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Costa ’83

Encoder ++ Decoder
x1u1

x0 ∼ N (0, σ
2

0
I) w ∼ N (0, I)

M M̂

Dirty paper coding

State Amplification: also estimate x0 (inspired by Devroye, et al ’06 and
following up on Sutivong, et al ’05)

State Masking: obscure x0
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Encoder ++ Decoder
x1u1

x0 ∼ N (0, σ
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0
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Dirty paper coding

State Amplification: also estimate x0 (inspired by Devroye, et al ’06 and
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Deterministic perspective: can DPC be distributed?
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Fig. 1. Asymmetric state-dependent MAC with a common message.

A subclass of GGP channels that will be of special interest
is the following. A memoryless parallel channel with non-
causal asymmetric side information is a GGP channel with

and

(1)

In words, this is a GGP channel with two outputs
and that are both observed by the receiver. If, in
addition, one has

(2)

we shall say that the parallel channel is degenerate.
The common message , and the private message , are

independent random variables uniformly distributed over the
sets and , respectively, where

and . An -code for the GGP
channel consists of two encoders and a decoder :
the first encoder, unaware of the CSI is defined by a mapping

(3)

The second encoder, observes the CSI noncausally, and is de-
fined by a mapping

(4)

The decoder is a mapping

(5)

An -code for the asymmetric causal state-depen-
dent channel is defined similarly to that of the GGP channel,
with the exception that the second encoder is defined by a se-
quence of mappings

(6)
and at time index , the channel input is given by

.
An -code for the GGP channel is a code

having average probability of error not ex-
ceeding , i.e.,

(7)

A rate-pair is said to be achievable if there exists a
sequence of -codes with . The
capacity region of the GGP channel is defined as the closure of

the set of achievable rate-pairs. The definitions of an
-code, an achievable rate-pair, and the capacity re-

gion of the asymmetric causal state-dependent channel are sim-
ilar.

III. CAPACITY REGION: FINITE-INPUT ALPHABET

GGP CHANNEL

The following theorem provides a single-letter expression for
the capacity region of the finite-input alphabet GGP channel,
that is, when the alphabets , , are finite.

Theorem 1: The capacity region of the finite input alphabet
GGP channel is the closure of the union of all rate-pairs

, satisfying

(8)

for some joint measure on
having the form

(9)

where

(10)

Theorem 1 continues to hold if in (9) we replace
by with slightly larger . The proof of Theorem 1,
which appears in Appendix A, is an immediate extension of
Theorem 1 in [26]. In particular, the achievability part analyzes
the error probability of a coding scheme describe below (after
Corollary 2).

It is noted that Theorem 1 remains intact if we allow for feed-
back to the informed encoder, i.e., if, before producing the th
channel input symbol, the informed encoder observes the pre-
vious channel outputs , that is, while the uninformed en-
coder is a mapping of the form (3), the informed encoder is ac-
tually a sequence of mappings with

(11)

It is easily verified that for the case of a channel which does
not depend on the states, i.e., , the
expression for the capacity region reduces to the closure of the
union of rate-pairs satisfying

(12)

for some
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(Ŵ1, Ŵ2)
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Figure 1: State-dependent multiaccess channel with channel state noncausally known to one encoder.

limits of such models in which random parameters capture
fading in a wireless environment, interference from other
users [6], or the host sequence in IE and date hiding
applications [1–4, 7].

The state-dependent models with channel state available
at the encoders can also be used to model communication
systems with cognitive radios. Because of growing demand
for bandwidth in wireless systems, some secondary users
with cognitive capabilities are introduced into an existing pri-
mary communication system to use the frequency spectrum
more efficiently [8]. These cognitive devices are supposed
to be capable of obtaining knowledge about the primary
communication that takes place in the channel and adapt
their coding schemes to remove the effect of interference
caused by the primary communication systems to increase
spectral efficiency. The state in such models can be viewed as
the signal of the primary communication that takes place in
the same channel, and the informed encoders can be viewed
as cognitive users. The model considered in the paper can
be viewed as a secondary multiaccess communication system
with some cognitive and noncognitive users introduced into
the existing primary communication system. The cognitive
users are capable of noncausally obtaining the channel state
or the signal of the primary communication system. In this
paper, we are interested in studying the achievable rates
of the secondary multiaccess communication system with
some cognitive users. Joint design of the primary and the
secondary networks is studied in [9, 10].

