An information-theoretic view of the Witsenhausen Counterexample

Anant Sahai presenting joint work with students: Pulkit Grover Se Yong Park

> Wireless Foundations Center U.C. Berkeley

Support from the National Science Foundation and Samsung

2009 ITA in UCSD, La Jolla

Ho, Kastner, Wong '78

Fig. 1. Teams, signaling, and information theory.

Anant Sahai (UC Berkeley)

Witsenhausen Counterxample

Costa '83

Dirty paper coding

Kim, Sutivong, Cover '08

• State Amplification: also estimate **x**₀ (inspired by Devroye, *et al '06* and following up on Sutivong, *et al '05*)

Merhav and Shamai '07

- State Amplification: also estimate **x**₀ (inspired by Devroye, *et al '06* and following up on Sutivong, *et al '05*)
- State Masking: obscure **x**₀

Deterministic perspective: can DPC be distributed?

Somekh-Baruch, Shamai, Verdú '08

Kotagiri and Laneman '08

Simplify: eliminate both messages!

The vector Witsenhausen counterexample

Two equivalent perspectives

Outline

- Towards the "simplest" unsolved problem
- The perspective from control theory
- A new bound and an approximately optimal solution
- Approximate optimality in the scalar case

Witsenhausen '68

The scalar Witsenhausen counterexample

$$\mathcal{C} = k^2 u_1^2 + (x_1 - \hat{x}_1)^2$$

Mitter and Sahai '99

Anant Sahai (UC Berkeley)

Baglietto, Parisini, Zoppoli '97

Baglietto, Parisini, Zoppoli '97

Witsenhausen's scalar lower bound

$$\bar{\mathcal{C}}_{\min}^{\text{scalar}} \ge \frac{1}{\sigma_0} \int_{-\infty}^{+\infty} \phi\left(\frac{\xi}{\sigma_0}\right) V_k(\xi) d\xi,$$

where $\phi(t) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{t^2}{2}), V_k(\xi) := \min_a [k^2(a-\xi)^2 + h(a)], \text{ and}$
 $h(a) := \sqrt{2\pi} a^2 \phi(a) \int_{-\infty}^{+\infty} \frac{\phi(y)}{\cosh(ay)} dy.$

Anant Sahai (UC Berkeley)

Outline

- Towards the "simplest" unsolved problem
- The perspective from control theory
- A new bound and an approximately optimal solution
- Approximate optimality in the scalar case

The core tension

The vector Witsenhausen counterexample

The new bound

The vector Witsenhausen counterexample

$$\bar{\mathcal{C}}_{\min} \ge \inf_{P \ge 0} k^2 P + \left((\sqrt{\kappa(P)} - \sqrt{P})^+ \right)^2,$$

where $\kappa(P) = \frac{\sigma_0^2}{\sigma_0^2 + 2\sigma_0 \sqrt{P} + P + 1}.$

Comparison with old bound

Achievability

Anant Sahai (UC Berkeley)

Achievability

Constant factor bound

Constant factor bound

Outline

- Towards the "simplest" unsolved problem
- The perspective from control theory
- A new bound and an approximately optimal solution
- Approximate optimality in the scalar case

Back to the control setting

The scalar Witsenhausen counterexample

Back to the control setting

Back to the control setting

Anant Sahai (UC Berkeley)

Conclusions

- The Witsenhausen counterexample is the "simplest" unsolved problem in information theory.
- Standard tools give a constant-factor result in asymptopia
- We need non-asymptotic approximation guarantees too