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1 Towards the “simplest” unsolved IT problem
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Dirty paper coding

Even in the 70’s, IT and Witsenhausen’s counterex-
ample were considered related. In the 80’s, the new
framework of dirty-paper coding (DPC) [Costa ’83]
emerged as strategically important in IT as a particu-
larly idealized kind of interference. Some recent exten-
sions, state amplification (communicating x0) [Kim,
Sutivong, Cover ’08] and state masking (hiding x0)
[Merhav, Shamai, ’06] have been successful.4450 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 10, OCTOBER 2008

Fig. 1. Asymmetric state-dependent MAC with a common message.

A subclass of GGP channels that will be of special interest
is the following. A memoryless parallel channel with non-
causal asymmetric side information is a GGP channel with

and

(1)

In words, this is a GGP channel with two outputs
and that are both observed by the receiver. If, in
addition, one has

(2)

we shall say that the parallel channel is degenerate.
The common message , and the private message , are

independent random variables uniformly distributed over the
sets and , respectively, where

and . An -code for the GGP
channel consists of two encoders and a decoder :
the first encoder, unaware of the CSI is defined by a mapping

(3)

The second encoder, observes the CSI noncausally, and is de-
fined by a mapping

(4)

The decoder is a mapping

(5)

An -code for the asymmetric causal state-depen-
dent channel is defined similarly to that of the GGP channel,
with the exception that the second encoder is defined by a se-
quence of mappings

(6)
and at time index , the channel input is given by

.
An -code for the GGP channel is a code

having average probability of error not ex-
ceeding , i.e.,

(7)

A rate-pair is said to be achievable if there exists a
sequence of -codes with . The
capacity region of the GGP channel is defined as the closure of

the set of achievable rate-pairs. The definitions of an
-code, an achievable rate-pair, and the capacity re-

gion of the asymmetric causal state-dependent channel are sim-
ilar.

III. CAPACITY REGION: FINITE-INPUT ALPHABET

GGP CHANNEL

The following theorem provides a single-letter expression for
the capacity region of the finite-input alphabet GGP channel,
that is, when the alphabets , , are finite.

Theorem 1: The capacity region of the finite input alphabet
GGP channel is the closure of the union of all rate-pairs

, satisfying

(8)

for some joint measure on
having the form

(9)

where

(10)

Theorem 1 continues to hold if in (9) we replace
by with slightly larger . The proof of Theorem 1,
which appears in Appendix A, is an immediate extension of
Theorem 1 in [26]. In particular, the achievability part analyzes
the error probability of a coding scheme describe below (after
Corollary 2).

It is noted that Theorem 1 remains intact if we allow for feed-
back to the informed encoder, i.e., if, before producing the th
channel input symbol, the informed encoder observes the pre-
vious channel outputs , that is, while the uninformed en-
coder is a mapping of the form (3), the informed encoder is ac-
tually a sequence of mappings with

(11)

It is easily verified that for the case of a channel which does
not depend on the states, i.e., , the
expression for the capacity region reduces to the closure of the
union of rate-pairs satisfying

(12)

for some
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Distributed DPC is more interesting. If the informed
encoder knows all the messages, [Somekh-Baruch,
Shamai, Verdú ’08] solve the problem.2 EURASIP Journal on Wireless Communications and Networking
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Figure 1: State-dependent multiaccess channel with channel state noncausally known to one encoder.

limits of such models in which random parameters capture
fading in a wireless environment, interference from other
users [6], or the host sequence in IE and date hiding
applications [1–4, 7].

The state-dependent models with channel state available
at the encoders can also be used to model communication
systems with cognitive radios. Because of growing demand
for bandwidth in wireless systems, some secondary users
with cognitive capabilities are introduced into an existing pri-
mary communication system to use the frequency spectrum
more efficiently [8]. These cognitive devices are supposed
to be capable of obtaining knowledge about the primary
communication that takes place in the channel and adapt
their coding schemes to remove the effect of interference
caused by the primary communication systems to increase
spectral efficiency. The state in such models can be viewed as
the signal of the primary communication that takes place in
the same channel, and the informed encoders can be viewed
as cognitive users. The model considered in the paper can
be viewed as a secondary multiaccess communication system
with some cognitive and noncognitive users introduced into
the existing primary communication system. The cognitive
users are capable of noncausally obtaining the channel state
or the signal of the primary communication system. In this
paper, we are interested in studying the achievable rates
of the secondary multiaccess communication system with
some cognitive users. Joint design of the primary and the
secondary networks is studied in [9, 10].

1.2. Background

The study of state-dependent models or channels with
random parameters, primarily for single-user channels, is
initiated with Shannon himself. Shannon studies the single-
user discrete memoryless (DM) channels p(y|x, s) with
causal channel state at the encoder [11]. Here, X , Y , and S
are the channel input, output, and state, respectively. Salehi
studies the capacity of these models when different noisy
observations of the channel state are causally known to the
encoder and the decoder [12]. Caire and Shamai extend the
results of [12] to channels with memory [13].

Single-user DM state-dependent channels with memo-
ryless state noncausally known to the encoder are studied in
[14, 15] in the context of computer memories with defects.

Gelfand-Pinsker derive the capacity of these models, which is
given by [16]

C = max
p(u|s),X= f (U ,S)

[
I(U ;Y)− I(U ; S)

]
, (1)

where U is an auxiliary random variable, and X is a
deterministic function of (U , S). Single-user DM channels
with two state components, one component noncausally
known to the encoder and another component known to the
decoder, are studied in [17].

