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Abstract— Shannon proved that if we can transmit bits reliably communication over this attacker at any non-zero rate, edser
at rates larger than the rate distortion function R(D), then we the rate-distortion(0.25) > 0.
can transmit this source to within a distortion D. We answer Thus, the expected distortion constraint is not sufficiént.

the converse question “If we can transmit a source to within a . . o -
distortion D, can we transmit bits reliably at rates less than the turns out that a block distortion constraint is sufficierithe

rate distortion function?” in the affirmative. This can be viewed attacker is such thét

as a direct converse of the rate distortion theorem. 1
Pr (Zd(Xt,Yt)> >D — 0 asn — oo 1)
n
t=1

I. INTRODUCTION

can be proved that reliable communication is possibler ove
is attacker at all rates less tha(D). This is the main
theorem of this paper which is stated formally in Section IlI
Following [2], one can draw an equivalence between all
i .. rate-distortion problems with a given value Bf D). Consider
1) Suppose’ = R(aD — «). First, source code to within a e collection of all iid sources and corresponding distort
distortion (D — §) _by using random coges. The SOUrCgayels, (Cs, Dg) such thatRe,(Dg) = Ro. If any one of
code has rate arbitrarily close (D — 3). these sources can be communicated over an attacker such that
2) Transmit these bits reliablyover the channel. the block distortion criterion (1) holds, then all of themnca
The traditional converse to this separation theorem is gmovbe communicated to within a distortion leveDs; + &) over
using the data-processing inequality and shows that na otlisis same attacker, for arbitrarily small positifeOne way to
joint source-channel scheme can do any better. show this is:
We want to instead ask the converse question at the en4) Source code one source to within the distortion level
gineering level: if there is a “black box” over which an iid Dgs + 6 by using less thamR, bits.

sourceX; ~ px can be transmitted to within a distortion level 2) Communicate theseR, bits reliably by embedding
D, can we do reliable communication of bits (in the Shannon  them into the source accepted by the attacker and
sense) over this “black box” at rates less thafD)? recovering them from the distorted sequence.

If one assumes that the communication &f over the  |n Section I, we state the precise formulation of the
black box satisfies only an expected distortion constraighove problem. In Section I, we state our main theorem.
Ed(X;, X;) < D, then wecannot guarantee reliable com- |5 gSection IV, we state the connection of the formulated
munication. The black box should be viewed as an attaclﬁromem to coding theory, arbitrarily varying channels and
and the attacker can do anything that it wishes as long aggtwatermarking with no covertext. In Section V, we prove
meets the expected distortion constraint. the theorems stated in Section Il and comment on them in

Consider an equiprobable binary sourf@ 1} under the Section VI. Section VII formulates a conditional version of
Hamming distortion. Suppose the black box is constrained #ge theorem and it is proved in Section VIII. In Section IX, we
communicate this source to within an expected distortion gfate the relation of this problem to watermarking. Secton
0.25. A possible attacker could flip a fair coin once at thghows how to generalize to the case of non-finite sources
beginning of time. If it is heads, then it transmits the syfsboyith difference distortion. Section XI, shows how the résul
perfectly for all time; if it is tails, it just transmits O for can be easily extended to stationary ergodic sources that mi
all time. It is then easy to see that one cannot do reliabigpropriately.

Because of space limitations, some of the details in the late
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1The bounded nature of the distortion function only becomesoitapt if « A= {1’ 2. |X|} — finite set. X is the input space.

In [1], Shannon proved that if there is a channel witf‘L
capacityC > R(D), a source can be transmitted to withir}
a distortion D reliably over this channel (D) is the rate
distortion function for the source) in two steps:

we are interested in end-to-end expected distortion. Ittt is desired is ¢ Y = {1,2,...,|Y|} — finite set.)>° is the output space.
for the probability of excess distortion to be arbitrarilgnall, then no such
assumptions are needed. 3For simplicity of notation, the dependence of the attackeblock-length

2Fundamentally, we are asking whether reliable lossless cormation = is suppressed. To be precise, (1) should be interpreted asniyfof
is necessarily the right primitive that defines layering in altipurpose attackers indexed by such that the probability of excess distortion can be
communication system. Could lossy coding serve as an equally gomitive  made as close to zero as desired by choosing an attacker waibpaopriately
in principle? largen. This parallels the existence result for channel coding.



px — probability distribution onY’. I11. M AIN RESULTS- UNCONDITIONAL CASE

X7° — iid sequence of random variables, eah~ px.  Theorem 1: Assuming that there is common randomness
d: X x)Y — Ris anon-negative valued function. Weayajlable at the transmitter and the receiver, all rates

should think ofd(i, j) as the distortion betweehe X,

j € Y. The focus is on the average additive distortion on R < Rx(D) £ infp I(X;Y) 3)
n-sequencesy d,, (27, yy) = L Y1 | d(zy, ). ~PX

The thtackerhis (alblalcl)< boxz\}vthilch(takes) in the input Ed(X,Y) <D

sequencer® € AT and produces an outpyf® € V°. are achievable over ®-distortion attack channel, and in fact,
y7° need not be a deterministic functionof°; it can be this can be done by using iigdy random codes.