1.2. Background

The study of state-dependent models or channels with
random parameters, primarily for single-user channels, is
initiated with Shannon himself. Shannon studies the single-
user discrete memoryless (DM) channels p(y|x, s) with
causal channel state at the encoder [11]. Here, X , Y , and S
are the channel input, output, and state, respectively. Salehi
studies the capacity of these models when different noisy
observations of the channel state are causally known to the
encoder and the decoder [12]. Caire and Shamai extend the
results of [12] to channels with memory [13].

Single-user DM state-dependent channels with memo-
ryless state noncausally known to the encoder are studied in
[14, 15] in the context of computer memories with defects.

Gelfand-Pinsker derive the capacity of these models, which is
given by [16]

C = max
p(u|s),X= f (U ,S)

[
I(U ;Y)− I(U ; S)

]
, (1)

where U is an auxiliary random variable, and X is a
deterministic function of (U , S). Single-user DM channels
with two state components, one component noncausally
known to the encoder and another component known to the
decoder, are studied in [17].

Costa studies the memoryless additive white Gaussian
state-dependent channel of the form Yn = Xn + Sn +
Zn, where Xn is the channel input with power constraint
(1/n)

∑n
i=1X

2
i ≤ P, Sn is the memoryless state vector whose

elements are noncausally known to the encoder and are zero-
mean Gaussian random variables with variance Q, and Zn

is the memoryless additive noise vector whose elements are
zero-mean Gaussian random variables with variance N and
are independent of the channel input and the state. The
capacity of this model is given by [18]

C = 1
2

log
(

1 +
P
N

)
. (2)

In terms of the capacity, the result (2) indicates that
noncausal state at the encoder is equivalent to state at the
decoder or no state in the channel. The so-called dirty paper
coding (DPC) scheme used to achieve capacity (2) suggests
that allocating power for explicit state cancellation is not
optimal, that is, the channel input X is uncorrelated with the
channel state S in the random coding distribution [18].

For state-dependent models with noncausal state at the
encoder, although much is known about the single user case,
the theory is less well developed for multiuser cases. Several
groups of researchers [19, 20] study the memoryless additive
Gaussian state-dependent MAC of the form Yn = Xn

1 + Xn
2 +

Sn+Zn, where Xn
1 and Xn

2 are the channel inputs with average
power constraints (1/n)

∑n
i=1X

2
1,i ≤ P1 and (1/n)

∑n
i=1X

2
2,i ≤

P2, respectively, Sn is the memoryless channel state vector
whose elements are noncausally known at both the encoders
and are zero-mean Gaussian random variables with variance
Q, and Zn is the memoryless additive noise vector whose
elements are zero-mean Gaussian random variables with
variance N and are independent of the channel inputs and
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Simplify: eliminate both messages!

Encoder ++ Decoder x̂1

x1u1

x0 ∼ N (0, σ
2

0
I) w ∼ N (0, I)

min
1

m

E
[
‖x1 − x̂1‖

2
]

x1 − x̂1E[C] = k
2
P+

The vector Witsenhausen counterexample
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Two equivalent perspectives

3

III. CONNECTIONS WITH INFORMATION THEORY

Observe that in (1) there is an implicit channel defined by

xm
1 = um

1 + xm
0 and ym

2 . We denote the average input power

at time 1 by P = 1
mE[||um

1 ||2]. By increasing P , one can
reduce the mean-square error in estimating xm

1 at the second

controller. We now argue that finding the optimal cost for

the vector Witsenhausen problem for each k is equivalent to
finding the optimal tradeoff between P and C2, the squared-

error cost at time 2.

