-Szydlo: Recovering v from v · v and 〈v〉

In this section, we describe an algorithm by Gentry and Szydlo [GS02] (the GS algorithm)
that recovers v from v ·v and a basis of the ideal 〈v〉. The algorithm runs in polynomial time.
Gentry and Szydlo used this algorithm in combination with the averaging attack above to
break an NTRU signature scheme. They used a set of samples S = {v · yi} to approximate
v · v with sufficient precision to compute it exactly via rounding, and then invoked (but
did not implement) the GS algorithm to recover v (the secret signing key). In our setting,
the idea would be to attack our params using a similar approach. The GS algorithm was
originally designed to work in Z[x]/(xp− 1) for prime p. Here, we adapt it to a more general
setting over the ring of integers OK of the m-th cyclotomic field K. For convenience, we use
R to refer to OK , and RP to denote ZP [x]/Φm(x).

We start by pointing some intuition. Recall that the value v · v is the relative norm of
v ∈ K = Q(ζm) with respect to the subfield K+ = Q(ζm+ζ−1

m ) – i.e., v ·v = NK/K+(v). The
GS algorithm might be somewhat surprising, since we do not know how to recover v efficiently
from the norm NK/Q(v) and a basis of 〈v〉. Indeed, the value NK/Q(v) is superfluous, since it
can be derived from the basis of 〈v〉; therefore, finding v would solve the so-called Principal
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Ideal Generator Problem, which seems infeasible.

One might also be surprised that NK/K+(v) and 〈v〉 are enough to uniquely define v,
given that NK/Q(v) and 〈v〉 only define v up to an infinite group of units. (See Chapter 8 for
a discussion on units in cyclotomic number field.) Indeed, NK/K+(v) and 〈v〉 are not enough
to uniquely define v – in particular, if v′ = v · u for any torsion unit (root of unity) u, we
have NK/K+(v′) = NK/K+(v) and 〈v′〉 = 〈v〉. However, in attacks, it is typically sufficient
to obtain v up to a small set of roots of unity. On the other hand, if u is not a torsion unit
– e.g., if it is a nontrivial cyclotomic unit – then we will have NK/K+(u) 6= 1 and therefore
NK/K+(v′) 6= NK/K+(v). The reason we have NK/K+(u) 6= 1 for nontorsion units is that, up
to multiplication by a torsion unit, all nontorsion units in K are already in the real subfield
K+ – i.e., u = ζ im · u′ where u′ ∈ K+ is a nontorsion unit. So, NK/K+(u) = u · u = u′2 6= 1.

The essential strategy of the GS algorithm is to combine algebra (in particular, Fermat’s
Little Theorem) with lattice reduction (LLL). By an extension of Fermat’s Little Theorem,
for any prime P = 1 mod m, we have that vP = v over RP . Unless v is a zero divisor in RP

(there are only poly(m, logNK/Q(v)) primes P for which this can happen), we have vP−1 = 1
over RP . Now, suppose that we compute a LLL-reduced basis B of the ideal

〈
vP−1

〉
; this

we can do in time polynomial in m, P , and the bit-length of v. The shortest element w in
the reduced basis has the form vP−1 · a for some a. If it happens that ‖a‖∞ < P/2 – i.e.,
if a’s coefficients all have magnitude less than P/2 – then we obtain a = [w]P exactly, and
thus vP−1. From vP−1, we can compute v in time polynomial in m, P , and the bit-length
of v.

The actual algorithm is more complicated than this, since the essential strategy above
leaves two important issues unresolved.

• Issue 1 (How to Guarantee that a is small): LLL guarantees that it will find w ∈〈
vP−1

〉
of length at most 2(n−1)/2 · λ1(

〈
vP−1

〉
). But this does not imply that a =

w/vP−1 has length at most 2(n−1)/2. Indeed,
〈
vP−1

〉
does not even define v uniquely

(due to the group of units). Since these units can have arbitrarily high Euclidean norm,
a could be arbitrarily long.

• Issue 2 (LLL needs P to be exponential): Let us suppose that we could somehow use
LLL to ensure that ‖a‖∞ ≤ 2(n−1)/2. Then, we need P to be at least 2(n+1)/2 for the
strategy to work. But then vP−1 is so long that it takes exponential time even to write
it down.

The algorithm resolves these two issues with the following two tools:

• Tool 1 (Implicit Lattice Reduction): We apply LLL implicitly to the multiplicands of
vP−1 to ensure that a = w/vP−1 has length at most 2(n−1)/2. The idea is that the
relative norm v · v actually reveals a lot about the “geometry” of v (and hence of
vP−1). We use the relative norm to “cancel” vP−1’s geometry so that LLL implicitly
acts on the multiplicands.
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• Tool 2 (Polynomial Chains): We use P > 2(n+1)/2. However, we never compute on vP−1

directly. Instead, vP−1 and w are represented implicitly via a chain of polynomials that
are computed using LLL. From this chain, we compute a = [w]P exactly. Next, we
perform computations modulo a set of small primes p1, . . . , pt – specifically, we reduce
a modulo the pi’s, and use the polynomial chain to compute vP−1 modulo the pi’s. We
do the same thing for another large prime P ′ such that gcd(P − 1, P ′ − 1) = 2m, and
then use the Euclidean algorithm (in the exponent) to compute v2m modulo the pi’s.
We chose the pi’s so that 2‖v2m‖∞ <

∏
pi, so we obtain v2m exactly, from which we

can compute v efficiently.

Below, we discuss the GS algorithm in detail.

Implicit Lattice Reduction. We begin with implicit lattice reduction, as characterized
by the following lemma.

Lemma 9.1 ([GS02]). Let v ∈ R. Given v ·v and the HNF basis B for the ideal lattice 〈v〉,
we can output an element w ∈ 〈v〉 such that w = v · a and ‖a‖can2 ≤ 2(n−1)/2 ·

√
n in time

polynomial in m and the bit-length of v.

Proof. Consider how LLL works. LLL maintains a sequence of n basis vectors (w1, . . . ,wn).
In general, when LLL is deciding whether to perform an operation – a size-reduction step
or a swap step – the only information that LLL requires are all of the mutual dot products
〈wi,wj〉i,j∈[n]. In short, LLL needs only the Gram matrix corresponding to its reduced-so-far
lattice basis.

Now, consider LLL in our setting, as applied to ideal lattices under the canonical em-
bedding (without trying to do LLL implicitly yet). At a given stage, LLL has a sequence
of vectors (σ(w1), . . . , σ(wn)) where the wi’s are in 〈v〉. LLL (as before) considers only the
mutual (Hermitian) inner products of the vectors in deciding whether to perform a step.
These inner products are of the form 〈σ(wi), σ(wj)〉 =

∑
k∈Z∗m

σk(wiwj).

Now, to do LLL implicitly in the canonical embedding – i.e., to use LLL to reduce the
multiplicands ai = wi/v – LLL needs the mutual Hermitian inner products for i, j ∈ [n]:

〈σ(wi/v), σ(wj/v)〉 =
∑
k∈Z∗m

σk(wi/v)σk(wj/v) =
∑
k∈Z∗m

σk(1/vv)σk(wiwj).

But all of the values σk(1/vv) can be computed efficiently from v · v (and the implicit
LLL algorithm actually possesses all of the vectors {σ(wi)}). Therefore, LLL has all of
the information it needs to decide whether to perform a step. To actually perform a step
implicitly – size-reduction or swapping – it simply applies the linear transformation dictated
by the step to the vectors {σ(wi)} that it has in its hand.