Costa studies the memoryless additive white Gaussian
state-dependent channel of the form Yn = Xn + Sn +
Zn, where Xn is the channel input with power constraint
(1/n)

∑n
i=1X

2
i ≤ P, Sn is the memoryless state vector whose

elements are noncausally known to the encoder and are zero-
mean Gaussian random variables with variance Q, and Zn

is the memoryless additive noise vector whose elements are
zero-mean Gaussian random variables with variance N and
are independent of the channel input and the state. The
capacity of this model is given by [18]

C = 1
2

log
(

1 +
P
N

)
. (2)

In terms of the capacity, the result (2) indicates that
noncausal state at the encoder is equivalent to state at the
decoder or no state in the channel. The so-called dirty paper
coding (DPC) scheme used to achieve capacity (2) suggests
that allocating power for explicit state cancellation is not
optimal, that is, the channel input X is uncorrelated with the
channel state S in the random coding distribution [18].

For state-dependent models with noncausal state at the
encoder, although much is known about the single user case,
the theory is less well developed for multiuser cases. Several
groups of researchers [19, 20] study the memoryless additive
Gaussian state-dependent MAC of the form Yn = Xn

1 + Xn
2 +

Sn+Zn, where Xn
1 and Xn

2 are the channel inputs with average
power constraints (1/n)

∑n
i=1X

2
1,i ≤ P1 and (1/n)

∑n
i=1X

2
2,i ≤

P2, respectively, Sn is the memoryless channel state vector
whose elements are noncausally known at both the encoders
and are zero-mean Gaussian random variables with variance
Q, and Zn is the memoryless additive noise vector whose
elements are zero-mean Gaussian random variables with
variance N and are independent of the channel inputs and

But if the informed encoder does not know the other
message [Kotagiri, Laneman ’08], the problem is
unsolved even if the informed encoder has no message
of its own.
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The vector Witsenhausen counterexample

This suggests the above point-to-point natural simpli-
fication of the problem in which the encoder attempts
to “clean” the “noisy channel” by making the net in-
terference x1 better estimateable. Amazingly, this is
just the Witsenhausen problem.

The left figure is taken from [Ho, Kastner, Wong ’78].
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2 Known results for the original (scalar) counterexample

Encoder ++ Decoder

The scalar Witsenhausen counterexample
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Witsenhausen’s counterexample [Witsenhausen ’68] is
a distributed Linear-Quadratic-Gaussian (LQG) con-
trol problem with total cost C = k2u1

2 + (x1 − x̂1)2.
Contrary to non-distributed LQG systems, the opti-
mal control law for the counterexample is nonlinear,
and is still unknown. Quantization-based signaling
strategies can outperform all linear strategies by an
arbitrarily large factor [Mitter, Sahai 99].

Further, numerical search results in [Baglietto,
Parisini, Zoppoli][Lee, Lau, Ho] suggest that in an
interesting regime of small k and large σ2

0, soft-
quantization based strategies might be optimal. The
strategy can be interpreted as quantizing a scaled
down x0, and adding the resulting input u1. This is
precisely the DPC-technique applied to scalars!
The middle figure is taken from [Baglietto, Parisini,
Zoppoli].
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lower bound

Witsenhausen derived the following lower bound
to the total cost for the scalar problem.

C̄scalar
min ≥ 1

σ0

∫ +∞

−∞
φ

(
ξ

σ0

)
Vk(ξ)dξ,

where φ(t) = 1√
2π

exp(− t2

2 ), Vk(ξ) :=
mina[k2(a − ξ)2 + h(a)], and h(a) :=√

2πa2φ(a)
∫ +∞
−∞

φ(y)
cosh(ay)dy.

However, the derived bound holds only for the
scalar case. Further, the technique is loose, and
the bound is at a substantial gap from the per-
formance of quantization-based strategies.



3 Approximately (within a constant factor) optimal solution
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Witsenhausen's scalar
lower bound

For maximum capacity across the channel, x1 should be
Gaussian and large. For easy reconstruction, x1 should
be non-Gaussian (probably discrete) and small. Our lower
bound ignores this tension but is valid for all vector lengths
m ≥ 1,

C̄min ≥ inf
P≥0

k2P +
(
(
√

κ(P )−
√

P )+
)2

,

where κ(P ) = σ2
0

σ2
0+2σ0

√
P+P+1

.
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A vector quantization based strategy has the encoder
drive the state x0 to the nearest quantization point .
These quantization points have power smaller than
σ2

0. Provided the number of quantization points is suf-
ficiently small, they can be decoded correctly at the
second controller. The asymptotic cost is k2σ2

w and 0
for the first and the second stage respectively.

A DPC-based strategy where the shadow state αx0

is driven to the nearest quantization point is a natu-
ral generalization of strategies in [Baglietto et al][Lee,
Lau, Ho]. The first stage cost can be lowered at the
expense of nonzero second stage costs.
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A combination strategy can divide its power be-
tween a linear strategy and the DPC strategy .
It performs at least as well, and in some cases
strictly better than the DPC strategy alone.

The figure shows the ratio of the asymptotic cost
attained by the combination strategy and our
lower bound. This ratio is uniformly bounded
by 2 for all values of k and σ2

0.

4 Summary

This talk intends to bring out the following ideas:

• Witsenhausen’s counterexample can be viewed as an oversimplification that might contain the essence of why
distributed DPC is hard. It focuses on the problem of channel cleaning or active interference suppression.

• Standard information-theoretic tools are able to provide an approximately optimal solution (within a factor
of two in cost) to the problem in the asymptotic limit of long block lengths, but the problem remains open
and is arguably the simplest open problem since it is just point-to-point.

• Returning to the control problem, more involved arguments tell us that a similar constant-factor result is
true even for the scalar problem.
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