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Abstract— We consider the problem of robustly detecting the
presence/absence of signals in low signal to noise ratio (SNR)
environments. Our previous results have shown the existence
of thresholds called SNR walls, below which robust detection
becomes impossible due to uncertainties in the environment.
These thresholds were shown to exist for many signals used
in practice. In this paper we introduce the idea of macroscale
features and show that they can be used to construct signals that
evade SNR walls. In particular, we examine a Gaussian mixture
example and a noise-calibration based detection algorithm to
show that this signal can be robustly detected in the presence of
arbitrarily varying noise and arbitrarily varying finite-tap fading
processes. Finally, we argue that there is tension between the
primary user’s capacity and the sensing delay experienced by
the secondary users. We call this the capacity-delay tradeoff. We
derive the capacity-delay tradeoff for the Gaussian example.

I. INTRODUCTION

Detection theory is a means to quantify the ability to
distinguish signals from noise. It is well established and has
applications in many fields like statistics, communications,
and controls. Several signal detection algorithms have been
proposed and are used widely in practice [1], [2], [3], [4].
Robustness to modeling uncertainties is a necessary attribute
for any practical detection algorithm. That is, the performance
of any detector must not deviate significantly from the ide-
alized (with no uncertainties) performance in the presence of
uncertainties. Robustness to uncertainties is easier to achieve at
high signal to noise ratios (SNRs) as compared to low SNRs.
The reason for this is that at high SNRs the distributions under
both the hypotheses are sufficiently separated. So, even though
the uncertainties in the environment perturb the individual
distributions, they cannot completely mix the distributions.
Hence, robustness is not very hard to achieve.

In this paper we consider the problem of robustly detecting
the presence/absence of signals in low SNR environments.
The need to detect very weak signals arises in the context
of cognitive radios trying to opportunistically reuse primary
spectrum [5], [6], [7], [8]. The fundamental requirement of
cognitive radios is not to cause harmful interference to the
primary users of the spectrum. Sensing for primary users
before using the band is one possible approach to meet the
non-interference constraint [9]. In order to provide a safety
margin for the primary users against deep fades, the cognitive
radios must sense the primary users’ signals at very low
SNRs [10]. Low SNR signal detection problems arise in
other contexts too. For instance, indoor GPS receivers need to
operate well below the noise floor [11]. Also, researchers in
the Search for Extra Terrestrial Intelligence (SETI) community

are interested in the problem of detecting signals transmitted
by space aliens extremely far away [12].

Fishman [13] showed that the radiometer is non-robust
to uncertainties in the noise power below a certain SNR.
This is true because the radiometer uses the average power
as a test-statistic to perform detection and it ignores any
structure associated with the signal. It was later shown that for
signals without any structure all possible detection algorithms
have SNR thresholds (called SNR walls), below which they
fail to be robust to modeling uncertainties [14]. Structured
signals like signals with pilot tones or cyclostationary signals
contain features that can be exploited to distinguish them from
noise [15], [16]. These robustness gains lower the SNR wall,
but cannot completely eliminate it. Uncertainty in the fading
process combined with the uncertainty in the noise is the main
reason for the non-robustness of signals with such features. At
low SNRs the fading process blurs these sort of signal features,
making them indistinguishable from noise.

In this paper, we construct signals with macroscale features,
and show that these features can be robustly detected even in
the presence of arbitrarily varying noise and fading processes
with bounded delay spreads. The key idea is that if the scale of
the feature is larger than the delay spread of the channel, then
any fading process cannot completely blur the signal feature.
So, with sufficient averaging the signal feature can be distin-
guished from noise. The main steps in the construction of these
signals are as follows: we first divide time into blocks such
that the length of each block is larger than the maximum delay
spread of the channel. Then, we partition these blocks into
two groups. Finally, two signals with different distributions are
chosen and transmitted in each group respectively. An example
of such a construction is a block-interleaved white Gaussian
processes with distinct power levels.

The secondary users can partition the received samples into
two groups corresponding to the two signal features. If the
received signal is just noise, these two partitions look identical;
otherwise these partitions will look distinct by construction.
The idea is that the fading process cannot mix the signals
within the two groups to an extent that they look identical.
Therefore, we can robustly distinguish the noisy signal from
noise alone.