The bound ‖a‖can ≤ 2(n−1)/2 ·
√
n follows from the guarantee of LLL and the fact ‖1‖can =√

n in the canonical embedding.
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Polynomial Chains. Next we talk about the second tool that we use, polynomial chains.

Lemma 9.2 (Theorem 1 in [GS02]). Let v0 ∈ R. Let k =
∑
ki2

i with ki ∈ {0, 1} be an
integer with r = blog2 kc. Let P be a prime such that v0 is not a zero divisor in RP . Then,
given the input v0 · v0 and a basis B0 of 〈v0〉, we may compute, in time polynomial in r, m,
and the bit-length of the input, the chains:

{vkr−1

0 · v2
0 · v1, . . . ,v

k0
0 · v2

r−1 · vr} and

{v0 · v0, . . . ,vr−1 · vr−1},

where for all i > 0, no vi is a zero divisor in RP , and ‖vi‖can2 < 2(n−1)/2
√
n. Using these

chains, we may compute vk0 ·vr mod P in polynomial time. If k = P −1 ≥ 2(n+1)/2
√
nγ2 with

P = 1 mod 2m, we may compute vr exactly, and thereafter use the above chains to compute
vP−1

0 mod Q in polynomial time for any prime Q such that vr is not a zero divisor in RQ.

(Here, γ2 denotes the maximal value of ‖a‖∞‖a‖can2
for any a in the number field.)

Proof. (Sketch) Consider the first term of the first chain: v
kr−1

0 ·v2
0 ·v1. For convenience, let

c = kr−1 + 2. Given v0 · v0 and a basis B0 for 〈v0〉, we efficiently compute vc0 · v0
c and a

basis B′0 for the ideal 〈vc0〉. Then, using implicit lattice reduction (Lemma 9.1), we efficiently
compute w = vc0 · a with ‖a‖can2 < 2(n−1)/2

√
n. We set w to be the first term of our chain

and set v1 ← a. (Gentry and Szydlo provide techniques to handle the small possibility that
v1 is a zero divisor in RP .)

Now, we compute v1 · v1 as w · w/(vc0 · v0
c). Also, we compute a basis B1 of 〈v1〉, as

follows. Since B′0 generates 〈vc0〉, the terms of the basis B′0 of 〈vc0〉 have the form bi = vc0 ·ai,
where R = 〈{ai}〉. Our basis B1 of 〈v1〉 consists of the terms bi · w/(vc0 · v0

c) = v1 · ai,
which generates 〈v1〉 since (again) R = 〈{ai}〉.

Now that we have v1 ·v1 and a basis B1 of 〈v1〉, we continue the same process iteratively
to compute all of the terms in the chains.

We compute vk0 ·vr mod P iteratively, as follows. For s ≤ r, let k(s) ∈ [0, 2s+1−1] denote

the s + 1 MSBs of k. Suppose, inductively, that we have computed vk
(s)

0 · vs mod P . (For
s = 1, this term already exists in the polynomial chain.) Then, we compute

vk
(s+1)

0 · vs+1 = (vk
(s)

0 · vs)2 · (vkr−s−1

0 · v2
s · vs+1)/(vs · vs)2 mod P

where the latter two multiplicands on the right-hand-side come from the polynomial chains.
(Notice that this iterative computation is rather similar to the repeated squaring approach
to modular exponentiation.)

We compute vr exactly as vP−1
0 · vr mod P . (This works since the coefficients of vr have

magnitude at most ‖vi‖can2 · γ2 ≤ 2(n−1)/2
√
nγ2 < P/2.) Thereafter, we clearly can compute

vP−1
0 modulo any prime Q for which vr is not a zero divisor in RQ.

Remainders of the GS Algorithm. In the following lemma we show how to put things
together.
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Lemma 9.3 (Theorem 2 in [GS02]). Let v ∈ R. Then, given v · v and a basis B of 〈v〉, we
may compute v2m in time polynomial in m and the bit length of v.

Proof. We choose primes P and P ′ each large enough for Lemma 9.2, where gcd(P − 1, P ′−
1) = 2m and v is not a zero divisor in either RP or RP ′ (using Dirichlet’s theorem on primes
in arithmetic progression and the fact that v may be a zero divisor in RQ for only a finite
number of primes Q). By Lemma 9.2, we can compute chains that will allow us to compute
vP−1 mod pi and vP

′−1 mod pi in polynomial time for any prime pi such that the values vr
and vr

′ in the chains are not zero divisors in Rpi . Choose a set of primes p1, . . . , pt that
satisfy this condition and such that 2‖v2m‖∞ <

∏
pi. (We simply avoid the finite number

of problematic primes.) Apply the Euclidean algorithm in the exponent to compute v2m

modulo each pi, and ultimately v2m exactly using the Chinese Remainder Theorem.

Lemma 9.4 (Similar to [GS02]). Let v ∈ R. Let w = vr where 2m divides r. Then, given
w, we may output a list L of r values v1, . . . ,vr in time polynomial in r and the bit length
of w, such that L includes v.

Lemma 9.4 may seem trivial, and it certainly would be if r and m were relatively prime.
In this case, one could simply pick a prime Q > 2‖v‖∞ with gcd(r,Q − 1) = 1, set s =
r−1 mod m(Q − 1), and compute ws = vrs = v1+km(Q−1) = v in RQ (by Fermat’s Little
Theorem), which yields v exactly. Things become more complicated when gcd(r,m) 6= 1.

Proof. First, we observe that w does not uniquely determine v. Specifically, for any e =
±xi ∈ R (the 2m values that are plus or minus an m-th root of unity in R), we have that
v · e is also in R and w = (v · e)r. However, we show that fixing v’s value at any (complex)
primitive m-th root of unity ζm also fixes v’s value at the other primitive m-th roots of
unity, after which we may obtain v via interpolation. Given w(ζm) = v(ζm)r, there are only
r possibilities for v(ζm). By iterating the procedure below for each possibility of v(ζm), the
procedure will eventually use the “correct” value, and the correct value of v will be included
in the output.

For any prime Q, by an extension of Fermat’s Little Theorem, we have that a(x)Q =
a(xQ) in the ring RQ. Let Q = cr − b be a prime for some positive integers b < r and c
such that w is not a zero divisor in RQ and γ∞ · ‖w‖can∞ < Q/2. (Where that γ∞ denotes
the maximal value of ‖a‖∞/‖a‖can∞ for a ∈ K.) Given that m divides r, we compute that
(vr)c = vQvb = v(xQ)vb = v(x−b)vb mod Q. Since γcan∞ · ‖v(x−b)vb‖can∞ ≤ γ∞ · ‖w‖∞ < Q/2,
we efficiently recover the term zb ← v(x−b)vb exactly. This allows us to compute v(ζ−bm ) =
zb(ζm)/v(ζm)b. By choosing other Q’s, we similarly compute zb for each b ∈ Z∗m, thereby
compute v(ζ) for all complex primitive m-th roots of unity ζ, and thus recover v.

Theorem 9.5 ([GS02]). Let v ∈ R. Given v · v and the HNF basis B for the ideal lattice
〈v〉, we can compute v in time polynomial in m and the bit-length of v.

Proof. This follows from Lemmas 9.3 and 9.4.
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Some Extensions. Howgrave-Graham and Szydlo [HGS04] observed that one can use the
GS algorithm to recover v from the relative norm NK/K+ = v ·v without a basis of 〈v〉, as long
as one has a factorization of NK/Q(v · v) = NK/Q(v)2. The idea is that, from NK/K+ = v · v
and the factorization, one can use Kummer-Dedekind (Theorem 8.3) to generate a basis of
some v′ such that v′ · v′ = v · v (v may not be unique). If NK/Q(v) is composite, one
can compute its factorization using a classical sub-exponential factorization algorithm such
as the number field sieve [LLMP90, LL93] or Shor’s polynomial-time quantum algorithm
[Sho97a].

