An information-theoretic view of the Witsenhausen Counterexample

Anant Sahai
presenting joint work with students:
Pulkit Grover Se Yong Park

Wireless Foundations Center
U.C. Berkeley

Support from the National Science Foundation and Samsung

2009 ITA in UCSD, La Jolla

Ho, Kastner, Wong '78

Fig. 1. Teams, signaling, and information theory.

Costa '83

Dirty paper coding

Kim, Sutivong, Cover '08

Dirty paper coding

- State Amplification: also estimate \mathbf{x}_{0} (inspired by Devroye, et al '06 and following up on Sutivong, et al '05)

Merhav and Shamai '07

Dirty paper coding

- State Amplification: also estimate \mathbf{x}_{0} (inspired by Devroye, et al '06 and following up on Sutivong, et al '05)
- State Masking: obscure \mathbf{x}_{0}

Deterministic perspective: can DPC be distributed?

The most significant bits of the interference are untouched

Somekh-Baruch, Shamai, Verdú '08

Kotagiri and Laneman '08

Simplify: eliminate both messages!

The vector Witsenhausen counterexample

Two equivalent perspectives

Outline

- Towards the "simplest" unsolved problem
- The perspective from control theory
- A new bound and an approximately optimal solution
- Approximate optimality in the scalar case

Witsenhausen '68

The scalar Witsenhausen counterexample

$$
\mathcal{C}=k^{2} u_{1}^{2}+\left(x_{1}-\widehat{x}_{1}\right)^{2}
$$

Mitter and Sahai '99

Baglietto, Parisini, Zoppoli '97

The connection with DPC

Vector

Scalar

The connection with DPC

Scalar

Baglietto, Parisini, Zoppoli '97

Witsenhausen's scalar lower bound

$$
\overline{\mathcal{C}}_{\min }^{\text {scalar }} \geq \frac{1}{\sigma_{0}} \int_{-\infty}^{+\infty} \phi\left(\frac{\xi}{\sigma_{0}}\right) V_{k}(\xi) d \xi
$$

where $\phi(t)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right), V_{k}(\xi):=\min _{a}\left[k^{2}(a-\xi)^{2}+h(a)\right]$, and

$$
h(a):=\sqrt{2 \pi} a^{2} \phi(a) \int_{-\infty}^{+\infty} \frac{\phi(y)}{\cosh (a y)} d y
$$

Outline

- Towards the "simplest" unsolved problem
- The perspective from control theory
- A new bound and an approximately optimal solution
- Approximate optimality in the scalar case

The core tension

The vector Witsenhausen counterexample

The new bound

The vector Witsenhausen counterexample

$$
\begin{gathered}
\overline{\mathcal{C}}_{\text {min }} \geq \inf _{P \geq 0} k^{2} P+\left((\sqrt{\kappa(P)}-\sqrt{P})^{+}\right)^{2}, \\
\text { where } \kappa(P)=\frac{\sigma_{0}^{2}}{\sigma_{0}^{2}+2 \sigma_{0} \sqrt{P}+P+1} .
\end{gathered}
$$

Comparison with old bound

Achievability

Achievability

Constant factor bound

Constant factor bound

Outline

- Towards the "simplest" unsolved problem
- The perspective from control theory
- A new bound and an approximately optimal solution
- Approximate optimality in the scalar case

Back to the control setting

The scalar Witsenhausen counterexample

Back to the control setting

Back to the control setting

Conclusions

- The Witsenhausen counterexample is the "simplest" unsolved problem in information theory.
- Standard tools give a constant-factor result in asymptopia
- We need non-asymptotic approximation guarantees too