randomized.
Note that the attacker is, in general, non-causal in tHe'e @bove theorem says that we can solve the Shannon com-

sense that it takes in the whole input sequence, looksngnication problem _over_aD-distortion attacker at all rates
it, and produces an output sequence. The situation t{g$S than the rate distortion functiokx (D). We comment
the attacker looks at> and produces/® is the most on the need for common randomness in Section VI after we

general possible. In practice, the attacker will only looR"0Ve the above theorem. _
at finite length sequences and produce an output; this ig/V€ also have a converse theorem:
a special case of our definition. Theorem 2: Rates larger tha®x (D) can in general not be

The attacker can also be viewed as a channel. We will (@ghieved over &-distortion attacker.
the words attacker and attack channel interchangeably. after a few comments about this formulation in the next
D-distortion attacker— If the input to the attacker is gectjon, it is proved in the section after next.
the random variable sequeng&® (defined above - each
X, iid px), the attacker produces the random variable V. CONNECTIONS TOAVCS AND WATERMARKING
sequencé&’™. This results in a joint probability measure We can view the attacker as a non-causal arbitrarily varying
on (X7°,Y?). Under this probability measure, therechannel (AVC). The AVC is constrained in such a way that it
should exist some functiofi(n) with lim,,_,., f(n) =0 distortsmost input sequences to an average distortion less than
so that: or equal toD where “most” is according to the iidxy measure
over the input sequences. The question that we are asking
tin_1 is, “What is the capacity of this AVC?” The foundational
1 .
sup Pr ( Z d(Xy,Yy) > D) < f(n) (2) Paperson AVCs are the papers by Blackwell, Breiman and
t n Thomasian, [4], [5]. [4] considers the case when the channel
is a fixed DMC coming from a patrticular set, but unknown. [5]
The above equation says that the average distortisAnsiders the case when the channel can vary arbitrarity, bu
caused to long sequences is boundedbywith high s @ DMC at each time, and comes from a particular set based
probability, and this probability— 1 at least as fastas ©ON past history unlike in our case where the attack channel
1 — f(n) with increasing block lengths uniformly over @t each time does not come from a particular set, nor is it
at which time this sliding blockis taken (hence, the namecausal. Stiglitz [6] has the same setup as [5], but calcsilate
D-distortion attacker). error exponents. Csiszar and Narayan [7] uses a minimum
Note that on an individual symbol level, the attacker igistance decoding rule similar to the one that we will use, bu

essentially unconstrained — for ar¥;, the attacker can it does not consider AVCs in the form that we do. _
distort it really badly. It is only constrained over very 10 the extent that minimum distance is the relevant idea, thi

long blocks. work can also be considered a generalization of the original

px =+ € will denote the set of all probability measurgg formulation of coding theory in [8] with the distortion meas

on X such thatlgx (i) — px (i)| < eVi € X. generalizing the Hamming distance. In addition, the compos
- tion of the codewords is specified in advance. Fundamentally

u=t

As we can see, the rate-distortion problem when the inpgheorem 1 says that every rate-distortion problem is also
sequence is iighx is solved (in the sense of [2] by this attackepssociated with a coding theory problem.
for distortion valueD. The question we want to ask iS, “Can This paper’s formulation can also be viewed as a wa-
we transmit bits I’e|iab|y over this attacker in the Shannq@rmarking prob'em ([9]) with no covertext. The goa| is to
sense, and if yes, at what rates?” embed our data in the input to an attacker that acts within

a distortion constraint. [10] by Somekh-Baruch and Merhav
is the closest to our work. It allows for non-causal attasker

“No restrictions are made on how fag{n) tends to zero — just that . . L
we know how fast this probability goes to zero for this partas family of and the definition of attacker is very similar to ours. But][10

attackers so that we can pick an appropriate block-lengttihie code. does not use a minimum distortion decoding rule — they use
5The purpose of the sliding block is merely to reduce notatiorstating another decoding rule which is superior in the sense that it

the condition. All theorems will be proved within a single tkoof lengthn
that is sufficiently long on its own. This can be repeated wligjoint blocks

achieves the best possible error exponent. We believe that

if a stream of data needs to be transmitted. proofs in [10], with slight modification, should be appli¢ab



ngy (1) nqy (7) ngy (1Y)

in our scenario too, but we use a different decoding rule (& <« o e L
variant of minimum distance decoding) since it is arguably
more natural and achieves capacity. The distinction batwee , v v . _ _

. . . . . nay (Hax |y (115) nay (Hax|y (il9) nay (Max |y (1X115)
the two papers is more significant in the conditional case. @« = o e -—

Blown up

V. PROOFS- UNCONDITIONAL CASE ! ) )
. . . Fig. 1. The sorted received sequenge and the correspondingly shuffled
We first prove Theorem 1 stated in Section Il and show thasdeword-? illustrating the relevant types.

by usingpx random codes, we can transmit reliably (in the
Shannon sense) at all rat&s< Rx (D) over the D-distortion

attack channel. For the error event’s,
Codebook Construction Generate™” codewords iidpy. 1) 21" is typical, that is,
This is the codebook, which we denote 8y Z gy (ax|y (il7) € px £ e¥i € X 4)

Decoding Fix € > 0. Restrict attention to those codewords

. . : o i€y
which arep x -typical, that is, whose type lies iny &« (recall ' - '
the definition ofpx +e in Section II: allgy such thatgx (i) — Denote)_ ¢y gv (7)ax|y (ilj) asqx (). Thus,
px (i) < eVi € X). qx €Epx T e 5)

Denote this restricted set of codewords Gy.