Another way to view the GS and HS algorithms is the following. The averaging attack
yields the Gram matrix (essentially the co-variance matrix) BT

priv ·Bpriv associated to the
secret lattice basis of the signer. In early NTRU signature schemes, this Gram matrix
happened to have a very special form; it corresponded to the relative norm NK/K+(v) = v ·v.
The GS and HS algorithms are able to factor the Gram matrix in this special case (using
the auxiliary information 〈v〉 in the case of the GS algorithm).

The NTRUSign signature scheme [HHGP+03] was proposed shortly after the Gentry-
Szydlo attack was announced. As noted in [GS02, HGS04], for NTRUSign, applying an
averaging attack similar to that described in Section 9.1 still yields the Gram matrix BT

priv ·
Bpriv associated to the secret lattice basis of the signer. However, the Gram matrix in
NTRUSign has a more complicated form than in previous NTRU signature schemes. In
particular, it is a 2× 2 block of ring elements:

BT
priv ·Bpriv =

[
v · v + V ·V w · v + W ·V
v ·w + V ·W w ·w + W ·W

]
where v, w, V and W are short elements that constitute the signer’s private key. It remains
an open problem to efficiently factor Gram matrices of this form (as well as general Gram
matrices), even when given a basis (e.g., the HNF basis) of the lattice generated by Bpriv.
Szydlo [Szy03] showed that the Gram matrix factorization problem can be reduced to an
oracle that distinguishes whether two Gram matrices are associated to bases of the same
lattice, but it is unknown how to instantiate this oracle efficiently in general.

The GS algorithm suggests an open problem about other relative norms: Is it possible
to efficiently recover v from 〈v〉 and the relative norm NK/L(v) when L is some subfield of
K other than the index-2 real subfield K+? When L = Q, this is just the Principal Ideal
Generator problem, which seems infeasible in general, but perhaps the problem is feasible
when the index [K : L] is small or smooth. For example, suppose K is the m-th cyclotomic
field for m = 2k and L is an index-4 subfield. In this case, can we efficiently recover v
from 〈v〉 and NK/L(v)? Can we, perhaps, first recover NK/K+(v) from 〈v〉 and NK/L(v), and
then use the GS algorithm to recover v? It seems doubtful, since the GS algorithm relies
implicitly on the fact that 〈v〉 and NK/K+(v) define v uniquely up to torsion units, due to
the special relationship between the cyclotomic units and the subfield K+.

We remark that it is interesting that, while the GS algorithm clearly relies on the structure
of the cyclotomic unit group, this reliance is implicit; it would be worthwhile to make the
connection more explicit.
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9.3 Nguyen-Regev: A Gradient Descent Attack

Nguyen and Regev [NR09] described how to extend averaging and key recovery attacks to
signature schemes based on general lattices – in particular, to lattices underlying the GGH
[GGH97] and NTRUSign [HHGP+03] signature schemes (for suggested parameters). These
attacks show that averaging a transcript of lattice-based signatures can be a devastating
attack in general, and further recommend the approach taken by [GPV08] of ensuring that
the distribution of signatures has some canonical distribution (e.g., a Gaussian distribution)
that is essentially independent of the particular lattice basis that the signer is using.

Their attack is designed to “learn a parallelepiped”. That is, given samples {Bpriv · yi}
where the yi’s are (discretely) uniform over a hypercube, their attack converges upon the
shape of P(Bpriv) and ultimately outputs the private basis Bpriv.

To understand the NR attack, it might help to understand why previous attacks failed
to break GGH and NTRUSign. Previous attacks, were (in some sense) too modular. They
divided the attack into two parts: 1) an averaging/covariance/second-moment attack which
used samples {Bpriv · yi} to recover the Gram matrix BT

priv ·Bpriv associated to the secret
lattice basis of the signer, and 2) a “factoring” attack that either factored the relative norm
[GS02, HGS04] or otherwise tried to factor the Gram matrix [Szy03]. The second step,
the factoring attack, sometimes used a lattice basis as auxiliary information (as in the GS
algorithm). But, crucially, the second step did not use the samples. After using the samples
to obtain the Gram matrix (and a lattice basis), previous attacks simply discarded the
samples. In this case, key recovery reduces to the Gram matrix factorization problem (with
a lattice basis), for which no general polynomial-time algorithm is known.

In contrast, the NR algorithm is (in some sense) less modular. They use the samples
throughout the attack. In particular, they first show that the 4-th moment (also known as
the kurtosis) of a transcript of signatures defines a global minimum related to the secret
key. (Recall that, for a set of vectors B = {b1, . . . , bn} ∈ GLn(R), the k-th moment of the
parallelepiped P(B) over a vector w is defined as momB,k(w) = Exp[〈u,w〉k] where u is
chosen uniformly over P(B).) The group of n × n invertible matrices with real coefficients
will be denoted by GLn(R) and On(R) will denote the subgroup of orthogonal matrices.

Lemma 9.6 (Lemma 3 in [NR09]). Let B = {b1, . . . , bn} ∈ On(R). Then the global min-
imum of momB,4(w) over the unit sphere of Rn is 1/5 and this minimum is obtained at
±b1, . . . ,±bn. There are no other local minima.

Then, they use gradient descent to find this global minimum approximately, using the samples
at each stage of the descent to approximate the gradient function. This leads to the following
theorem.

Theorem 9.7 (Theorem 4 in [NR09]). For any c0 > 0 there exists a c1 > 0 such that
given nc1 samples uniformly distributed over some parallelepiped P(B), B = {b1, . . . , bn} ∈
GLn(R), the approximate gradient descent algorithm outputs with constant probability a vec-
tor B · ẽ where ẽ is within `2 distance n−c0 of some standard basis vector ei.
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Assuming the approximate solution output by the NR algorithm is “good enough” – that is,
good enough to obtain B exactly via rounding – the NR attack succeeds. The secret bases
in GGH and NTRUSign have small entries (polynomial in the security parameter), and so
the NR attack succeeds asymptotically with only a polynomial number of signatures, and
also performs quite well in practice for suggested parameters.

One issue that the NR attack leaves somewhat unresolved is: What happens when the
approximate solution output by the NR algorithm is not “good enough” to use rounding to
get the exact solution? Nguyen and Regev suggest using a CVP approximation algorithm,
which they observe performs reasonably well in practice on suggested parameters, but which
of course is not polynomial-time in general. This is a weakness also of the averaging attack
described in Section 9.1. This weakness suggests an obvious way of fixing the schemes: choose
the secret basis so that its entries are super-polynomial or even sub-exponential integers,
so that averaging attacks cannot approximate the entries of the basis precisely enough to
obtain them exactly via rounding. (Of course, this makes the cryptographic construction
less practical, but still polynomial-time.)

In Section 9.5, we describe an attack that casts doubt on this fix, at least in the context
of ideal lattices. We show that we can recover v from 〈v〉 and a ε-approximation u of v
when ε is inverse-quasi-polynomial, even when the coefficients of v are arbitrarily large.

9.4 Ducas-Nguyen: Gradient Descent over Zonotopes and De-
formed Parallelepipeds

The Nguyen-Regev algorithm was designed to “learn a parallelepiped”, Ducas and Nguyen
[DN12b] showed how to extend the algorithm to learn more complicated shapes, including
zonotopes and deformed parallelepipeds.

