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Abstract— Cognitive Radios have been advanced as a tech-
nology for the opportunistic use of under-utilized spectrum since
they are able to sense the spectrum and use frequency bands if no
Primary user is detected. However, the required sensitivity is very
demanding since any individual Radio might face a deep fade.
We propose light-weight cooperation in sensing based on hard
decisions to mitigate the sensitivity requirements on individual
radios.

We show that the “link budget” that system designers have
to reserve for fading is a significant function of the required
probability of detection. Even a few cooperating users (∼10-
20) facing independent fades are enough to achieve practical
threshold levels by drastically reducing the individual detection
requirements. Hard decisions perform almost as well as soft
decisions in achieving these gains. Shadowing correlation limits
these gains and hence a few independent users perform better
than many correlated users.

Unfortunately, cooperative gain is very sensitive to adversar-
ial/failing Cognitive Radios. Radios that fail in a known way
(always report the presence/absence of a Primary user) can be
compensated for by censoring them. On the other hand, radios
that fail in unknown ways or may be malicious, introduce a
bound on achievable sensitivity reductions. As a rule of thumb,
if we believe that 1

N
users can fail in an unknown way, then the

cooperation gains are limited to what is possible withN trusted
users.

I. I NTRODUCTION

Over the past years, traditional approaches to spectrum
management have been challenged by new insights into the
actual use of spectrum. In most countries, all frequencies
have been completely allocated to specific uses. For example,
the Federal Communication Commission’s (FCC) frequency
allocation chart (see Figure1) indicates multiple allocations
over essentially all of the frequency bands. Thus, within the
current regulatory framework, spectrum appears to be a scarce
resource. On the other hand, actual measurements indicate
low utilization, (see spectrogram in Figure1) especially in
the 3-6GHz bands [1]. This view is also supported by studies
conducted by the FCC’s Spectrum Policy Task Force which
have reported vast temporal and geographic variations in the
usage of allocated spectrum [2] [3]. These measurements
seriously question the efficiency of the current regulatory
regime.

As the measurements clearly show, many who have been
allocated frequency bands by the regulatory agency (Primary
users) are not using them all of the time, at all places. At the
same time, others may like to use spectrum locally, but do not
have a right to use the corresponding frequencies. Therefore,

Fig. 1. FCC spectrum allocation and the measured usage at the Berkeley
Wireless Research Center. The measurements were performed at 0-2GHz
frequencies over a period of 10mins.

one way of increasing spectrum efficiency is to enable these
other secondary users to get access to frequency bands already
allocated to Primary users while these are not using it. One
of the ways of achieving this sharing1. is called Opportunistic
Spectrum Sharing. Under such a regime, secondary users are
allowed to operate in frequency bands without the consent
of the Primary users of these bands, as long as they do not
interfere with the Primary user. The FCC has already legalized
this type of sharing in the 5GHz band and is considering
whether to allow it in the TV broadcast bands [4].

A. Cognitive Radios

Cognitive Radios have been proposed as a technology to
implement Opportunistic sharing since they are able to sense
the spectrum and adapt their usage accordingly. Cognitive
Radios must be able to demonstrate usage with no or minimal
interference to the Primary user. This task is rendered difficult
due to challenges in sensing the spectrum in a reliable manner.
If a Cognitive Radio does not see energy in a particular band
can it assume that the Primary user is not present? The answer
depends on what level of energy it can reliably “see.”

After all, a secondary user may suffer unlucky multipath
and/or severe shadowing with respect to the primary transmit-
ter. At the same time, it’s own transmissions may interfere with
a primary receiver should it decide to transmit.2 To account
for possible losses from multipath, shadowing and building

1The primary other paradigm for spectrum sharing involves negotiated
sublicensing of bands from primary users through either long term contracts,
or the use of secondary “spot markets” in spectrum. We do not discuss that
approach here

2This is related to the well known “hidden terminal problem” in wireless
networking.



penetration, the secondary user must be significantly more
sensitive in detecting than the Primary receiver [5]. To get
a better understanding of the problem, consider this: a typical
Digital TV receiver operating in a 6MHz band must be able
to decode a signal level of at least -83dBm without significant
errors [6]. The typical thermal noise in such bands is -106dBm.
Hence a Cognitive Radio which is 30dB better has to detect
a signal level of -113dBm, which is below the noise floor.3