Our previous results on SNR walls suggested a tradeoff
between the data rate achievable for the primary users and the
robustness of secondary detection. We called this the capacity-
robustness tradeoff [14]. The results in this paper show that it
is possible to construct signals with infinite robustness (no
SNR wall) to the secondary user, while the primary user



is still operating arbitrarily close to its capacity. This makes
the capacity-robustness tradeoff uninteresting. In this paper
we show that there seems instead to be a tradeoff between
the primary data rate and the delay (sensing time) for the
secondary user. We call this the capacity-delay tradeoff.

The idea of macroscale features has been applied in other
scenarios [17]. Here a primary user wants to robustly identify
potential secondary users interfering with its transmissions. In
this case each secondary user is given an unique macroscale
code sequence that can be robustly detected by the primary
user.

The rest of the paper is organized as follows. We formulate
the detection problem as a robust hypothesis test and review
our previous SNR wall results in Section II. We describe the
idea of macroscale features by giving examples of signals with
macroscale features in Section III. An explicit construction of
a Gaussian mixture signal, a common-randomness based algo-
rithm to robustly detect this signal in noise and its robustness
analysis is given in Section III. The capacity-delay tradeoff for
the Gaussian example is derived in Section IV. Finally, we end
the paper by giving some concluding remarks in Section V.

II. PROBLEM FORMULATION AND BACKGROUND REVIEW

For mathematical convenience we work in discrete time.
The problem of detecting the presence/absence of signals in
noise can be modeled as a binary hypothesis test between the
following hypotheses:

H0 : Y [n] = W [n]
H1 : Y [n] = H(X)[n] +W [n], (1)

for n = 1, 2, · · · , N , where N is the number of samples
collected for detection. Here, Y [n], X[n], W [n] and H(·)
denote the received signal, the transmitted signal, noise at time
n, and the linear time-varying fading operator respectively. We
are interested in designing detection algorithms that perform
well in the presence of modeling uncertainties in the noise and
fading processes. The results in this paper show the existence
of signals that can be robustly detected in the presence of
modeling uncertainties. Since we are aiming to prove positive
robustness results, we make minimal structural assumptions
about the uncertainty models. This is opposite to the approach
in our previous papers [14], [18], in which we assumed
structured uncertainty models. The approach in our previous
papers is justified because we showed that robustness for most
signals is impossible even under structured uncertainty models,
and the robustness performance would be even worse under
unstructured ones.

In this paper we model the noise as an arbitrarily vary-
ing sequence having an empirical second moment. That is,
1
N

∑N
n=1 |W [n]|2 =: σ2, for some unknown σ > 0. Further,

we assume that there exist known constants N0 > 0, and
C1 > 0, such that

1
N

N∑
n=1

|W [n]|4 < C1, ∀N > N0. (2)

For notational convenience, denote the set of all noise vectors
satisfying these conditions by W.

We model the fading process as a finite-tap linear time-
varying filter, i.e., H(X)[n] =

∑L−1
l=0 hl[n]X[n− l], for some

finite constant L > 0. Further, assume that the sequences
{hl[n]}∞n=1, l = 0, 1, · · · , L − 1 are arbitrarily varying but
satisfy 1

N

∑N
n=1

∑L−1
l=0 |hl[n]|2 = 1. This assumption is made

for mathematical convenience. Typically, fading leads to low
SNRs, but in this paper we assume that the signal power is
low and the fading process is normalized to have unit power
on average. We also assume that there exist known constants
N1 > 0 and C2 > 0 such that

1
N

N∑
n=1

L−1∑
l=0

|hl[n]|4 ≤ C2, ∀N > N1. (3)

Denote the set of fading operators satisfying these constraints
by H. Any detection algorithm can be viewed as a function
F : RN → {0, 1} that maps the N -dimensional received signal
vector Y := (Y [1], Y [2], · · · , Y [N ]) onto the set {0, 1}. Here
‘0’ (‘1’) stands for the detectors decision that the signal is
absent (present). For a fixed noise vector W ∈W, and fading
operator H(·) ∈ H, the error probabilities are defined as

PFA(W) = E
[
1{F=1}|H0

]
PMD(W, H) = E

[
1{F=0}|H1

]
,

where the expectation is taken over the randomness in the
transmitted signal X.