Lemma 1: For given k in the problem described in Sec-

tion ??, the total minimum cost can be obtained from the

optimal tradeoff between P and C2. Conversely, given the

minimum cost for all k, we can obtain the optimal tradeoff
between P and C2.

Proof: Notice that because the cost C2 is the squared

distance between xm
1 and m, the control input um

2 should be

chosen as the minimum mean-square estimate (MMSE) of xm
1

on observing ym
2 . This minimizes the expected cost at time 2.

We first observe that the region of achievable (P, C2) pairs
is convex. The argument is along the lines of what is called

time-sharing in information theory. Given two strategies A and

B that attain two points (Pa, C2a) and (Pb, C2b), any of their
convex combination (λPa +(1−λ)Pb, λC2a +(1−λ)C2b) can
be achieved using a randomized strategy that chooses strategy

A with probability λ and strategy B with probability 1 − λ.
Therefore, the achievable tradeoff region is convex.

The intercept on the C2 axis of the tangent of slope k2 on the

P − C2 tradeoff gives the minimum cost for the given value

of k. On the other hand, given minimum attainable average

total costs for all k, whether a point lies in P − C2 achievable

region can be found be checking if k2P + C2 is larger than

the minimum attainable cost for all k. The lemma follows.
In this paper, we use both of the equivalent formulations of

Lemma 1.

A. Assisted Interference Suppression

Interestingly, vector Witsenhausen problem of Section ??

can be viewed as an information theory problem. This corre-

spondence is explained through Fig. 1. The problem illustrated

in Fig. 1 (a) is the vector version for Witsenhausen’s coun-

terexample drawn in traditional form with the state evolution

forming the backbone of the figure. This is transformed

in Fig. 1 (b) by redrawing the blocks so that the implicit

communication channel is conspicuous. The first controller

is replaced by the “encoder”, which modifies the state to

communicate it to the second controller. The encoder has

non-causal knowledge of the “interference” xm
0 , and has an

average power constraint of P . The objective is to minimize
the average distortion E||xm

1 − x̂m
1 ||2 in estimating xm

1 . The

second controller is replaced by a “decoder” that estimates

xm
1 . The final state xm

2 is suppressed and the control um
2 is

viewed as a reconstruction of the input to the channel, xm
1 .

The resulting problem turns out to be an unstudied problem

in information theory.

There is a close interpretation of this problem in the wire-

less communication scenario. Fig. 2 illustrates the problem,

which we refer to as “Assisted Interference Suppression.” The

transmitter Tx has to communicate its message to receiver

Rx in presence of a huge interference from I . The interferer
generates an iid Gaussian signal xm

0 that is known non-

causally at the ‘helper’ H . The helper attempts to suppress
the interference at the receiver Rx. The signal received at Rx
is given by

ym = xm
0 + um

1 + w′m + zm (2)

where w′m is the signal transmitted by Tx, and zm is the

AWGN. In order to suppress the effect of xm
0 , the helper

H could transmit −xm
0 . However, for P < σ2

0 , this is not

possible. Thus better techniques can be used to decode or

estimate xm
0 + um

1 .

An information theoretic problem is to characterize the

region of achievable rates for the transmitter-receiver system.

This problem has been addressed in [9], where the authors

obtain upper and lower bounds to the achievable rate region.

The similarity of this problem with the vector Witsenhausen

problem lies in the fact that the receiver needs to estimate

xm
1 = xm

0 + um
1 as accurately as possible. Once the estimate

is subtracted out of (2), the signal w′m faces an additive noise

of variance MMSE + σ2
z . Thus, per se, the objective of both

problems is to minimize the MMSE in estimating xm
1 .
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Fig. 2. The figure shows the Assisted Interference Suppression problem, a
model for which is given in Fig. 3. The special case of R = 0 is closely
related to the vector Witsenhausen problem. The helper H has non-causal
knowledge of the interference xm

0
. It attempts to suppress the interference at

receiver Rx (by modifying it using um
1
) so that the receiver Rx can get a

clean channel from the transmitter Tx.