Recall that the parallelepiped associated to a basis B = {b1, . . . , bn} is the set P(B) =
{
∑
xi · bi : xi ∈ [−1/2, 1/2)}. Under certain circumstances (see Section 9.3), Nguyen-Regev

learns the parallelepiped P(B) from samples of the form {B · r}, where r = (r1, . . . , rn)
is (discretely) uniform over an n-dimensional hypercube. This algorithm breaks certain
signature schemes, such as the basic version of NTRUSign [HHGP+03], where a transcript
of signatures implicitly provides samples {Bpriv ·r} where Bpriv is the signer’s private basis.
A zonotope is a generalization of a parallelepiped to a dependent set of vectors. Let M =
{b1, . . . , bm} be a n×m matrix for m > n. The zonotope formed by M is the set Z(M) =
{
∑
xi ·bi : xi ∈ [−1/2, 1/2)}. Even though the vectors of M are dependent and the zonotope

has a shape that is “closer to spherical” than a parallelepiped (the corners typically have
more obtuse angles), Ducas and Nguyen show the Nguyen-Regev algorithm can be extended
to this setting, when the samples have the form {M · r}, where r is (discretely) uniform
over an m-dimensional hypercube. Their new algorithm does not provably always work, but
it works quite well in practice. They used their algorithm to break a version of NTRUSign
with a “perturbations” countermeasure. In NTRUSign with perturbations, the signer uses
perturbations to obscure its private basis, in such a way that a transcript of signatures
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induces the distribution of a zonotope rather than a parallelepiped.

Can the Nguyen-Regev and Ducas-Nguyen algorithms be extended even further? For
example, suppose we have samples of the form {B · r} or {M · r}, where r comes from
a discrete Gaussian distribution. In these cases, assuming that the coordinates of r have
moderate deviation, one can show [Pei10, AGHS12] that the samples also have a discrete
Gaussian distribution over the lattice generated by B or M , where the Gaussian is ellipsoidal
according to the shape of B or M . In the latter case, the ellipsoid get closer to a sphere as
m gets larger relative to n (in the sense that the singular values of M get closer together). A
discrete ellipsoidal Gaussian does not have any “corners” like a parallelepiped or zonotope,
which are the local minima of the Nguyen-Regev and Ducas-Nguyen algorithms. This fact
seems to prevent a direct application of Nguyen-Regev or Ducas-Nguyen. However, the
shape of the ellipsoid still may provide some useful information.1

Interestingly, the re-randomization algorithm of our construction (see Section 6) involves
adding a term of the form (M · r)/z, where r has a spherical Gaussian distribution. Con-
sequently, the numerator of this added term has an ellipsoidal Gaussian distribution, where
the numerator’s shape depends on the shape of M . Note that as opposed to the case of
signatures, re-randomization in our construction is not supposed to hide M (in fact we give
out M/z in the public parameters). Rather, the purpose of re-randomization in is just to
“drown out” the initial value that is being randomized (while preserving its coset wrt the
ideal I).

9.5 A New Algorithm for the Closest Principal Ideal Generator
Problem

As usual, let R be the ring of integers for the m-th cyclotomic field. Let v ∈ R and I = 〈v〉.
Let u be a ε-approximation of v – i.e., 1/(1 + ε) ≤ |σk(v)/σk(u)| ≤ 1 + ε for all k ∈ Z∗m.
How efficiently can we recover the principal ideal generator v from I and u?

A cryptanalyst would hope that we can recover v whenever ε is bounded by some inverse-
polynomial function, so that the averaging and Nguyen-Regev attacks become more devastat-
ing. Recall that the averaging and Nguyen-Regev attacks only output a 1/poly-approximate
solution of v (or a related value) when given a polynomial number of samples; afterward,
the attacks attempt to output an exact solution by rounding (or by solving approximate-
CVP, but this is not efficient in general). Thus, the averaging and Nguyen-Regev attacks
can easily be escaped by choosing v so that its coefficients are super-polynomial in size.
However, a cryptanalyst could prevent this escape with an efficient algorithm to recover v
from a 1/poly-approximation of v, since this would break the scheme regardless of how large
v’s coefficients are.

Here, we show how to recover v in time polynomial in m and the bit-length of v, assuming
that ε is bounded by some inverse-quasi-polynomial function in m. This algorithm does

1For signature schemes, the signer can use the Gaussian samplers from [GPV08, Pei10] to get a perfectly
spherical distribution, thus ensuring that the transcript of signatures “leaks no information at all.”
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not quite fulfill the cryptanalyst’s dream, but it suggests a direction for future, possibly
more devastating attacks. The algorithm that we describe here is a natural extension of
the Gentry-Szydlo algorithm ([GS02], see Section 9.2). Whereas the GS algorithm uses the
exact information about v’s geometry provided by the relative norm NK/K+(v) = v · v, our
algorithm here tries to make-do with the approximate information provided by u.

The algorithm follows the algebraic strategy of the GS algorithm. In particular, it invokes
Fermat’s Little Theorem to assert that vr = 1 mod P for prime P when (P−1) and m divide
r (as long as v is not a zero divisor in RP ). Next, it applies (implicit) lattice reduction to the
lattice Ir to obtain a reduced element w = vr · a. Finally, it tries to recover a (and hence
v) by using the fact that a = w mod P . The main differences between the GS algorithm
and our algorithm are:

• We require r to be only quasi-polynomial (not exponential): The GS algorithm has
exact information about v’s geometry, which allows it to derive exact information
about vr’s geometry even when r is exponential (though this information is represented
implicitly in the polynomial chains). In contrast, we only have approximate information
about v’s geometry, and the accuracy of our information about vr’s geometry degrades
exponentially with r. So, we cannot have r much bigger than 1/ε.

• We will work modulo the product of many primes: To compensate for the fact that
r cannot be too large in our setting, we choose r so that (pi − 1) divides r for many
primes pi, and we work modulo P =

∏
pi. We heuristically estimate that we can

achieve P = 2Ω(m) when r = 2O(logm log logm). (Similar to the GS algorithm, we need P
to exceed the LLL approximation factor, and then some.)

Let us begin by considering how to set r and P . For some k to be determined, let q1, . . . , qk
be the first k primes, and set rk,m = m

∏
qi. Set Sk,m be the set of 2k products of m with

a subset product of q1, . . . , qk. Set Tk,m = {1 + s : s ∈ Sk,m}, Pk,m = {prime p ∈ Tk,m},
and Pk,m =

∏
p∈Pk,m p. We claim that (rk,m, Pk,m) will tend to be a good choice for (r, P ).

Certainly it is true that rk,m is divisible by pi−1 for the primes that divide P ; the remaining
issue is the size of rk,m and Pk,m.

First, consider the size of rk,m. We have:

ln rk,m = lnm+
k∑
i=1

ln qi = lnm+ qk + o(k) = lnm+ k ln k + o(k ln k),

where the second and third equalities follow from extensions of the Prime Number Theorem
(see Corollaries 8.2.7 and 8.2.8 in [BS96]). Assuming k ln k dominates m, we have rk,m =
2(1+o(1))k ln k.

Now, consider the size of Pk,m. Clearly, many elements of Tk,m are not prime. For
example, 1 + s cannot be prime unless s is divisible by 2 – i.e., unless 2 is part of the subset
product that forms s. Similarly, if s is a subset product not divisible by 3, then 1 + s has
(roughly) only a 1/2 (versus the usual 1/3) probability of not being divisible by 3. But, aside
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from such observations, we would heuristically expect that, by the Prime Number Theorem,
an element t ∈ Tk,m has a Ω(1/ ln t) chance of being prime. With this heuristic, we calculate:

Pk,m =
∏

p∈Pk,m

p =
∏

t∈Tk,m

tΩ(1/ ln t) = 2Ω(|Tk,m|) = 2Ω(2k) .