B. The Motivation for Cooperative Sensing

The two major sources of degraded signals are multipath
and shadowing. For a given frequency, multipath varies sig-
nificantly with a displacement ofλ4 as discussed in [7] (where
λ is the wavelength). Thus at 800MHz, severe multipath can
be avoided by displacing the antenna by 10cm in a particular
direction. In the absence of multiple antennas, multiple radios
can act as a proxy for displacement or movement. The
presence of multiple radios helps to reduce the effects of
severe multipath at a single radio since they provide multiple
independent realizations of related random variables. With
multiple realizations, the probability that all users see deep
fades is extremely low. In essence we wish to make Cognitive
Radios’ spectrum sensing robust to severe or poorly modelled
fading environments. Cooperation allows us to achieve this
robustness without drastic requirements on individual radios.

C. Objectives and key insights

Use of cooperation in wireless has been studied extensively
especially in respect to achieving diversity gains and lowering
outage probabilities via cooperation of mobile users [8]. In
the Cognitive Radio context, we would like to exploit this
cooperative effect in a different way. Rather than improving
confidence by increasing cooperation, we want to maintain
confidence while reducing competence! Hence our chosen
metric is the reduction in sensitivity requirements once co-
operation is employed (See Figure 2). Sensitivity of a radio
is inherently limited by cost and delay requirements. Thus the
device designer can figure out the implications of cooperation
on the device specification through the well understood met-
ric of detection sensitivity, thereby isolating the issue from
unrelated concerns like the access regime, etc.
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Fig. 2. Cooperation allows us to mitigate the effects of multipath and
shadowing and hence the detection threshold can be set closer to the value of
nominal path loss.

3Of course, being below the noise floor does not automatically make
the detection problem impossible. The correlation structure of the primary
transmissions, in particular the presence of known pilot tones, can make it
possible to detect. However, it is always harder to detect weaker signals as
compared to stronger ones.

In this paper, we show the following results:
• Cooperation allows independently faded radios to collec-

tively achieve robustness to severe fades while keeping
individual sensitivity levels close to the nominal path
loss. Furthermore, a small number of radios (∼10-20)
are enough to achieve practical sensitivity levels.

• Practical “link budgets” for dealing with fading depend
strongly on the target probability of detection which in
turn depends on the tolerable probability for harmful
interference at the Primary receiver and the number of
non-cooperating Cognitive networks.

• Communicating tentative hard decisions can achieve co-
operative gains nearly identical to sharing soft decisions.

• In a correlated fading environment, we cannot necessarily
operate robustly with the sensitivity levels predicted by
the analysis of independent users. In this case, polling
a few independent users is better than polling many
correlated users.

• Radios that fail in unknown ways or may be malicious,
introduce a bound on achievable sensitivity reductions.
As a rule of thumb, if we believe that a fraction1N of
users can fail in an unknown way, then the cooperation
gains are limited to what is possible withN trusted users.

II. PRELIMINARIES

A. Cooperative Regimes

The level of cooperation is determined by the bandwidth
of the control channel and the quality of the detector. Using
these two metrics we can define three regimes of interest:

1) Low bandwidth control channel, Energy detector radios:
In this regime, we expect a low bandwidth control
channel which is especially true of initial setup stages.
Under such a scenario, it is realistic to assume that
the radios exchange decisions or summary statistics
rather than long vectors of raw data. Furthermore, we
assume radios that have noa priori information about
the the correlation structure of the signal and hence must
integrate the received energy. In [9], it has been shown
that with noise uncertainty, energy detectors suffer from
a lower bound on the SNR (calledSNRwall) below
which detection is not reliable.

2) Low bandwidth control channel, Detectors utilizing
signal statistics: An example of such detectors are
cyclo-stationary detectors which utilize the correlation
in the signal and hence perform better than energy
detectors [10]. However, given the presence of a low
bandwidth control channel, only summary statistics can
be exchanged.