Let y denote the output of the attacker. If there is a
uniquepx -typical 2} in the codebook which is at an average
distortion less than or equ_al tb from the output sequence, Z av (7)ax|y (il7)d(i, j) < D (6)
declare that:} was transmitted, else declare error. ieXjey

We call our decoding rule the“Nearest Typical Neighbor” o _ i
decoding rule. The truly nearest neighbor decoding rulehtnig Den(zt.e 't)he_rglljsstrlbutlora]y(])qX|Y(z|j) on X' x Y by
be a bit more natural, but it is harder to analyze. Ixy\%J): :

In what follows, E, . dX,)Y)<D @)

. xi' denotes the tran_smitted codeword. Let us now bound the probability of ever;.
« y] denotes the received sequence (output of the attaCker)First, the probability that over the chunk of lengilgy-(5),

» z{ denotes @x typical codeword (thatis;i" € Cr) SUCh  {he corresponding entries & have typegx|y—; (recall that

that 21 is NOT transmitted. _ px is the generating distribution of codewof’) is given by:
The error event can be decomposed into 3 parts.

o E; — transmitted codeword atypical ¢ Cg.
» FE, — Distortion caused by the attacker is not typical: Thus, the probability that over the whole block of length
LS vd(zg, ) > D, in the chunksngy (j), the corresponding entries ef* have

2) 27" is at an average distortiogd D from the received
sequence}’ so

adxy

g 2_an(j)D(QX\Y:ijX) (8)

« E5 — a typical codeword which is not transmitted is atype ¢xy—;, for all j
an average distortion less than or equalRofrom the B . ,
. . < TLievy2—may (D D(ax v=;llpx) (9)
received sequence. Mathematically;] € Cr such that = ey _
2} is not transmitted and S°7_ d(x,y,) < D. = 27" Xjeyav(DDlaxyy=illpx) (10)
Clearly, Pr(error) < Pr(E;) 4+ Pr(Es) + Pr(Es). By the = o nPlaxvllpxar) (11)

weak law of large numbersPr(E;) — 0 asn — oo.
Pr(E;) — 0 asn — oo follows by the definition ofD- whereq occur. in the above expression
distortion attacker (2). To upper bouit(E3), we do a type- d ' P i

. . : To bound the probability that]" is at a distortion< D from
base_d calculation [11] on the probability of error for a mvey?’ we have to sum the above probability over all possible
received sequencg.

L _i1<j< iti
In what follows, it will be helpful to remember thaj typesqx|y—;, 1 <j <[] such that conditions 1 and 2 above

will always denote probability measures wibhserved types, (e?\m\r/r?lir:tg% ®) andt (7)e)sa<re( STSlf)'ﬁﬂm Also recall that
whereag will always denote probability measures witans- " nozw)ft‘é\:njérzi?tedzogewordsﬂ ~onR
e R o e e Puting al ths together and using the union bound,
in yis ngy (4). Pr(Es| type of 7 is gy) (12)
Sort the output to place all thg < Y together, and < (n + 1)IXIPVIgnig=ninfoyyes Dlgxyllpxay)
correspondingly shuffle the positions in the codebook’seeod
words. This leads to no change in distortion between shuffl
codewords and the sorted received sequeyjce
Look at a generic shuffled codewor@l € Cr which is not qx €Epx e
transmitted. Over the chunk of lengthyy (j), let the type of S=<qxy: B¢, d(X,Y)<D (13)
the corresponding entries of' be ¢x|y—;. (See Figure 1) qy fixed

It would be helpful to note the positions of wheseccur and

ereS denotes the set of types satisfying conditions 1 and
2 (equivalently, (5) and (7)), and is



Now, gy, the type of the received sequenggis arbitrary.
Thus, an easy way to bouritk(E3) is to just remove they
fixed condition from the above definition df.

Thus finally,
Pr(FEs) < (n+ 1)|X|(D/|+1)2n32*ninquyeT D(gxv|lpxay)
(14)
where7 is the set
_ . gx €Epx *e¢
T= {qu © Eypyd(X,Y) <D } (13)

The only difference between the séisand 7 is that theg,
fixed condition which exists i has been removed if.

Since (n 4 1)I*10YI+1) is a polynomial,Pr(E3) — 0 as
n — oo if

R < inf D(gxv|lpxay) (16)
gx €px e
Edy, (X,Y)<D
Thus to prove Theorem 1, it suffices to prove that
0, 2 lil% inf  D(gxvyllpxay)  (17)
- gx €px L€
Egeyd(X,Y) <D
= Rx(D)= inf I(X;Y)
X ~px
Ed(X,Y)<D
= inf  D(pxy|lpxpy) £ 02
px fixed
py can vary
E,,d(X,Y)<D

The main difference betweef; and©, (note the definitions
of ©; and ©, in the above equation) is that:
e In ©1, we haveD(qxy||lpxqy); ax € px + €
e In ©5, we haveD(pxy||pxpy)
It is clear that®; has “more freedom” and hence, < ©,.
All we need to prove is tha®, > O,.
This we do with a simple trick:

D(gxvllpxqy) = D(gx|lpx) + D(gxvllaxqy)  (18)
> D(gxv|laxay)
Thus,
01 > lim inf D(gxvllegxqy)  (19)
- gx €Epx L€
E.d(X,Y)<D
So we only need to prove that
lil’I(l) inf D(gxv|laxay) (20)
- gx €Epx L€
E.d(X,Y)<D
> lim inf D(pxvy|lpxpy)
<=0 py fixed
Ed(X,Y)< D

The sequence of choosing ¢ depending on the rat& <
Rx (D) and probability of errop, is:
1) Choose small enough so thak < infxep e Rx (D).
2) Choosen large enough so that the total probability of
error from the eventd”;, F, and E3 adds up to a value
less thanp..