Definition 1: A decision strategy robustly achieves a given
target probability of false alarm, PFA, and probability of
missed detection, PMD if the algorithm satisfies

sup
W∈W

PFA(W) ≤ PFA

sup
W∈W,H∈H

PMD(W, H) ≤ PMD.

The aim of this paper is to construct signals, {X[n]}Nn=1,
for which there exist detection algorithms that can robustly
achieve any pair of error probabilities (PFA, PMD) (0 <
PFA ≤ 1, and 0 < PMD ≤ 1) as long as the sensing time N
is sufficiently large.

We now review some of our previous results on robust
detection of low SNR signals. The reader is encouraged to
read [14], [18], [19] for complete details. The main result
of these papers was that in the presence of modeling uncer-
tainties, most commonly occurring signals cannot be robustly
distinguished from noise below certain SNR thresholds. We
called these thresholds the “SNR walls” for the detectors.
We showed that if the SNR is below the SNR wall for the
detector then any pair of error probabilities 0 < PFA < 0.5,
0 < PMD < 0.5 cannot be robustly achieved, no matter how
long we sense for the signal.

The key reason for the SNR-wall phenomenon is that the
set of distributions under both hypotheses completely overlap
at low SNRs. This is pictorially shown in Figure 1(a) for the
case of signals without any features. The shaded regions in the
figure show the set of cumulative distribution functions (CDFs)



under both hypotheses. The picture on the left in Figure 1(a)
corresponds to the case when the operating SNR is higher than
the SNR wall. In this case, there is no overlap between the set
of CDFs under both hypotheses. So, we can use any quantile
detector1 to differentiate between the two hypotheses. Now,
if we lower the SNR below the SNR wall, there is complete
overlap between the two sets of CDFs (see the picture on the
right in Figure 1(a)). Hence robust detection is impossible,
irrespective of the number of samples collected.

For signals with features like sinusoidal pilot tones, and
cyclostationary features2 robust detection is relatively easier.
However, even for these signals robust detection becomes im-
possible below a certain SNR (See Figure 1(b)). We consider
a simple example to illustrate the key reason behind the non-
robustness of such signals. Define,

X1[n] =
{
±
√

2P w.p. 1
2 if n is odd,

0 if n is even.
, (4)

X1[n] has zeros in all the even time samples and iid Bernoulli
±
√

2P random variables in the odd time samples. This is an
example of a cyclostationary signal. Detectors for cyclosta-
tionary signals were first proposed by William Gardner [20],
[21]. It was shown in [18] that such feature detectors are non-
robust to uncertainties in noise and fading processes and they
have an SNR wall below which robust detection is impossible.
The signal X1[n] in (4) was used as an example to propose
a general signal processing technique called run-time noise
calibration [19]. This technique improves detector robustness
by lowering the SNR wall. However, it does not eliminate
the SNR wall completely.

The reason for the non-robustness of detecting X1[n] is that
simple two-tap fading filters are sufficient to destroy the signal
feature. For instance, even a pure delay block-fading process
introduces an SNR wall [19]. Furthermore, if we allow for
arbitrarily varying L ≥ 2 tap fading processes, it is clear that
the 2-tap filter h0[n] = 1

2 , h1[n] = 1
2 largely destroys the

feature in the signal X1[n].

III. SIGNALS WITH MACROSCALE FEATURES

The cyclostationary signal example in the previous section
suffered from SNR wall limitations because the scale of the
signal feature was comparable to the scale of the fading
process. Our goal in this section is to construct classes of
signals that can be robustly detected in presence of uncertain
noise and fading processes. The key idea is to introduce
macroscale features in signals, which in turn enable robust
detection even in the presence of uncertainties.

Let X2[n] be a discrete time signal given by

X2[n] =
{
±
√

2P w.p. 1
2 if d nK e is odd,

0 if d nK e is even.
, (5)

1This detector computes the empirical estimate of a given quantile and
compares it to a threshold.