3) High Bandwidth Control channel, All possible detectors:
In this regime, Cognitive Radios can exchange entire
raw data and hence sophisticated detection can be per-
formed. In this scenario, we can show that cooperation
can enable tightly synchronized radios to collectively
overcome theSNRwall.

In this paper we are interested in the first regime since it
gives us the lower bound on cooperative performance.



B. Radio Sensitivity as a metric for Cooperative Gain

Cognitive Radios must be constrained not to exceed the tar-
get probability of harmful interference at the Primary receiver
(PHI ). If there areK non-cooperating systems potentially
contributing to the interference, then each individual system
or network must ensure that its probability of detection is at
leastPD,system ≈ 1−PHI

K (this can be derived by applying the
union bound to the event that any system interferes with the
Primary receiver). As the number of cooperating radios (N ) in
a given Cognitive network is increased, the required probabil-
ity of detection of an individual radioPD,radio is reduced as
(assuming independent observations at each radio) [11], [12]:

PD,radio = 1− N
√

1− PD,system

= 1− N

√
PHI

K

Viewing this equation on the log scale reveals thatN scales
as the logarithm ofK which implies that an order of magni-
tude increase in the deployment of non-cooperating systems
can be compensated by a linear increase in the number of
cooperating users within each system. AsN increases beyond
log K − log PHI , the requiredPD,radio rapidly approaches0.

The reliability of an energy detector depends on the re-
ceiver’s noise characteristics, the received signal strength, and
the length of time that is used for integration. The received
signal strength is our focus for two reasons:
• In the presence of noise uncertainty, users below the

SNRwall cannot improve their performance even with
infinite integration times.

• Limits on the number of samples available may be
imposed by the dwell times of the Primary Users.

Based on this discussion, our model of the radio is simple:
given a threshold for the received signal strengtht, the radio
declares that the Primary user is present if and only if the
received signal strength is greater thant. To meet the target
PD,radio, it is necessary that the received signal strength
exceedt even in the worstPD,radio fraction of the fades. Since
cooperation makesPD,radio close to zero, the system as a
whole becomes robust to the details of the fading environment.

C. The Radio Channel

The Radio channel has three different elements which are
important for our analysis:

Distance dependent Path Loss:Path loss forms the most
significant portion of the energy loss. A realistic model of
cooperative Cognitive usage is a group of users localized in a
small area (∼ 1km2). In such a situation, differences due to
path loss are negligible (.1-.5dB)4. In this paper, we consider a
group of Cognitive Radios situated at a distance of 60km from
a TV transmitter of 100kW power. The distance of 60km is
well beyond the grade B service contour of TV reception [6].

4Geographically dispersed users would further aid cooperation since some
users might be significantly closer to the primary transmitter.

Multipath We assume that small scale fading is flat and
exhibits a Rayleigh distribution. For Primary user detection,
flat fading yields the worst case performance since frequency
selectivity provides multiple ‘looks’ at the same signal. Simi-
larly, Rayleigh fading is considered, since the case of interest
is when we cannot count on line of sight between the Cognitive
Radio and the Primary transmitter. It is important to note that
multipath cannot be relied upon to yield gains (our aim is only
to avoid severe multipath losses) since we could easily end up
in a deployed scenario where there is Ricean fading.

ShadowingShadowing on the log scale has been assumed
to be normally distributed [13] based on the application of
Central Limit Theorem to a large number of small absorptive
losses. The standard mechanism to derive the shadowing
environment is to take measurements at various locations for a
fixed transmitter-receiver separation and attribute the variance
in the measurements to shadowing. A naive interpretation
would indicate that shadowing can lead to a gain - however
it must be realized that the mean received power level in this
case has no physical significance. To relate the shadowing to
the distance dependent path loss, we used a different model of
shadowing where shadowing is viewed as losses via a series of
obstacles. For each obstacle, there is a small probability that
the obstacle will be missed. Using this model, shadowing is
viewed asextra loss beyond the distance dependent path loss.
Hence,

Yi =
{

0 w.p. 0.2
x dB w.p. 0.8

and the net shadowing is expressed as:

S =
1√
M

M∑

i=1

Yi (1)

The loss per obstacle was adjusted to fit the variance of the
measured log-normal standard variable of around 3.5dB [14].
The resulting value ofM (number of obstacles encountered)
was 15 whilex was 10.25dB. The Complementary Cumulative
Distribution Function (CCDF) of the resulting shadowing
random variable is shown in Figure 3 along with the CCDF
of multipath.
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Fig. 3. Complementary CDF of Loss (in dB) due to different physical effects.