We now sketch the proof of the converse theorem, Theo-
rem 2, that is, in general, we cannot transmit at rates larger
than Rx (D) over a D-distortion attacker. Another way of
stating this is that if one tries to transmit at rates lardemt
Rx (D), there is aD-distortion attacker such that we cannot
transmit reliably over this attacker.

First, consider the case that we are restricted to using iid
px random codes; we will remove this restriction later.

Let the rate at which we want to transmi, = Rx (D —

a) > Rx (D) for somea > 0.

We will show that there is a D-distortion attacker which is
a DMC for which error probability-+ 0.

Look at all DMCs that produce an average distortion of
(D — §) between the input and output when inputjis
distributed.

inf
X ~px
Ed(X,Y)<(D -

I(X:Y)

3)
But this value is precisely?x (D — §). Also, any DMC that
produces an average distortion @0 — 5) is a D-distortion
attacker (follows from the weak law of large numbers). Thus,
we have exhibited a DMC which is B-distortion attacker and
over which, we cannot reliably at rates larger thBr (D —
$) < Rx(D—a)=R.

To remove the assumption that we have to pgerandom
codes, consider the following attacker:

Fix ¢ > 0. The attacker looks at inputs of lengthand if
the input is nop x typical (that is, the empirical type does not
lie in px + ¢), the attacker will produce junk output, say the
all 1 sequence, whereas if the input sequence istypical,
the attacker will act like the above DMC. The attacker needs
to keep increasing the length of sequences which it looks at
and attacks, and correspondingly decreas# is intuitively
clear that if a codebook is chosen with a codeword which is
not px-typical, the output of the attacker will give no positive
rate information about what was transmitted, and hence, the
encoder can not use such codewords to transmit reliably at
rates larger thamRx (D).

Cworst = (21)

VI. COMMENTS ON THE PROOF

If one compares the proofs of Shannon’s channel coding
theorem and the above, the two are quite similar in the error
calculation for the eventrs, but there is one difference. In
Shannon’s theorem, proving that the average error prababil
over the ensemble of codes 0 implies that there exists a

This holds with equality, and follows from the continuity ofcodebook for which the error probability- O for every single
the rate distortion functio® x (D) in px and proves the direct message. This is not immediately true in our case because the

theorem.

attacker can use different strategies over different tdock



Furthermore, if we were to use the same codebook overe py — probability distribution onV.
and over again, the input would no longer look iid on « V> —iid sequence of random variables generatgdin
very long sequences and the attacker would be free to just watermarking terms, this can be thought of as the “cover-
drive us to zero. Thus, the codebook has to be generated story.” We will talk about relations to watermarking in
at least somewhat independently in each block of length Section IX.
This is where we use the assumption that there is commons pxy—, — If Vi = s, X; is generated according to the
randomness available — using this common randomness, the distributionpx i —, but independently of othek;. The
transmitter and the receiver can generate the codebook agai joint distribution on(V;, X;) will be denoted bypy x
and again, independently. o Attacker — We assume thatV; is known noncausally
However, the code as given requires an exponentially large to the encoder, decoder and the attacker
amount of common randomness. This can easily be reducedhe next theorem is a conditional version of the inverse
to a polynomial (in the block-lengtiy) amount of common rate-distortion theorem, Theorem 1.
randomness by using the following tricks:(details in [3]) Theorem 3: Assuming that there is common randomness
« Simulate in advance whether the input block will be available at the transmitter and the receiver, all rates
typical or not. (Can us®(logn) bits) If it is atypical,

S : :
just declare error no matter what message was sent. R < Rxy(D) = v, Xﬁni pux I(X;Y]V) (22)
« Make slight modifications to the proof to instead show Ed(X,Y)< D

the existence of deterministic codebooks with input types
like p, + ¢ that can be list-decoded to some possiblgre achievable over B-distortion attack channel, and in fact,
large, but constant, list-sizewhen facing a worst-case this can be done by using iigly |, random codes.

attacker inducing a distand@. This is done by patching
the above proof with arguments analogous to those f
Theorem 5.1 in [12]. The additional trick is just noticing"’l
that I(X;Y) = H(Y) — H(Y|X) and that2"#(¥) is VIIl. PROOFS- CONDITIONAL CASE
essentially the total number of output sequehadsype

e omit a converse theorem though the same arguments as
ove would give one.

The proof is very similar to the proof of the theorem in the

. l .
qv. Whenl is Iéarge enoughy 7 H(Y) — H(Y[X) is a8 hconditional case. Recall thEP° is known to the transmitter,
close as desirédto Rx (D). receiver, and attacker.