2Cyclostationary signals are random processes with periodic second-order
statistics, i.e., the mean and autocorrelation functions are periodic in time.

(a)

(b)

Fig. 1. The set of CDFs under both hypotheses are plotted for two example
signals. In (a), the primary signal is chosen to be a zero-mean Gaussian. The
picture on the left in (a) corresponds to a case where the operating SNR is
larger than the SNR wall and hence the set of CDFs do not overlap. The picture
on the right in (a) corresponds the case when the operating SNR is lower than
the SNR wall. In this case the set of CDFs completely overlap. In (b), the
primary signal is a known constant (sinusoidal pilot tone at zero frequency).
The picture on the left in (b) shows the CDFs of both hypotheses. There is
partial overlap, but the median is always separated and hence robust detection
is possible at arbitrarily low SNRs. The picture on the right in (b) shows the
CDF of the square of the samples (Y 2[n]) under both hypotheses. It is clear
that there is complete overlap in the set of CDFs under both hypotheses. This
shows that squaring the signal destroys the signal feature.

for some K � L. The signal, X2[n] can be thought of as a
vector version of X1[n]. Time is divided into blocks of size K,
the odd numbered blocks contain iid Bernoulli ±

√
2P random

variables, and the even numbered blocks have zeros. We call
the former ‘data’ blocks and the latter ‘silence’ blocks.

Fig. 2. This figure pictorially shows the signal described in Equation (5).
The solid regions correspond to the “data” blocks, which contain iid
BPSK(±

√
2P ) signal samples, and the empty regions correspond to the

“silence” blocks, and they contain zeros.

X1[n] and X2[n] are both cyclostationary signals, and they
exhibit cyclostaionary features. The key difference is that the
scale of the feature in X2[n] is much larger than the scale
of the feature in X1[n]. This is true because the width of
the ON/OFF periods in X2[n] is K, which is larger than the



width of the ON/OFF periods in X1[n]. For this reason, we
say that X2[n] has a macroscale feature (relative to the feature
of X1[n]).

If K > L, the scale of the feature in X2[n] is larger than the
span of taps in the fading process, and it is clear that even an
arbitrarily varying fading process cannot completely mix the
‘data’ blocks and the ‘silence’ blocks. So, even after fading,
the signal will have some parts that are guaranteed to be silent
(zero signal power) and some parts containing data (non-zero
signal power). Moreover, the silent blocks occur periodically
in time. This means that we can run a detector that searches for
these periodic silences and uses these silence periods to learn
the noise statistics. Note that the number of alternatives in the
search does not grow exponentially with the sensing time, and
hence our algorithm will successfully detect the signal given
a sufficiently long sensing duration.

The robustness result for the example discussed above is not
limited to the case where the delay spread L is an absolute
cutoff on the channel response. These results continue to hold
for fading processes with infinite impulse response (IIR), as
long as the fading coefficients satisfy the following property:
at any given instance of time n, the first L fading coefficients
hl[n], l = 0, 1, · · · , L − 1 contain more than half the total
energy. In other words we are assuming that most of the energy
in the received signal is coming from paths than have a delay
falling within the first L filter taps. This modeling assumption
on the fading process is not unrealistic if we choose L
sufficiently large. It is easy to see that under this assumption
the example X2[n] can still be robustly distinguished from
noise. To keep the analysis simple, we assume that L is an
absolute cutoff in the rest of the paper.

Fig. 3. This figure shown the output of the signal X2[n], when is it passed
through a linear time-varying fading process with L taps. From the figure it
is clear that at certain time instances, the fading mixes with all zeros in the
signal and so the output is also zero. Hence, in these time slots we can have
access to noise even under hypothesis H1.

A. Macroscale feature example: mixture of Gaussian signals

The signal X2[n] given in (5) can robustly be detected in
noise at arbitrarily low SNRs. However, this kind of signaling
is wasteful because half the degrees of freedom are unused. We
now give another example of a signal that contains macroscale
features, and also makes better use of the degrees of freedom.