It is also important to keep in mind that shadowing is
notoriously hard to model accurately and its statistics can vary
widely with deployment environment.



III. G AINS FROM COOPERATION

A. Impact of number of users

Using the loss model discussed in the previous section, we
simulated the allowed reduction in sensitivity of individual
radios as the number of users is increased. This simulation as-
sumes path loss predictions by the NTIA model at a confidence
level of 15% as the nominal distance dependent path loss [15].
This model accounts for losses due to frequency, distance,
antenna heights, polarization, surface refractivity, electrical
ground constants and climate and hence yields realistic loss
levels. Figure 4 shows the change in threshold with increasing
number of users under three different effects: multipath only,
shadowing only and multipath together with shadowing. We
consider gains beyond the nominal path loss as artificial
and these should be ignored. When multipath is considered
together with shadowing, the threshold asymptotically ap-
proaches the nominal path loss. With shadowing alone, the
approach is slower due the absence of multipath gains. Half
the gain is achieved by using∼10-20 users, beyond which the
gains exhibit a ‘law of diminishing returns’ as the number of
users is increased.

It is important to realize that a single user acting alone
must be robust to extremely rare events. These events are
not well modelled by the Central Limit theorem, and may
in fact not be properly modelled by any single statistical
model given the uncertainty that surrounds actual deployment
scenarios. At these levels, sensitivity predictions are no better
than pure guesswork in the single user context. One of the
major advantages of cooperative sensing is that it allows us
to have collective robustness to fading while not requiring us
to have great faith in the fading model for even moderately
uncommon fades. SincePD,radio is small, only the common
fades need to be modelled accurately to get solid quantitative
results.
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Fig. 4. Sensitivity variation with number of users (Frequency = 800MHz,
Distance=60km, TV transmitter height=200m, CR height=3m). With multi-
path only, results show an unbounded improvement in threshold as the number
of users is increased. Multipath together with shadowing causes the threshold
to asymptotically approach the nominal path loss. Shadowing alone gets there
slower.

B. Soft versus Hard cooperation

It has been argued that soft decision combining of sensing
results yields gains that are much better than hard deci-
sion combining [16]. This is true when radios are tightly
synchronized in which case they can collectively overcome
the SNRwall. From [9] we know that the physical noise
uncertainty gives a lower bound on signal strength that a user
can reliably detect. This lower bound is increased further to
keep the probability of false alarm tolerable. To understand this
better, consider the problem of detecting a signal in additive
white Gaussian noise (AWGN) with an noise uncertaintyα [9].
For useri, our goal is to distinguish between the hypotheses:

H0 : Yi[n] = αWi[n] n = 1, . . . , M

Hs : Yi[n] = X[n] + αWi[n] n = 1, . . . , M

Given that we are using a simple energy detector, the test
statistics available underH0 is [17]:

T (Yi) =
1
M

M∑

j=1

Wi[n]2 (2)

Its can be shown that:

MT (Yi)
α2σ2

w

∼ χ2
M (3)

For largeM , this behaves asN (M, 2M). Hence we can
approximateT (Yi) asN (α2σ2

w,
α4σ4

w

M ).
If we wish to have a net probability of false alarm (PFA) to

be around0.14 percent, the threshold should be set3 standard
deviations away from the mean. This places the threshold5 at:

α2
maxσ2

w(1 +
√

2(9+ln N)√
M

). The factorα2
maxσ2

w is the worst
case noise power.

For soft decoding, we can bound performance by assuming
that all the samples are provided to the user with the best
channel. In that case the probability of false alarm threshold
can be set at:α2

maxσ
2
w(1+ 3

√
2√

MN
), whereN is the number of

users.
To observe the differences between soft and hard decoding

we simulated a group of user at a distance of 60km from the
TV transmitter. The number of users in this group was varied
and the effect on radio sensitivity for a 95% probability of
detection was observed. The results of this simulation can be
seen in Figure 5. The small difference between hard and soft
decision arises from the larger number of samples available in
the soft case, but is less than a fraction of a dB.