+ Once the deterministic codes are constant composition,cqqehook Construction Generate2"® codewords iid
a random permutation of the indices will make each v This is the codebook, which we denote By

L |
them behave as though they were drawn from the Orl‘~_3'n""i(Decoding Fix e > 0. Restrict attention to those codewords
iid p,. distribution conditioned on the empirical type belngy11 such that(v}, 27) is py x typical, that is, whose type lies
typical. This takesO(nlog(n)) commonly-random bits. ;. ——

« By using the code at a rate slightly less than the rate of thep o ote this restricted set of codewords ®y.
code, the message can be paddgd with a randomly chosefyte that ifu? is not typical,C’z will be empty. Thus:
hash of the true message. This takes at most anothe[ The definition ofCr implicitly assumes an error 6] is
O(n) commonly-random bits and allows the decoder not stronalv tvpical
to uniquely disambiguate the decoded lists with high gy typical

" ; o o Cr depends onf?, that is, the codewords @f which lie
probability by just rejecting messages whose hashes do in Cy, are different for different?,

not match up correctly. ) )
Let y7 denote the output of the attacker. If there is a unique
VIl. THEOREM- CONDITIONAL CASE 7 in the restricted codebook which is at an average distortion
Until now, we assumed that the input to the attacker shoukss than or equal t& from the output sequence, declare that
be apx-iid sequence. Now, consider the case that the inputig§ was transmitted, else declare error. We call this tee *
still an independently generated sequence but the ditisibu Nearest Conditionally Typical Neighbor” decoding rule.
of X; depends on an iid random variable sequel¢e that In what follows, 2] will denote a non-transmitted codeword
is revealed non-causally to all parties. as before. As in the unconditional case, the error eventistsns
We state some notation to add to the notation previouslyof 3 parts:
e V—={1,2,...]V|} is afinite set. A generic element of « E; — (v7,27) is not typical. This is a slight modification
VY will be denoted bys. of F; in the unconditional case.
SRather than computing the probability of error, we are comutihe ) -E2 - DISt-Ortlon caused b-y the attacker is n(-)t typ_lcal, that
expected number ab-balls that have at least- 1 codewords in them. For a is, transmitted codeword is at an average distortion larger

given!+1 codeword positions, this is just the existing probabilifycollision than D from the received sequence. Mathematically,

raised to thel + 1 power times the number of poss(iblé-)balls. The total %2?71 d(xz¢,y:) > D. This is exactly the same as in
Hations i I+1 = o,
number of such combinations is also no more tR&af . the unconditional case.

7And so the expected total number of collisions is as small as aret and E tvpical d d which tt itted i
so there exists at least one deterministic codebook that dvasich collisions e vz — a lypical coaeword which was not transmitted IS

at thel-list level. at an average distortion less than or equalllofrom



nqy (s) nay (IVI)

Thus,

Blown up qvx €Epyx fe€ }
R = : 27
nay (s)ay |y (1]s) nay (s)ay |y (Jls) nay (s)ay |y (IV]]s) {qVXY EQVXYd(Xv Y) < D ( )
/ Bownus It follows that we only need to prove that
own up
nay (S)ay |y Gloax vy (59 li_r}(l) inf D(gxvyvllpxivayiviav) (28)
.......................................................................... € qQvx € pvx 4+ €
Ep vy d(X,Y)< D
Fig. 2. The various types illustrated in the conditionakrdtistortion case. _ RX\V(D) _ inf I(X;Y|V)
(V, X) ~pvx
. o , Ed(X,Y)<D
the received sequence. This is exactly the same as in the )
unconditional case. - inf D(pxyivllpxvpyivipv)
PVX fixed
Pr(error) < Pr(Ey)+Pr(E2)+Pr(Es). Pr(E:), Pr(E2) — Edy, . (X,Y) <D

0 as in the unconditional case.

All we need to do is to upper bouriet(E). As before, we The proof of this follows in almost the same way as in the

unconditional case, just that we have to use the contindity o

do a method-of-types calculation on the probability of flales : ; »
=7 that will cause an error for a given received sequenite Rxv(D) in pyx (in the unconditional case, we had used the
continuity of Rx(D) in px).

The only essential difference between this proof and in th This proves the conditional theorem, Theorem 3
proof of the unconditional case is that we first do a sorting ' '
based on/ and then proceed exactly the same as before, that IX. RELATION TO WATERMARKING
is, do a sorting based dri and then do a sorting based ah We can view this conditional problem as a watermarking

Let the type ofvy’ look like gy Sort, so that alt such that proplem with a coverstofy In watermarking, the user is
Vi = s are together. Over the subsequence whigre- s, let  gjiowed to make some tolerable level of distortion to the
the type of the output produced by the attackerghgy—. covertext. We have a restriction of another kind, that is, if
Again, do a sub-sorting such that aff = j are together he coverstory entry iss, the input distribution should be
in each subsequence & = s. In this (Vi = s,Y; = j) . Also, in watermarking, the covertext is not known
subsequence, let the type of the subsequencerofrecall tq the attacke?.We assume that the covertext is known to the
- 2 is a codeword which is NOT transmitted) look likesitacker. If one looks at (38) in the paper of Somekh-Baruch
4x|y=5v=s S€€ Figure 2. and Merhav [10], this is the reason for the Markov Chain

We now do thePr(E3) calculation. conditonU/ — X — Y. We do not have the Markov Chain