Define X̃2[n] to be

X̃2[n] =
{
N (0, P + ε) if d nK e is odd,
N (0, P − ε) if d nK e is even. , (6)

for some 0 < ε < P . This signals is obtained by interleaving
two iid Gaussian signals with power P + ε and P − ε
respectively. The detection algorithm in this case is to compute
the difference in the average power between the odd numbered
blocks and the even numbered blocks. If the received signal
is stationary noise, then this difference converges to zero
as N increases to infinity. If the received signal contains
X̃2[n], then the difference in powers converges to a non-zero
constant proportional to ε. Hence, this signal can be robustly
distinguished from stationary noise.

However, if the noise itself has a time-varying variance then
it is possible that the difference in the average power between
the odd numbered blocks and the even numbered blocks is
non-zero even under hypothesis H0. So, robust detection is not
guaranteed at low SNRs. The possibility of noise having time-
varying variance is not unrealistic because noise also contains
interference, which is due to man-made signals transmitted by
other users over the wireless medium.

One way to overcome this problem is to choose a complex
signature that does not occur either in nature or in other
licensed systems. This is analogous to the idea proposed by
Carl Sagan that space-aliens would signal to us by modulating
the signal with prime numbers that could not occur by any
natural process unlike pure pilot tones [22]. The complex
signature is used to choose the blocks to transmit a Gaussian
signal with power P + ε, while the remaining blocks are used
to transmit a Gaussian signal with power P − ε. To model this
different level of complexity, we make a technical assumption
of common randomness to capture codes that are effectively
random when viewed from the perspective of natural effects.
Specifically, we assume common randomness between the
secondary detector and the primary transmitter. This allows the
secondary detector to know the random partitioning of blocks
created by the primary transmitter. The detailed description of
the construction of a common-randomness based signal with
macroscale features is given below.

Let X[n] denote the signal we are trying to construct.
Divide time into blocks of length K = M + L − 1 for
some M > 0. Rewrite the sequence {X[n]}∞n=1 as {Xi}∞i=1,
where Xi ∈ R1×K is a K dimensional row vector given by
Xi = (X[(i− 1)K + 1], X[(i− 1)K + 2], · · · , X[(i− 1)K +
K]). Let {Bi}∞i=1 be a sequence of iid Bernoulli- 1

2 random
variables taking values in the set {0, 1}. Think of this Bernoulli
sequence as labeling the sequence {Xi}∞i=1 by ‘1’s and ‘0’s.

Given the Bernoulli sequence {Bi}∞i=1, define

Xi =
{
N (0, (P + ε)IK×K) if Bi = 1
N (0, (P − ε)IK×K) if Bi = 0 , (7)

where N (m,ΛK×K) denotes a K-dimensional Gaussian ran-
dom vector with mean m and covariance matrix ΛK×K . Here
ε is chosen such that 0 < ε < P , where P is the average power
of the signal. Intuitively, the signal {Xi}∞i=1 is a mixture of



two iid random Gaussian processes, one with power (P + ε)
and another with power (P − ε). The choice of the block
length K ensures that fading cannot completely mix the two
Gaussian processes.

Fig. 4. This figure pictorially shows the signal described in Equation (7).
The realization of the bit sequence Bi decides the signal transmitted in block
i. If Bi = 1, then a N (0, P + ε) signal is transmitted in block i, and if
Bi = 0, then a N (0, P − ε) signal is transmitted in block i.

Assume that the same Bernoulli sequence {Bi}∞i=1 is also
available at the detector. This can be thought of as common
randomness between the primary transmitter and the secondary
detector. Given this common randomness, the detection algo-
rithm can be described as follows:
• For any K-dimensional vector X :=

(X[1], X[2], · · · , X[K]) ∈ R1×K , K > L, define
the function κ(X) := 1

K−L+1

∑K
k=L |X[k]|2. This

function computes the empirical power (excluding the
first L− 1 samples) of the vector X.

• Assume that N is an integer multiple of K, i.e., N =
K · G for some integer G > 0. Rewrite the received
sequences {Y [n]}Nn=1 as a sequence of K-dimensional
vectors {Yi}Gi=1, where Yi = (Y [(i− 1)K + 1], Y [(i−
1)K + 2], · · · , Y [(i− 1)K +K]).