IV. RELATED INFORMATION THEORY PROBLEMS

he twist that distinguishes the problem here from previously

considered information-theoretic problems is that the system

is allowed to make changes to the state xm
0 and the distortion

is calculated between the new state xm
1 and the reconstruction

of xm
1 . However, t

slope = −

1

k2

C̄

k
2

(a) (b)

C̄min(k2)

(k2, C̄min(k2))

1

m

E
[
|x1 − x̂1|

2
]
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Outline

Towards the “simplest” unsolved problem

The perspective from control theory
A new bound and an approximately optimal solution

Approximate optimality in the scalar case
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Witsenhausen ’68

Encoder ++ Decoder

The scalar Witsenhausen counterexample

x0 ∼ N (0, σ
2

0
) w ∼ N (0, 1)

u1 x1 x̂1

C = k2u1
2 + (x1 − x̂1)

2
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Mitter and Sahai ’99
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Baglietto, Parisini, Zoppoli ’97

x0

x1 k2
= 0.5, σ2

0 = 25

Also Lee, Lau, Ho ’01
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The connection with DPC

Vector
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The connection with DPC
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The connection with DPC
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The connection with DPC
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Baglietto, Parisini, Zoppoli ’97
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Witsenhausen’s scalar lower bound

C̄scalar
min ≥ 1

σ0

∫ +∞

−∞
φ

(
ξ

σ0

)
Vk(ξ)dξ,

where φ(t) = 1√
2π

exp(− t2
2 ), Vk(ξ) := mina[k2(a− ξ)2 + h(a)], and

h(a) :=
√

2πa2φ(a)
∫ +∞
−∞

φ(y)
cosh(ay)dy.
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Outline

Towards the “simplest” unsolved problem

The perspective from control theory

A new bound and an approximately optimal solution
Approximate optimality in the scalar case

Anant Sahai (UC Berkeley) Witsenhausen Counterxample 02/09/2009 16 / 23



The core tension

Encoder ++ Decoder x̂1

x1u1

x0 ∼ N (0, σ
2

0
I) w ∼ N (0, I)

min
1

m

E
[
‖x1 − x̂1‖

2
]

x1 − x̂1E[C] = k
2
P+

The vector Witsenhausen counterexample

Anant Sahai (UC Berkeley) Witsenhausen Counterxample 02/09/2009 17 / 23



The new bound

Encoder ++ Decoder x̂1

x1u1

x0 ∼ N (0, σ
2

0
I) w ∼ N (0, I)

min
1

m

E
[
‖x1 − x̂1‖

2
]

x1 − x̂1E[C] = k
2
P+

The vector Witsenhausen counterexample

C̄min ≥ inf
P≥0

k2P +
(
(
√

κ(P)−
√

P)+
)2

,

where κ(P) =
σ2

0
σ2

0+2σ0
√

P+P+1
.
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Comparison with old bound
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Achievability
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Achievability
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Constant factor bound
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Constant factor bound
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Outline

Towards the “simplest” unsolved problem

The perspective from control theory

A new bound and an approximately optimal solution

Approximate optimality in the scalar case
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Back to the control setting

Encoder ++ Decoder

The scalar Witsenhausen counterexample

x0 ∼ N (0, σ
2

0
) w ∼ N (0, 1)

u1 x1 x̂1
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Back to the control setting
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Back to the control setting
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Conclusions

The Witsenhausen counterexample is the “simplest” unsolved problem in
information theory.

Standard tools give a constant-factor result in asymptopia

We need non-asymptotic approximation guarantees too
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