First restrict attention to the subsequenge= s. Over this conditionV — X — Y because the coverte¥ is known to
subsequence, we do exactly what we did in the unconditionpk attacker.

case. It follows from the proof of the unconditional casettha
the probability thatZ{' looks like gx|v—s y—; given that the
y1 subsequence type looks likgy—_, is

X. CONTINUOUS ALPHABETS

In this section, we consider the case wh¥n) andV are
not necessarily finite discrete alphabets. We divide thélpra
into 6 cases:
1) X finite, Y finite, V not there.
2) X finite Y finite, V finite.
3) X non-finite,Y non-finite,V not there.
4) X non-finite, Y non-finite, V finite.
5) X finite, Y finite, V non-finite.
6) X non-finite,) non-finite,) non-finite.
There are a polynomial number af vy types, < (n + We will refer to these as Cases 1 through 6. Case 1 is
1)|V||X|\y| and by argument similar to that in the unconditionan€ unconditional case covered in Theorem 1, Case 2 is the
case, conditional case covered in Theorem 3. We now go on to the
rest. The proofs will be based on quantization of the above
Pr(Es) < (26%ets and using ideas from the proofs of Theorem 1 and 3.
2nR(n_|_1)|V\|X|(|y\+1)2fninfGVXYeR D(axvyvlpxivayviav) Fpr Case 3, we need to prove that ratesRx (D) are
achievable and for Cases 4,5,6, we need to prove that rates
where the seR over which the above infimum is taken is: < Rx|v (D) are achievable.
1) (v}, 27) is typical, that isgqvx € pvx te.
2) 2I' is at an average distortiog D from the received
sequence/}, that is, E, d(X,Y)<D

< 9—nav(s)D(axvy|v=sllPx|v=s9v|v=s)

(23)

The probability that over the whole sequence, #ietype
is gx|v,y given that theY type isqy v

< 9™ n ZSEV qv (8)D(gxy|v=sllPx|v=sqy|v=2s)

(24)

= D(gxvvllpxivayviav) (25)

8To distinguish it from the “covertext” in traditional watearking
9Since otherwise, presumably the attacker could just replaeénput with

Xy the covertext itself. The same is not true if it is considerscaaoverstory.



1 2 under theD-distortion attacker,
1 t+n—1
sup Pr ( Z d(Xun,Yun) > D +g(A)> —0asn — oo
t n

u=t

decoding rule should be.
Codebook Construction Generate2™* codewords iidp .
This is the codebooK. LetCa denote the quantized codebook
obtained by quantizing each codeword.
Fig. 3. Dependence graph for the proofs of the various cases Decoding Fix € > 0.
Restrict attention to those quantized codewords which are

px -typical. Denote this restricted set of quantized codeword
Figure 3 is a dependency graph of which proofs depend 89 C,%.

(30)
T @ If we work in the quantized world, this suggests what the

which. Let 47, denote the quantized output of attacker. If there
iS a uniquepx , -typical quantized codeword?, which is
A. Compact support at an average distortion less than or equalIto+ g(A)

We first tackle Case 3, that i€, )’ are non-finite sets, and (note the changeD + g(A) instead of D) from the output
there is noV. We first assume that’ and ) are bounded Seduence, declare thaf was transmitted, else declare error.

subsets ofR", for some positive integer,. The case of Mathematically, if3lz} € Cr such thaty 570", d(r,y:) <
unbounded support is addressed later. D+ g(A), declare that:? was transmitted, else declare error.

We first state some notation: This decoding rule has reduced the problem to Case 1(finite
X and )), and we can use results from there. Thus, we
o« X,Y — bounded subsets ofR". Y)

X it int. We d ; b ; can transmit at rate? < Rx,(D + g(A)) using this
¢ @ — generic point int. YVe do Not USer DECaUse ot 4o .4 ging rule. It can be shown using the appropriate coitinu
potential confusion with the transmitted sequence. arguments thatima o Rx. (D + g(A)) = Rx(D). This
. o = A = .
b t_) gt].eTerlcfpo.mt 'n%}H t\:]Ve do notdusey because of proves that we can transmit at all ratesRx (D).
20 e;yaxcg; u5|o7nzvivs| a d?ﬁ;?gﬁgls diss?grl:iigcfﬁeasure The sequence in which, A, e need to be chosen depending
° : — . e
which is assumed to beaniformly continuous with Ion the desired rat& < Fx (D) and the error probability.

respect to the Euclidean metric.
. D-distortion attacker— Same as before. If the input 1) ChooseA small enough so thak < Rx, (D + g(A)).
to the attacker is the random variable sequeit¥ ( 2) Choose ¢ small enough so that R <
X, iid px) , the attacker produces the random variable Infxyepy, +e Bxa(D +9(A)).
sequence’. This results in a joint probability measure 3) Choosen large enough so that the sum of error proba-
on (X5°,Y,®). Under this probability measure, bilities of eventsEy, E», E3 is less tharp,.
Case 4, whergX’, ) are non-finite while the “coverstory?
1 is finit(_e, is proved in exactly the same way — by quantizing
sup Pr (1 Z d(X,,Y,) > D) —0asn — oo X, Y finely enou_gh. ) . )
t n Next we consider Case 5, that &, ) are finite andV is
(29) non-finite. We assume that is a bounded subset @& for
o Xa,Ya — A-hypercube grid quantization ot’,Y re- some positive integet.
spectively. The boundary of the hypercube can be put inwWe introduce some notation regardiiy
any of the adjoining sets but not both. The quantization V _ pounded subset gR”.
point is taken as the center of the hypercube. « s — generic element op.