• Compute

T1 :=
1
G

G∑
i=1

Bi · κ(Yi);

T2 :=
1
G

G∑
i=1

(1−Bi) · κ(Yi) (8)

T1 and T2 are the empirical average of the received signal
powers in the blocks labeled ‘1’ and ‘0’ respectively.

• The detector is given by

T
(
{Yi}Gi=1

)
:= T1 − T2

H1

≷
H0

λ, (9)

where λ > 0 is the detection threshold.
The intuitive justification for choosing the test-statistic in (9)
is as follows: if the signal is present, the difference in powers
in the blocks labeled ‘1’ and the blocks labeled ‘0’ converges
in probability to a non-zero number as G→∞. On the other
hand, if the signal is absent, this difference converges to zero
as G→∞.

B. Robustness analysis

Theorem 1: Consider the robust hypothesis testing problem
in (1). Assume that the sensing time can be written as N =

Fig. 5. This figure pictorially shows the detection algorithm described in
Equation (9).

K · G, for some positive integers K and G. Let H(X)[n] =∑L−1
l=1 hl[n]X[n− l], for some integer L > 0. Assume that the

fading and noise processes satisfy the following constraints.

• 1
G·K

∑G·K
n=1 |W [n]|2 = σ2 for some unknown σ > 0.

• 1
G·K

∑G·K
n=1

∑L−1
l=0 |hl[n]|2 = 1.

• There exist known constants G0 > 0, and Ci > 0, i =
1, 2, 3, such that for all G > G0, we have

1
G ·K

G·K∑
n=1

|W [n]|4 < C1

1
G ·K

G·K∑
n=1

L−1∑
l=0

|hl[n]|4 < C2

1
G ·K

G·K∑
n=1

(
L−1∑
l=0

|hl[n]|2
)
|W [n]|2 < C3. (10)

Let {Bi}Gi=1 be a sequence of Bernoulli- 1
2 iid random

variables taking values in the set {0, 1}. Rewrite the signal
samples {X[n]}Nn=1 as {Xi}Gi=1, where Xi := (X[(i−1)K+
1], · · · , X[(i− 1)K +K]), and

Xi =
{
N (0, (P + ε)IK×K) if Bi = 1
N (0, (P − ε)IK×K) if Bi = 0 , (11)

where 0 < ε < P .

Let K > L. Consider the detection algorithm in (9). Define,

PFA(G) := P
(
T
(
{Yi}Gi=1

)
> λ|H0

)
PMD(G) := P

(
T
(
{Yi}Gi=1

)
< λ|H1

)
. (12)

Then, for any given choice of 1 ≥ PFA > 0, 1 ≥ PMD > 0,
and P > 0, there exists a G such that PFA(G) ≤ PFA,
PMD(G) ≤ PMD. Hence, the detection algorithm in (9) is
robust to uncertainties for all P > 0.

Proof: From Equations (9) and (12),

PFA(G) = P (T1 − T2 > λ|H0) (13)



By the definition of T1 in (8),

E[T1|H0] =
1

G

GX
i=1

E[Bi · κ(Yi)|H0]

=
1

G

GX
i=1

E[Bi · κ(Wi)]

=
1

2

"
1

G

GX
i=1

κ(Wi)

#
, (14)

where Wi = (W [(i − 1)K + 1], · · · ,W [(i − 1)K + K]).
Similarly, we can show that

E[T2|H0] =
1
2

[
1
G

G∑
i=1

κ(Wi)

]
. (15)

From (14) and (15), we have E[T1 − T2|H0] = 0. So, from
Chebyshev’s inequality [23] we get

P (|T1 − T2| > λ|H0) ≤ Var[T1 − T2|H0]
λ2

. (16)

Using (16) in (13),

PFA(G) ≤ P (|T1 − T2| > λ|H0)

≤ Var[T1 − T2|H0]
λ2

. (17)

We now compute the expressions under hypothesis H1.