IV. SHADOWING CORRELATION

In [11] the received signal is treated as a complex Gaussian
process and the effect of correlation is identified. The optimal
detector is derived assuming that a single entity has access
to all the data and performs optimal detection. These results

5We need to introduce the tiny
√

log N correction term to translate system-
level false alarm probabilities to radio-level false alarm probabilities.
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Fig. 5. Radio sensitivity for soft versus hard decoding. The difference
between soft and hard decoding is due to the effect of finite number of
samples.

show that higher correlation yields a higher probability of false
alarm for the same probability of detection. To get a better
handle on the correlation problem we make the following
observations:

• Multipath at different radios is essentially uncorrelated.
Multipath exhibits correlation (both positive and negative)
on the scale ofλ2 . Radio placements on this scale can be
safely assumed to be uniformly distributed and indepen-
dent of each other. Hence the net multipath at each radio
is uncorrelated.

• Shadowing can display high correlation if two radios are
blocked by the same obstacle.

• Constant shadowing correlation is unrealistic. Shadow-
ing correlation displays distance dependence (generally
exponentially decreasing with distance) which has been
studied extensively [18]. In fact, in certain scenarios,
shadowing can be negatively correlated once the distance
between radios is increased beyond a certain value [18].

To study the effect of shadowing correlation, we simulated a
group of Cognitive users in a line at a distance of 60km from a
TV transmitter as shown in Figure 6. The polling entity which
is located at the center of this group examines the detection
results of users.6 The effect of increasing cooperation on the
sensitivity threshold of an individual radio can be seen in
Figure 7. As a comparison, we also plotted results for constant
correlation. It must be noted that we ignore multipath effects
in this simulation to prevent favorable multipath gains from
swamping the shadowing effects.

All forms of correlation (constant or distance dependent)
only serve to increase the number of users required to achieve
a given sensitivity reduction. It must be noted that increasing
cooperation to compensate for correlated shadowing has limits
and cooperative gains in a correlated fading environment are
asymptotically lower than in an independent environment.
Increased correlation decreases our chances of getting a user
with a very good channel and hence more users need to be
polled for independent looks at the same random variable. For
distance dependent correlation, this translates into a desire to

6We choose a linear increase model since the shadowing correlation model
as proposed in [18] only predicts one dimensional correlation. Furthermore,
we have used the conservative suburban model fit from [18] where the
correlation is always positive.

poll users which are further away. This effect can be seen
in Figure 8. Here, we are interested in studying the sensitivity
gains as the number of users and their distance spread is varied.
Each set of points represents increased user density. Increasing
the number of users for a given distance spread asymptotically
reaches a limit which is dependent on the distance spread. A
similar effect can be seen in [16] where the probability of
missed opportunity does not go to zero in a spatially bounded
correlated fading environment.
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Fig. 6. Simulation setup for distance dependent shadowing correlation.
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V. I MPACT OF UNTRUSTED USERS

The results presented so far have established that collec-
tively sensing spectrum availability can deliver tremendous
gains even with a small to moderate number of perfectly
trusted users, as long as these are far enough apart from each
other. These gains are significant enough to justify revisiting
the current per-device model of licensing that is used globally.
The results so far strongly suggest that devices should be



regulated on the basis of their provable collective behavior.
At this point, a key question emerges — what is the impact of
a few malfunctioning devices on the collective? Alternatively,
the designer needs to be able to balance the potential gains
from admitting another user into the decision-making network
against the costs of having an untrusted colleague.

For cooperative sensing, trust issues arise naturally given
the usage model:
• Sensing a frequency band, consumes energy and time

which may alternatively be diverted to data transmissions.
Hence users have a incentive to either not sense at all or
to sense for a shorter duration then stipulated.

• For an individual user, there may be a valid reason to
report detection results in a certain way. They can either
always assert the presence of a Primary user, in which
case they deny others the opportunity to take advantage
of the available bandwidth, or always deny the presence
of Primary users (when users want to use the channel at
any cost). We term the two classes of users asalways Yes
andalways Nousers. These classes of users behave in a
predetermined fashion (ie. they fail in predictable ways).