Assuming these heuristic estimates of rk,m and Pk,m are true, then for any constant c1,
there is a constant c2, such that setting k = blnmc + c2 ensures that Pk,m is at least 2c1·m.
With this value of k, we have rk,m = 2(1+o(1)) lnm ln lnm = m(1+o(1)) ln 2 ln lnm. In other words,
while Pk,m is exponential in m, rk,m is only slightly quasi-polynomial in m. For convenience,
we capture these observations in the following claim.

Claim 9.8. Let ρm(x) denote the smallest positive integer such that there exist distinct
primes {pi} such that

∏
pi ≥ x and ρm(x) is divisible by m and (pi − 1) for all i. Then,

for x = 2Ω(m), we have ρm(x) = 2(1+o(1)) ln lnx ln ln lnx. For x = 2Θ(m), we have ρm(x) =
m(1+o(1)) ln lnm. The “proof” of the claim is constructive – that is, one can (heuristically)
generate a value rk,m that meets these asymptotic bounds of ρm(x) by setting rk,m to be the
product of m with the first c+ ln lnx primes for some constant c.

Next, we revisit Lemma 9.2, adapting implicit lattice reduction and the polynomial chains
of the GS algorithm to our setting.

Lemma 9.9 (Adaptation of Lemma 9.2). Let v0 ∈ R and let B0 be the HNF basis B0

for the ideal lattice I0 = 〈v0〉. Let u0 be an ε-approximation of v0 – i.e., 1/(1 + ε) ≤
|σk(v0)/σk(u0)| ≤ 1 + ε for all k ∈ Z∗m. Let k =

∑
ki2

i with ki ∈ {0, 1} be an integer with
r = blog2 kc. Let P be an integer such that v0 is not a zero divisor in RP . Then, given the
input (B0,u0), we may compute, in time polynomial in r, m, and the bit-length of the input,
the chains:

{vkr−1

0 · v2
0/v1, . . . ,v

k0
0 · v2

r−1/vr}

where for all i > 0, no vi is a zero divisor in RP , and ‖vi‖can2 < 2(n−1)/2
√
n(1 + ε)k

(i)
, where

k(i) is the integer formed by the i+ 1 most significant bits of k. Using these chains, we may
compute vk0/vr mod P in polynomial time. If k and P are such that vk0 = 1 mod P and
P > 2(n+1)/2

√
n(1 + ε)kγ2, we may compute vr exactly, and thereafter use the above chains

to compute vk0 mod Q in polynomial time for any prime Q such that vr is not a zero divisor
in RQ.

Proof. Consider the first term of the first chain: v
kr−1

0 · v2
0/v1. For convenience, let c =

2kr + kr−1. Given (B0,u0), we efficiently compute a basis B′0 for the ideal I ′0 = 〈uc0〉 /Ic.
Apply LLL to B′0. Set u1 ∈ I ′0 to be the element corresponding to the shortest vector in the
reduced basis. Since I ′0 is a principal (fractional) ideal, we have u1 = (u0/v0)cv1 for some
v1 ∈ R. (To handle the possibility that v1 is a zero divisor in RP , use techniques by Gentry
and Szydlo.) Since v1 = u1 · (v0/u0)c, we have that ‖v1‖can2 ≤ 2(n−1)/2 ·

√
n · (1 + ε)c by the

guarantee of LLL and the fact ‖vc0/uc0‖can∞ ≤ (1+ ε)c. Include the term uc0/u1 = vc0/v1 in the

69



polynomial chain. Observe that u1 is a (1 + ε)c approximation of v1. Also, we can efficiently
generate a basis B1 of the ideal I1 = 〈v1〉 = 〈u1〉 /I ′0.

The second term in the chain is supposed to be v
kr−2

0 · v2
1/v2. Given (B0, B1,u0,u1),

we efficiently compute a basis B′1 for the ideal I ′1 =
〈
u
kr−2

0 u2
1

〉
/(Ikr−2

0 I2
1 ). Apply LLL to

B′1. Set u2 ∈ I ′1 to be the element corresponding to the shortest vector in the reduced
basis. Since I ′1 is a principal (fractional) ideal, we have u2 = (u0/v0)kr−2(u1/v1)2v2 for
some v2 ∈ R. (To handle the possibility that v2 is a zero divisor in RP , use techniques by
Gentry and Szydlo.) Since v2 = u2 · (v0/u0)kr−2(v1/u1)2, we have that ‖v2‖can2 ≤ 2(n−1)/2 ·√
n · (1 + ε)4kr+2kr−1+kr−2 by the guarantee of LLL and the fact ‖(v0/u0)kr−2(v1/u1)2‖can∞ ≤

(1 + ε)4kr+2kr−1+kr−2 . Include the term u
kr−2

0 · u2
1/u2 = v

kr−2

0 · v2
1/v2 in the polynomial chain.

Observe that u2 is a (1 + ε)4kr+2kr−1+kr−2 approximation of v2. Also, we can efficiently
generate a basis B2 of the ideal I2 = 〈v2〉 = 〈u2〉 /I ′1. One continues in this fashion until all
the terms in the polynomial chain are computed.

The rest of the proof proceeds similar to the proof of Lemma 9.2.

Since in Lemma 9.2 k may be super-polynomial, we prefer not to compute vk0 directly.
Instead, as in Lemma 9.3, we may compute v2m

0 by computing vk1
0 and vk2

0 for which
gcd(k1, k2) = 2m, and then applying the Euclidean algorithm in the exponent.

Lemma 9.10. Let v ∈ R and let B be the HNF basis for the ideal lattice I = 〈v〉. Let u
be an ε-approximation of v – i.e., 1/(1 + ε) ≤ |σk(v)/σk(u)| ≤ 1 + ε for all k ∈ Z∗m. Then,
given u and B, we may compute v2m in time polynomial in m and the bit length of v.

Proof. Similar to the proof of Lemma 9.3.

Theorem 9.11. Assuming Claim 9.8, there is an ε = m−(1+o(1)) ln lnm such that, given the
HNF basis for the ideal lattice I = 〈v〉 for some v ∈ R and an ε-approximation u of v, we
can compute v in time polynomial in m and the bit-length of v.

Proof. This follows from Lemmas 9.10 and 9.4 and Claim 9.8.

We remark that this algorithm implies that the bounded distance decoding problem
(BDDP) is easy for the Dirichlet unit lattice Λ for surprisingly low approximation factors.
(Recall from Section 8 that the Dirichlet unit lattice is the lattice formed by the image of
the units under the map λ : K∗ → Rs1+s2 given by λ(a) = (ln |σ1(a)|, . . . , ln |σs1+s2(a)|).)
Specifically, by the above algorithm, given an ε-approximation u of a unit v, we can recover
v exactly. So, in the Dirichlet unit lattice, taking logarithms, given a vector λ(u) whose `∞
distance from Λ is at most ln(1 + ε) ≈ ε, we can efficiently recover the vector in Λ-vector
closest to λ(u). Really, this corollary is not so surprising, since in the case of the m-th
cyclotomic field for prime power m we already have in our hands a fairly short basis of Λ
given by the basis {λ(bi) : bi = (1 − ζ im)/(1 − ζm) : i ∈ Z∗m}, which gives more direct ways
of achieving the same result. What is interesting is that, as with the GS algorithm, the
algorithm above does not explicitly use the structure of the unit group, though of course it
must be doing so implicitly; it would be interesting to make the connection more explicit.
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9.6 Coppersmith Attacks

Coppersmith-type attacks [Cop96b, Cop96a] would seem to be ideally suited to ideal lattices,
as these attacks elegantly combine algebra and geometry. Somewhat surprisingly, however,
they have not yet resulted in attacks that are more effective than generic lattice reduction
algorithms.