E[T1|H1] = E

[
1
G

G∑
i=1

Bi · κ(Yi)|H1

]

=

[
1
G

G∑
i=1

E[Bi · κ(Yi)|H1]

]
. (18)

The expectation on the RHS of (18) can be simplified as

E[Bi · κ(Yi)|H1]

= E

[
Bi ·

1
K − L+ 1

K∑
k=L

|Y [(i− 1)K + k]|2
∣∣H1

]

=
1

K − L+ 1

K∑
k=L

E
[
Bi|Y [(i− 1)K + k]|2

∣∣H1

]
. (19)

Again, the expectation within the summation in the above
equation can be simplified using k̃ = (i− 1)K + k as

E
[
Bi|Y [k̃]|2

∣∣H1

]
= E

Bi
∣∣∣∣∣
L−1∑
l=0

hl[k̃]X[k̃ − l] +W [k̃]

∣∣∣∣∣
2


=
1
2

E

∣∣∣∣∣
L−1∑
l=0

hl[k̃]X[k̃ − l] +W [k̃]

∣∣∣∣∣
2 ∣∣X ∼ N (0, P + ε)


=

1
2

[(
(P + ε)

L−1∑
l=0

|hl[k̃]|2
)

+ |W [k̃]|2
]
, (20)

Substituting (20) in (19), and substituting the result in (18),

we get

E[T1|H1]

=

[
1
G

G∑
i=1

(
1

K − L+ 1

K∑
k=L

1
2

{
L−1∑
l=0

(P + ε)|hl[k̃]|2

+ |W [k̃]|2
})]

. (21)

Similarly, we can also show that

E[T2|H1]

=

[
1
G

G∑
i=1

(
1

K − L+ 1

K∑
k=L

1
2

{
L−1∑
l=0

(P − ε)|hl[k̃]|2

+ |W [k̃]|2
})]

. (22)

From (21) and (22), we get

E[T1 − T2|H1]

= ε ·

"
1

G · (K − L+ 1)

GX
i=1

KX
k=L

L−1X
l=0

|hl[(i− 1)K + k]|2
#

=: ε ·Θ. (23)

From the definition of Θ above, it is clear that Θ is the
empirical average power of the fading coefficients. From the
assumption in the statement of the theorem, it is clear that
Θ → 1 as G → ∞. Again, using Chebyshev’s inequality, we
get

P
(
|(T1 − T2)− ε ·Θ| > λ̃

∣∣H1

)
≤ Var[T1 − T2|H1]

λ̃2
, (24)

where λ̃ = ε ·Θ− λ. Now, the probability of mis-detection is
given by

PMD(G) = P (T1 − T2 < λ|H1)
= P ((T1 − T2)− ε ·Θ < λ− ε ·Θ|H1)

= P
(

(T1 − T2)− ε ·Θ < −λ̃|H1

)
≤ P

(
|(T1 − T2)− ε ·Θ| > λ̃|H1

)
≤ Var[T1 − T2|H1]

λ̃2
(25)

From (16) and (24), it follow that PFA(G) and PMD(G)
can be made arbitrarily small if Var[T1−T2|H0] and Var[T1−
T2|H1] decrease to zero as G increases to ∞. This is proved
in the following Lemma.

Lemma 1: For all G > G0,

Var[T1 − T2|H0] ≤ γ1

G

Var[T1 − T2|H1] ≤ γ2

G
, (26)

where γ1 and γ2 are constants dependent only on Ci, i =
1, 2, 3.

Proof: The proof of this lemma is straightforward and it
omitted here.



Using the bounds in Lemma 1, we have

PFA(G) ≤ γ1

G · λ2
,

PMD(G) ≤ γ2

G · (ε ·Θ− λ)2
, ∀ G > G0. (27)

IV. CAPACITY-DELAY TRADEOFF

In the previous section, we have shown that signals with
macroscale features can overcome SNR wall limitations. The
question we ask is whether the primary user has to pay a
penalty for the improved robustness of the secondary user?
We first look at the example considered in Section III-A. In
this example, the primary signal is obtained by interleaving
two random Gaussian sequences with different power levels.
Assume that the channel from the primary transmitter to
the primary receiver is an AWGN channel with noise power
σ2
p. We know that the capacity of this channel is given by