• Radios may fail in unpredictable ways or be simply
malicious. For such users, we need to budget for worse
case performance.

A. Impact ofAlways No and Always YesAdversaries

Dealing with Always Noliars does not require knowledge
of the number of liars in the system.Always Nousers always
report the absence of a Primary user and hence they effectively
reduce the number of actual users in the system. This effect
is captured in Figure 9. Twice as many users are needed to
achieve the same threshold with 50%Always Noliars than
with a fully trusted system.
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Fig. 9. Sensitivity Variation withAlways Noadversaries. Twice as many
users are needed to achieve the same threshold with 50%Always Noliars
than with a correctly operating system.

Similarly, if we know that there are exactlyy Always Yes
users, then we can signal presence of a Primary user only
wheny+1 users detect a Primary. Once again, it is like having
fewer users. However, the situation changes drastically when
we only have a bound on the proportion ofAlways Yesusers
as the next section will show.

B. Dealing with malicious Adversaries

Malicious adversaries are impossible to predict reliably. For
such adversaries we need to budget for worst case perfor-

mance. Assume that we haveN users of which a fraction
(α ∈ [0, 1]) may beAlways Yesliars. To deal with these liars,
we can set the detection threshold atβN whereβ > α ie. we
declare that a Primary user is present ifβN Cognitive Radios
see the Primary user.

The problem arises when theseAlways Yesliars actually
behaving asAlways No liars in a system configured to be
robust toAlways Yesliars. Not only do they effectively reduce
the number of real users in the system toN(1− α), but they
also now require a fraction β

1−α of the trustworthy users to
detect the signal.

Explicitly, the resulting probability of detection for a given
thresholdt is given by:

Pd,t = 1−
βN−1∑

i=0

(
N(1− α)

i

)
F (t)i(1− F (t))N(1−α)−i (4)

whereF (t) is the CDF of the received signal strength.

For a 95% overall detection probability, the corresponding
threshold values can be seen in Figure 10. The individual
sensitivity threshold tolerable for a group with a fraction of1

N
liars is the same as that achievable by a trusted system with
N users. This threshold forms an upper bound even when
the actual number of users is increased beyondN . Hence
for 1% liars, the final achievable threshold is -76dBm which
is the threshold for a trusted system with 100 users. The
mathematical intuition for this result can be obtained by seeing
that even when the number of users is large, for a fractionβ

1−α
of them to detect the primary requires that the threshold be
such thatF (t) ≤ 1 − β

1−α and so the thresholdt must be
small enough and can not be made any larger than that. When
the proportion of malicious users is high, it does require a
moderately large number of users to reach these asymptotic
limits.
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VI. CONCLUSIONS

In this paper, we have suggested light-weight cooperation as
a means to reduce the sensitivity requirements on an individual



Cognitive Radio. Exploiting cooperation among multiple users
may be the only mechanism to achieve a target system-level
probability of detection in the case when each Cognitive
radio faces anSNRwall below which it is unable to reliably
detect a Primary. With enough trusted cooperation, we only
need to be sensitive enough to deal with the nominal path
loss. However, this requires cooperation among users facing
more or lessindependentfading. Shadowing is likely to be
correlated across space. This correlation can be dealt with by
increasing the number of users up to certain sensitivity levels.
When correlation is distance-dependent, cooperation is desired
among more distant users. Increasing the number of users in a
distance-dependent correlated setting is asymptotically limited
by the distance spread. Furthermore, a hard decision scheme
performs as well as a soft decision, with small differences
arising from finite number of samples.

Even so, trust is critical for such a cooperative systems to
operate reliably. Users that fail in a known fashion (assert/deny
the presence of a Primary user), can be compensated for,
by increasing the number of users polled. Unfortunately,
malicious users or users that fail in unknown ways impose
an upper bound on achievable sensitivity reductions. As a rule
of thumb, if one out of everyN users is untrustworthy, then
the sensitivity of an individual receiver may not be reduced
below what is possible withN trusted users.
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