Cohn and Heninger [CH11] applied Coppersmith’s method to solving the BDDP over
ideal lattices. In the BDDP over ideal lattices, one is given a basis B of an ideal lattice
I ⊂ OK and an element u ∈ OK that is very close to some v ∈ I; the task is to output v.
Following Coppersmith’s method, and to oversimplify a bit, Cohn and Heninger let x = u−v
be the small unknown offset, and generate numerous univariate polynomials that have x as
a root modulo It for some large exponent t. For example, any polynomial of the form
ar · (u − X)t−r with a ∈ I evaluates at x to an element that is in It, and therefore any
linear combination of such polynomials does as well. These polynomials form a lattice, and
they apply LLL to this lattice to find a polynomial p(X) with (somewhat) small coefficients.
They design the lattice so that p(x) is small (by the smallness of p’s coefficient vector and
of ‖x‖∞), indeed smaller than any nonzero element in It. Since p(x) = 0 mod It, they
conclude that p(x) = 0 exactly, whereupon they recover x with efficient characteristic-zero
root finding techniques [Len83].

Coppersmith’s method works well in many settings involving integers – e.g., finding small
solutions of univariate equations [Cop96a], factoring when the MSBs of a factor are known
[Cop96b], factoring numbers of the form prq for large r [BDHG99], etc. The main obstacle
to successfully applying this method to ideals appears to be that the Coppersmith lattices
involved have too high dimension. The Coppersmith lattice used by Cohn and Heninger
has n × n blocks where one would have only a single entry in the integer case. In short,
the lattice dimension is multiplied by n versus the integer case, and consequently the lattice
reduction step performs much worse.

We remark that the GS algorithm, as well as our algorithm for solving the closest principal
ideal generator problem (see Section 9.5), have a strategy somewhat similar to Coppersmith’s
method. In particular, they use Coppersmith’s strategy of using lattice reduction and small-
ness to convert a modular equation to an exact equation, and thereafter to extract roots in
characteristic zero.

9.7 Dimension Halving in Principal Ideal Lattices

Dimension Halving when a generator is provided. Gentry [Gen01] observed that,
given a generator v of a principal ideal I in the ring Z[x]/(xm − 1), one can construct a
sub-lattice of I of dimension only b(m + 1)/2c that contains a vector of length 2 · λ1(I).
Therefore, one can hope to find a short vector in I by reducing a lattice that has only half
the usual dimension. We can update this observation to obtain the following results about
principal ideals in the ring of integers OK of the m-th cyclotomic field K.
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Lemma 9.12. Let B be a Z-basis of a principal ideal I = 〈v〉 over the ring of integers OK
of the m-th cyclotomic field K. Let n = φ(m). Let Λ be the n/2-dimensional sub-lattice of I
given by Λ = {v ·r : r ∈ OK+}, where OK+ is the ring of integers of the index-2 real subfield
K+ = Q(ζm + ζ−1

m ) of K. Then, λ1(Λ) ≤ 2λ1(I).

Proof. Let z ∈ I be such that ‖z‖can2 = λ1(I) (in the canonical embedding). Since I is
principal, z = v · a for some a ∈ OK . Let z′ = v · a, where a = a(x−1) is the conjugate of
a. Then

‖z′‖2 = 〈σ(z′), σ(z′)〉 =
∑
k∈Z∗m

σk(z
′)σk(z′) =

∑
k∈Z∗m

σk(v)σk(a)σk(v)σk(a) =
∑
k∈Z∗m

σk(z)σk(z) = ‖z‖2.

Thus, z + z′ is a I-element with length at most 2λ1(I), and it is contained in the sub-lattice
Λ.

Theorem 9.13. Let v be a generator of a principal ideal I in the ring of integers OK of the
m-th cyclotomic field K. Given v, we can efficiently construct a n/2-dimensional sub-lattice
of I that contains some w ∈ I of length at most 2λ1(I).

Proof. From v, we can efficiently construct a lattice Λ that contains precisely all elements
of the form v ·a for a ∈ OK+ . By Lemma 9.12, the lattice Λ has the desired properties.

In fact, we can do slightly better. We can also consider the sub-lattice Λ− that contains
precisely all elements of the form v · a where a is in the n/2 dimensional lattice of elements
that can be expressed as b− b for some b ∈ OK . We can then show that either Λ or Λ− has
a I-vector of length at most

√
2λ1(I).

Next, we extend this dimension-halving attack on principal ideal lattices to the setting
where the attacker is not given a generator of the ideal (rather only a Z-basis of the ideal).

Dimension Halving when a generator is not provided. Is approximate-SVP for
principal ideal lattices easier than it is for general ideal lattices (over the ring of integers
of the m-th cyclotomic number field)? For general ideal lattices, currently the best known
algorithm for approximate-SVP involves applying a lattice reduction algorithm (e.g., LLL
[LLL82] or BKZ [Sch87]) to a lattice of dimension n = φ(m). However, as we will see, the
GS algorithm implies that, for principal ideal lattices, we only need to reduce lattices of
dimension n/2. In short, the GS algorithm gives much stronger attacks on principal ideal
lattices than we currently have on general ideal lattices (albeit still exponential time for small
approximation factors).

Theorem 9.14. Let T (n, d, γ) denote the (worst-case) complexity of computing a γ-approximate
shortest vector in the lattice L(B), where B is the HNF basis of an n-dimensional lat-
tice of determinant at most d. Computing a γ-approximate shortest vector in the lat-
tice L(B), where B is a HNF basis of a principal ideal lattice I of norm d in the ring
of integers Z[x]/Φm(x) of the m-th cyclotomic field, has worst-case complexity at most
poly(m, log d) + T (φ(m)/2, d, γ/2).
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Proof. Let Iu = 〈u〉 be the principal ideal lattice for which we want to solve approximate-
SVP, presented as a Z-basis of {bi}i∈[n] with bi = u · ai and ai ∈ OK . Formally set
v = NK/Q(u) · (u/u) – that is v is essentially the fraction u/u, except that we multiply by
an appropriate integer to eliminate denominators and ensure v ∈ OK . Observe that, from
B, we can compute both a basis of Iv = 〈v〉 and also the term v · v = NK/Q(u)2. Use the
GS algorithm to recover v (and hence u/u) in polynomial time.

From u/u and B, compute a Z-basis C = {ci = bi(1 + u/u)}i∈[n] of the principal ideal
lattice Iu+u = 〈u + u〉. Observe that u+u is in the index-2 real subfield K+ = Q(ζm+ζ−1

m ).
Project the basis C down to a n/2-dimensional basis CK+ of the ideal Iu+u,K+ = Iu+u∩K+ ⊂
OK+ . Observe that CK+ is a set of the form {(u + u) · r : r ∈ OK+}. Multiply each of
the elements in CK+ by u/(u + u) to get a basis BK+ = {u · r : r ∈ OK+} of the lattice
Λ = L(BK+).

By Lemma 9.13, Λ has a nonzero vector of length at most 2λ1(I). Therefore, we can solve
γ-approximate-SVP in I by solving γ/2-approximate-SVP in Λ, proving the theorem.

Note that non-principal ideal lattices, which in general can be expressed in terms of two
generators, do not appear to be vulnerable to this dimension-halving attack.