« aa — Generic point of¥a. ax € X is obtained by ) ", A’ hypercube quantization of. The boundary

u=t

quantizinga € X ) . . of the hypercube can be put in any of the adjoining sets.
* ba — Generic point ofYa. ba € Ya is obtained by Quantization is taken as the center of the hypercube. We
quantizingb € y o ) useA’ instead ofA because we usA for quantizingX
« px, — Probability distribution on¥a obtained from the and .

distribution px on X" in the obvious way. e sar — Generic point of Va:. sas in Vas is got by
Note that since the difference distortion function  quantizings in V.
is uniformly continuous and X,) are bounded, « Sa — quantization region (hypercube) df containing
%E?:l d(xm,ym) < %E?:l d(act, yt) + g(A)V(x’f,y{L) S the pointsA/ € Var.
X" x Y™ whereg(A) — 0 asA — 0. « pv,, — probability distribution onVA, got from py on
It follows that under the distribution governind(y,, Y7%) V in the obvious way.



What is not obvious, though, is how to defingy,,. Decoding Fix € > 0. Restrict attention to those codewords
avg

We need to make definitions in such a way that we can dg that(z7,v{s,) have an empirical typex v, , that iSpVA,X
probability of error calculations for the eveti; (the other typical. Denote this restricted set of codewordsdgy.

two events,F; and E> will be trivial as usual). Let y} denote the output of the attacker. If there is a unique
sup B ) e x 31 z7 in the restricted codebodky that is at an average distortion
ar=sar ’ ess than or equa rom the output sequence, declare tha
Pxv. Sup pxjv(ils), i € B less th | t& from the output declare that
inf . . . x} was transmitted, else declare error.
_ = nf s), 1€ X 32 . . . o
PX|Var=sas séSA/ pxv(ils), @ (32) We impose the following technical conditith on
sup inf i i
Pxlv.,—s., IS Not, in general, a probability measure. It is g X[Var=sar andpyy,,—,,» Which captures mathematically,
[Var=sar e closeness gfx|y—,, andpx|y—,, for s; ands; close.

measure with mass 1 and denotes a measure which “domi-
nates” all probability measuresy |y —, over the quantization
region of YV which containssa;.

Technical Condition: Vi € X

ot . ) o lim max pi?lpv _. (i|sar) —pi?lpv _. (i|sa’)| =0
PX|v. =s, 1S ot in general, a probability measure. ItA'—=0saeVar Ar=oar Ar=oa
is a measure with mass. 1. It denotes a measure which _ = - ()
“is dominated by” all probability measurgsyy,_, over the This  condition says that pypy, . (ilsar) —
guantization region o’ which containssa:. sup

o . - . _. (ilsar) — 0 asA’ — 0 uniformly over all
Intuitively, if we make some continuity assumptions orﬁXWA’*éA’( [527) y

as V varies, thenp’.F and p'nf artitions ofV.
PX|v=s s € ' PX|Vyr=s50 PX|va=sas We now do the probability of error calculations.

Wr'" blemclots?hto eaé:]h ci)rghtir. ';Ici)rtrsilr:? ?i" ﬁ?gé’gﬁ gllb‘;e Sav It is easy to check that with the above decoding rule, the
are aimost the same € distributio uce probabilities of error evenfl, — 0 asn — oo. For Ey, all

L up . .
Another reason fc_>r deflnmg)_(lvA/:S 1S that it helps us that is required is fom to be large enough while is also
to do error probability calculations. This is demonstraisd sup

! large enough relative td\’ so that[pi*f . — & p +£]€e
the following lemma: g : Var X 2PV X T2 )

. o + e. At that point, the weak law of large numbers is
Lemma 1. Let px be a probability distribution or’. Let Pvyx = ¢ P 9

b A hth - \forall i € enough to guarantee what is desired.
1x be ameasure of such thajux (i) > px (i) for all i € For Pr(FE3), we follow the steps in the proof of Case 2 (

(that is, ux dominatespx). Let gx be another probability . .. Y finite, V finite) (Theorem 3) and use Lemma 1 to

distribution onA. JeplacerW with p%%, . It follows that we can transmit at

Then, probability that am length sequence generated ii  tes X|Var
px has typegx
P (T(gx)) < 27 "Plaxllix) (33) R < }13% infvg D (CIXYWA/ HP?;FVA, qy v, \CIVA,)
Qv x € by, x TE€
where D(qx|lpx) is defined in the obvious way, Edgy <y (X,Y) <D
D(gx|lpx) £ Yien ax (i)log% (35)
Proof: First thing that we need to take care pf'|, = appearing
n above - we want to somehow replace it ioﬁgw .. Using
pX(]z;(qx)) the technical condition (34), it is easy to see that there is a
< 27mPlaxllex) (by method of types) function & such that we can transmit <
< g7nPlaxllnx) (trivial by definition of D(gx||ix))
This lemma gives us a way of upper bounding the erropy inf D (QXY\VA/HP;?WA, QY\VA/|QVA/>_h(A/)

probability of a type class when we do not know the generating® qv,, x € Py, x T €
distribution, but have an upper bound on the same, and this isEd,, , ., (X,Y) < D
precisely the situation we are in. (36)