Cp = 1
2 log

(
1 + P

σ2
p

)
. However, the rate achieved at the

primary receiver is the average of the rates achieved by the
two Gaussian streams, i.e.,

Rp :=
1

2

»
1

2
log

„
1 +

P + ε

σ2
p

«
+

1

2
log

„
1 +

P − ε
σ2

p

«–
≤ Cp (28)

The concavity-∩ of the capacity function Cp shows that the
primary takes a hit in the data rate to its receivers in order
to provide robustness guarantee to the secondary users. This
rate penalty depends on the parameter ε, and as ε ↓ 0, the rate
penalty converges to zero. This suggests that the cost to the
primary (in terms of loss in data rate) for providing robustness
to the secondary can be made arbitrarily close to zero.

On the other hand, the parameter ε affects the sensing time
(number of samples) required by the secondary user to robustly
attain a given target PFA and PMD. Eliminating λ in (27), and
using the fact that Θ ≈ 1 for large G, we get

N = G ·K = K

[√
γ1

PFA
+
√

γ2

PMD

]
ε−2 (29)

Equation (29) tells us that the sensing delay at the secondary
user monotonically increases as ε ↓ 0. Therefore, in the Gaus-
sian mixture example there is tension between the primary
data rate and the sensing delay at the secondary detector.

Comparing Equations (28) and (29) we can see that there is
a tradeoff between the data rate (Rp) achieved by the primary
user and the sensing delay (N ) for the secondary user. We call
this the capacity-delay tradeoff. An important question arising
from this discussion is — whether there is a fundamental
capacity-delay tradeoff? That is, does the primary user always
have to take a hit in its data rate to provide sensing delay
guarantees to the secondary users. The intuitive reasoning for
the existence of a fundamental capacity-delay tradeoff is given
below.

We know that the capacity-achieving output distribution
is unique for most channels [24], [25]. Appealing to the
continuity of mutual information this means that in most
generic cases the capacity achieving input distribution is also
unique. The results in this paper show that the secondary
user can robustly detect the primary user if the primary

signal is a mixture of two distinct distributions. So, if the
primary user is operating close to capacity using an input
signal that is a mixture of two distributions, then both these
distinct distributions must be close to the unique capacity-
achieving input distribution. Hence by continuity, the two
output distributions at the secondary receiver must also be
close to each other. Hence, to distinguish between these two
output distributions, the sensing delay at the secondary must be
large. So, as the primary rate approaches its channel capacity,
the sensing delay at the secondary must approach infinity.

V. CONCLUDING REMARKS

In this paper we considered the problem of robustly detect-
ing the presence/absence of low SNR signals under modeling
uncertainties. We constructed signals with macroscale features
and showed that these signals can be robustly detected in
the presence of arbitrarily varying noise and fading processes.
Hence, we have shown the existence of signals that overcome
SNR walls. This result is important as most commonly used
communication signals were known to suffer from SNR wall
limitations.

An explicit construction of a mixture of iid Gaussian
streams was given in this paper. For this signal, a simple
detection algorithm was proposed that was shown to robustly
detect this signal under uncertain noise and fading processes.
The following observations can be drawn from the Gaussian
mixture example:
• Due to the interleaving of two streams with different

powers, the primary data rate is less than the capacity,
which can be achieved by Gaussian signaling at power P .
This hit in the primary data rate increases as ε increases.

• Even though the average power of the signal is P , there
are local power fluctuations in the signal. This is because
the signal is obtained by interleaving two streams, one
with power (P + ε) and the other with power (P − ε).
Because of these fluctuations, the delay from the primary
transmitter to the primary receiver also increases.

• Finally, the sensing time for the secondary user also
depends on the difference in powers between the two
streams (ε). Large values of ε lead to smaller values of
the secondary sensing time.

These observations suggest that there is a tradeoff between
the primary data rate, delay from the primary transmitter to
the primary receiver and the sensing delay to the secondary
detector. Whether the tradeoff between these quantities is
fundamental, or it is an artifact of this particular example is
unknown. However, we believe that there is a fundamental
tradeoff between the primary data rate and the sensing delay
to the secondary user.
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