The params in our constructions implicitly reveal principal ideal lattices – e.g., the lattice
〈h · gκ−1〉 will likely be generated as an OK-linear combination of the terms of the form
h · bκi /g that can be computed from params as explained in Section 7.3.1. Therefore, we
recommend using OK of degree twice what one would normally use for general ideal lattices.

Previous schemes have also used, or raised the possibility of using, principal ideals, includ-
ing fully homomorphic encryption schemes [Gen09b, SV10, GH11], homomorphic signatures
schemes [BF11a], and key agreement schemes [Buc91]. Use of cyclotomics with higher de-
grees is also recommended in these settings.
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CHAPTER 10

One-Round Key-Exchange

Diffie and Hellman in their seminal paper [DH76] provided the first construction of a one-
round two-party key-exchange protocol and laid the foundations for the work on public key
cryptography. Joux [Jou00] constructed the first one-round three-party key-exchange proto-
col using Weil and Tate pairings. Boneh and Silverberg [BS03] showed how this result could
be extended to get a one-round N -party key-exchange protocol if multilinear maps existed.
Our encoding schemes easily support the Boneh-Silverberg construction, with one subtle
difference: Since our public parameters hide some secrets (i.e., the elements g,h, z) there-
fore our construction of one-round N -party secret key exchange protocol is in the common
reference string model.

10.1 Definitions

Consider a setting with N parties who wish to set up a shared key using a one-round protocol.
The “one-round” refers to the setting in which each party is only allowed to broadcast one
value to all other parties. Furthermore all N broadcasts occur simultaneously. Once all
the N parties broadcast their values, each party should be able to locally compute a global
shared secret s. Using the notation from [BS03], a one-round N -party key-exchange scheme
consists of the following three randomized PPT algorithms:

• Setup(λ,N): Takes a security parameter λ ∈ Z+ and the number of participants N as
input. It runs in time polynomial in λ,N and outputs public parameters params.

• Publish(params, i): Given an input i ∈ {1, . . . , N}, the algorithm outputs a pair (pubi, privi),
with both in {0, 1}∗. Every party i execute this algorithm with its input i and broad-
casts the generated value pubi to all other parties, and keeping privi secret.
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• KeyGen(params, j, privj, {pubi}i 6=j): Party j ∈ {1, . . . N} collects the public broadcasts
sent by all other parties and executes KeyGen on all these public values and its secret
value privj. On this execution the algorithm KeyGen outputs a key sj.

The consistency requirement for the above scheme is that all N parties generate the
same shared key with high probability. The scheme is said to be secure if no polynomial
time algorithm, given all N public values (pub1, . . . pubN), can distinguish the true shared
key s from random.

10.2 Our Construction.

We present a one-round N -party key-exchange protocol using an encoding schemes with
κ = N − 1, under the GDDH assumption. The construction is a straightforward adaptation
of [BS03]:

Setup(1λ, 1N). We just run the InstGen algorithm of the underlying encoding scheme, getting
(params,pzt) ← InstGen(1λ, 1N−1), and outputting (params,pzt) as the public parame-
ter. Note that pzt is a level-N−1 zero-test parameter. Let q, n, σ be the corresponding
parameters of the encoding scheme. Note also that in this construction we insist that
the order of the quotient ring R/I be a large prime (or at least that it does not have
any small divisors).

Publish(params,pzt, i). Each party i chooses a random level-zero encoding d← samp(params)
as a secret key, and publishes the corresponding level-one public key wi ← enc(params, 1,d).

KeyGen(params,pzt, j,dj, {wi}i 6=j). Each party j multiplies its secret key dj by the public
keys of all its peers, vj ← dj ·

∏
i 6=j wi, thus getting a level-N − 1 encoding of the

product coset
∏

i di+I. Then the party uses the extraction routine to compute the key,
sj ← ext(params,pzt,vj). (Recall that in out case extraction consists of multiplying by
the zero-test parameter and outputting the high-order bits.)

The consistency requirement follows directly from the agreement property of the ex-
traction procedure in the underlying encoding scheme: Notice that all the parties get valid
encodings of the same uniformly-chosen coset, hence the extraction property implies that
they should extract the same key with high probability.

Similarly, security follows directly from a combination of the GDDH assumption and the
randomness property of the extraction property of the extraction procedure in the underlying
encoding scheme.

Theorem 10.1. The protocol described above is a one-round N-party Key Exchange protocol
if the GDDH assumption holds for the underlying encoding scheme.

Proof. We need to show that an attacker that sees all the public keys cannot distinguish the
output of the first party (say) from a uniformly random string. By GDDH, the adversary
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cannot distinguish between the level-(N − 1) encoding v1 ← d1 ·
∏

i>1 wi that Party 1
computes and an element v′1 ← d′1 ·

∏
i>1 wi that is obtained for a random and independent

d′1 ← samp(params) (which is a level-N − 1 encoding of the coset (d′1 ·
∏

i>1 di) + I).

By the randomness property of the sampling procedure, d′1 is nearly uniformly distributed
among the cosets of I. Since |R/I| is a large prime then with high probability

∏
i>1 di 6≡

0 (mod I), and thus d′1 ·
∏

i>1 di is also nearly uniformly distributed among the cosets
of I. We can now use the randomness property of the extraction function to conclude that
ext(params,pzt,v

′
1) is a nearly uniform string, completing the proof.
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APPENDIX A

Generalizing Graded Encoding Systems

Here we generalize the definitions of graded encodings schemes from Section 3.2 to deal with
the “asymmetric case,” where there are many different “level-one sets” (corresponding to the
many different source groups). We view the different level-one sets as separate dimensions,
and correspondingly replace the index i from the symmetric case by an index-vector v ∈ Nτ
(with N the natural numbers and τ the equivalent of the number of different groups). The
different level-one sets correspond to the standard (τ -dimensional) unit vectors ei, and an

encoding of α ∈ R relative to the index ei (i.e., an element a ∈ S
(α)
ei ) is playing a role

analogous to α · gi in asymmetric multilinear maps.

Note that in our case we can have τ “different groups” and yet we can multiply up to
some number κ of different encodings, potentially κ 6= τ . Hence we can also get a mix of the
symmetric and asymmetric cases. If u1, . . . , uκ are encodings of α1, . . . , ακ ∈ R relative to
indexes v1, . . . ,vκ ∈ Nτ , respectively, then u∗ = u1 × · · · × uκ is an encoding of the product
α∗ =

∏
i αi ∈ R relative to the sum of the indexes v =

∑
i vi ∈ Nτ .

For this general setting, we replace the parameter κ by a set κ ⊂ Nτ which specifies
the subset of indexes where we can test for zero. Additionally the set of levels Below(κ) ⊂
Nτ includes the indexes for which we can get valid encodings, and of course, we preclude
encoding “above the zero-testing levels,” since for those levels we cannot check equality
of encodings. Hence the zero-test indexes implicitly define also the subset Below(κ). We
begin by formalizing the notions of “above” and “below” for our indexes, which is defined
entry-wise.

Definition A.1 (Partial order on Nτ ). For an integer τ > 0 and two vector v,w ∈ Nτ , we
define

v ≤ w ⇔ v[j] ≤ w[j] for all j = 1, 2, . . . , τ.

As usual, we have v < w if v ≤ w and v 6= w.
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Definition A.2 (Below κ). For an arbitrary subset of indexes κ ⊂ Nτ we denote the set of
indexes “below κ” as:

Below(κ)
def
= {v ∈ Nτ : ∃w ∈ κ s.t. v ≤ w}.

We can now extend Definition 3.2 to the asymmetric case by defining κ-graded encoding
systems, where we think of κ as the subset of indexes that admit zero-testing.

Definition A.3 (κ-Graded Encoding System). Let κ ⊂ Nτ be a finite set (for some integer
τ > 0), and let R be a ring. A κ-Graded Encoding System for R is a system of sets

S = {S(α)
v ⊂ {0, 1}∗ : v ∈ Below(κ), α ∈ R}, with the following properties:

1. For every fixed index v ∈ Below(κ), the sets {S(α)
v : α ∈ R} are disjoint (hence they

form a partition of Sv
def
=
⋃
α S

(α)
v ).

2. There are binary operations ‘+’ and ‘−’ (on {0, 1}∗) such that for every α1, α2 ∈ R,

every v ∈ Below(κ), and every u1 ∈ S(α1)
v and u2 ∈ S(α2)

v , it holds that

u1 + u2 ∈ S(α1+α2)
v and u1 − u2 ∈ S(α1−α2)

v (A.1)

where α1 + α2 and α1 − α2 are addition and subtraction in R.

3. There is an associative binary operation ‘×’ (on {0, 1}∗) such that for every α1, α2 ∈ R,

every v1,v2 with v1 + v2 ∈ Below(κ), and every u1 ∈ S(α1)
v1 and u2 ∈ S(α2)

v2 , it holds
that

u1 × u2 ∈ S(α1·α2)
v1+v2

. (A.2)

Here α1 · α2 is multiplication in R, and v1 + v2 is vector addition in Nτ .

Clearly, Definition A.3 implies that if we have a collection of n encodings ui ∈ S
(αi)
vi ,

i = 1, 2 . . . , n, then as long as
∑

i vi ∈ Below(κ) we get u1 × · · · × un ∈ S
(
∏
i αi)∑
i vi

. We note

that symmetric κ-multilinear maps as per Definition 3.2 correspond to {κ}-graded encoding
systems (with τ = 1), the asymmetric bilinear case corresponds to {(1, 1)}-graded systems
(with τ = 2), etc.

A.1 Efficient Procedures, the Dream Version

As before, we first describe a “dream version” of the efficient procedures and then explain
how to modify them to deal with technicalities that arise from our use of lattices in the
realization.

Instance Generation. The randomized InstGen(1λ, τ,κ) takes as inputs the parameters
λ, τ the subset κ ⊂ Nτ . It outputs (params,pzt), where params is a description of a
κ-Graded Encoding System as above, and pzt is a set of zero-test parameters for the
indexes in κ.
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Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S(α)
0 for

a nearly uniform element α ∈R R. (Note that we require that the “plaintext” α ∈ R
is nearly uniform, but not that the encoding a is uniform in S

(α)
0 .)

Encoding. The (possibly randomized) enc(params,v, a) takes a “level-zero” encoding a ∈
S

(α)
0 for some α ∈ R and index v ∈ Below(κ), and outputs the “level-v” encoding

u ∈ S(α)
v for the same α.

Addition and negation. Given params and two encodings relative to the same index,
u1 ∈ S

(α1)
v and u2 ∈ S

(α2)
v , we have add(params, i, u1, u2) = u1 + u2 ∈ S

(α1+α2)
v , and

sub(params, i, u1, u2) = u1 + u2 ∈ S(α1+α2)
v ,

Multiplication. For u1 ∈ S(α1)
v1 , u2 ∈ S(α2)

v2 with v1+v2 ∈ Below(κ), we have mul(params,v1, u1,v2, u2) =

u1 × u2 ∈ S(α1·α2)
v1+v2

.

Zero-test. The procedure isZero(params,v, u) output 1 if v ∈ κ and u ∈ S(0)
v and 0 oth-

erwise. Note that in conjunction with the subtraction procedure, this lets us test if
u1, u2 ∈ Sv encode the same element α ∈ R.

Extraction. This procedure extracts a “canonical” and “random” representation of ring
elements from their level-v encoding. Namely ext(params,pzt, u) outputs (say) s ∈
{0, 1}λ, such that:

(a) For any α ∈ R, v ∈ κ and two u1, u2 ∈ S(α)
v , ext(params,pzt,v, u1) = ext(params,pzt,v, u2),

(b) For any v ∈ κ, the distribution {ext(params,pzt,v, u) : α ∈R R, u ∈ S(α)
v } is nearly

uniform over {0, 1}λ.

A.2 Efficient Procedures, the Real-Life Version

As before, our real-life procedures have noise bounds and we are only ensured of their prop-
erties when the bounds are valid and small enough. Also as before, we relax the requirements
on the zero-test and the extraction routines, as we now describe.

Zero-test. We sometime allow false positives for this procedure, but not false negatives.
Namely, isZero(params,pzt,v, u) = 1 for every v ∈ κ and u ∈ S

(0)
v , but we may

have isZero(params,pzt,v, u) = 1 also in other cases. Again our weakest functionality
requirement that we make is that for a uniform random choice of α ∈R R, we have for
every v ∈ κ

Pr
α∈RR

[
∃ u ∈ S(α)

v s.t isZero(params,pzt,v, u) = 1
]

= negligible(λ). (A.3)

Additional requirements are considered security features (that a scheme may or may
not possess), and are discussed later in this section.
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Extraction. We replace1 properties (a)-(b) from the dream-version above by the weaker
requirements:

(a′) For a randomly chosen a← samp(params) and every v ∈ κ, if we run the encoding
algorithm twice to encode a at level v and then extract from both copies then we get:

Pr

 ext(params,pzt,v, u1)
= ext(params,pzt,v, u2)

:
a← samp(params)
u1 ← enc(params,v, a)
u2 ← enc(params,v, a)

 ≥ 1− negligible(λ).

(b′) The distribution {ext(params,pzt,v, u) : a← samp(params), u← enc(params,v, a)}
is nearly uniform over {0, 1}λ.
We typically need these two conditions to hold even if the noise bound that the encoding
routine takes as input is larger than the one output by samp (upto some maximum
value).

A.3 Hardness Assumptions

The MDDH analog for this case says that it is hard to recognize encoding of products, except
relative to indexes in Below(κ). One way to formalize it is by letting the adversary choose
the level “above κ” on which it wants to be tested. This is formalized by the following
process. (Below we suppress the noise bounds for readability):

1. (params,pzt)← InstGen(1λ, τ,κ)
2. v,v∗ ← A(params,pzt) // v ∈ κ and v∗ /∈ Below(κ)
3. For i = 1, . . . , τ , for j = 1, . . . v∗i : // v∗i denotes the ith component of v∗i
4. Choose ai,j ← samp(params) // level-0 encoding of random αi,j ∈R R
5. Set ui,j ← enc(params, ei, ai,j) // encoding of αi,j w.r.t the i’th unit vector
6. Set ã =

∏
i,j ai,j // level-0 encoding of the product

7. Choose â← samp(params) // level-0 encoding of a random element
8. Set ũ← enc(params,v, ã) // level-v encoding of the product
9. Set û← enc(params,v, â) // level-v encoding of random

The adversary A then gets all the ui,j’s and either ũ or û, and it needs to guess which
is the case. It is considered successful if the guess is correct and in addition v ∈ κ and
v � v∗. The generalized GDDH says that for any setting of the parameters, the following
two distributions, defined over the experiment above, are computationally indistinguishable:

DGenGDDH = {(params,pzt, {ui}i, ũ)} and DGenRAND = {(params,pzt, {ui}i, û)}.

Zero-test security. Zero-testing security is defined exactly as in the symmetric case,
except that we require it to work relative to all the indexes v ∈ κ.

1Our construction from Section 6 does not support full canonicalization. Instead, we settle for
ext(params,pzt,v, u) that has a good chance of producing the same output when applied to different en-
coding of the same elements.
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