We definep?,“(g‘v s, 8S the probability measure obtainedvhere h(A’) — 0 as A’ — 0. The first term above is the
by normalizingp}WA,:S - same as that appearing in the proof of Case 2, the conditional
If we have some continuity conditions (which we will makecase withX’, Y, V finite, Equation 28. It follows that we can

rigorous later) ompx |y, as measurea?“’vA,:SA/,piX“fVAIZSA,, transmit at all rates

PV, —s ., 1Px|v=s5 € Sas} Will be quite close to each

other =" R< inf I(X; Y |Var)~h(A') = Ryjy,, (D) —h(&)
Also, the distributionspy,, and p}g%/:% result in a (Var, X) ~Pvyx

probability distribution on(Va,, X) which we denote by Bd(X,Y)< D (37)

p?ngA/X

Next, we state the codebook formation and decoding rule:, o L
Codebook Construction Generate 2" dewords iid It can be shown to be satisfied for any joint distribution f§t V' that
ode _00_ onstructio enerate codewords satisfies weak convergence in thatX |V = s,) — p(X|V = s) whenever
px|v- This is the codebook. Sn — 8.



Now, lima/ o Rx|v,, (D) — h(A") = Rxv(D) (we need B. Unbounded support

to use the technical condition (34) for proving this), and it The compact support condition is what allowed us to use

follows that we can transmit at all rates less thar (D).  quantization to reduce everything to the finite-alphabeteca
The sequence in which we choosg:, A’ depending on the where the method of types could work since the number of

rate 2 and the probability of errop, is possible types grew only polynomially in the block-length
1) ChooseA’ small enough so thak < Rx|y,, (D) — Dealing with this requires an appropriate truncation argomn
h(A") For space reasons, we merely sketch the essential ideas here
2) Choose ¢ small enough such thatR < 1) Pick a smalls > 0.
infy,, x)ep® 4 Rxpv,, (D) — h(A') 2) Pick a sufficiently large compact regiot, x V, (with
3) Choosen |argAe enough so that sum of error probabilities the obvious modifications if there is no coverstory) so
of eventsEy, Es, E3 < pe. that it satisfies the following properties:
Finally, we consider Case 6, that &f, ),V non-finite. This o P(XexVe)>1-6
is just a mixture of decoding rules for Case.d fion-finite,)’ o P(XJV =s5)>1-¢forall seV,
non-finite, V finite) and the previous case, Case ¥ (finite,  Let X., V. be the random variables, V' condi-
Y finite , V non-finite). tioned on their values lying within the compact re-
First quantizeX,) to size A. This way, we getpx, v gion X x V.. ThenRx v, (D) > (1-0)Rx v (D).
This reduces the problem to previous case wh&rend Y Given this, the distribution forP(X|V = s) can be
are finite and by combining the decoding rules of Case 4 and  Wwritten as a convex combinatiofl — 0) Py _|y,—s +
Case 5, it is easy to see that we can transmit at all rAtes 6Py, _, for some other distributiony , _ .
Rx,jv(D + g(A)) whereg(A) is defined analogous to that 3) Employ a two-part strategy for generating the random
in Case 3. codebook. First, we classify positions in the codebook
Taking A — 0, it follows that we can transmit at all rates as “clean” or “dirty” or “bad™:
R < Rx v (D). o Mark as “dirty” all positions wheréd/; is not in V..
Clearly, the technical condition in place of (34) in this eas o Flip a commonly random iid biased coin with
of X, non-finite, but bounded support, gz € X. probability of coming up heads for each position.
' ‘ Mark as “bad” all positions where the coin turns up
Aim Jmax Pxniva —sa (@alsa) =50y, s, (@alsar)| =0 heads. N
(38) « All remaining positions are “clean.”
This is just saying that the technical condition of the finife Next, we generate th#"” random codewords iid using
case should hold for all partitions & in this non-finite case. Px, v, in the clean positions. For dirty positions, we
The sequence in which we choose:, A, A’ to achieve a draw from Py, while bad positions are drawn from
rate R and probability of errok p. is P)/<|Vc' The resulting codewords look as though they are

drawn from Px |y .

4) For decoding, look at only the clean positions. If their
number is less tharil — 4)n, declare error. Beyond
that, we treat it as in the previous cases dealing with
compact support, using the appropriate quantization and
nearest typical neighbor decoding.

In terms of the probability of error, there is now a new error

) o - eventE, which corresponds to there being more than bad
Next, we state (without proof) sufficient conditions for they girty positions. By the weak law of large numbers (since ba

technical conditions, Equations (34) and (38) to hold. and dirty positions arrive no faster than a Bernoulli preess
1) Case 5, that is¥, Y finite, V non-finite: The following with expected rat@s), this cannot happen very often and so

weak convergence condition is sufficient for the techniP(E;) — 0 asn — occ.

1) ChooseA small enough so thak < Rx, v (D+g(A)).

2) ChooseA’ small enough so thalk < Rx,v,, (D +
9(A)) — h(A7).

3) Choose ¢ small enough so that R <
inf(y,, x5)ep e Bxalva (D +g(A)) = h(A")

VarX

4) Choosen large enough so that sum of error probabilities
caused by eventg, Fs, F5 add up to less thap..

cal condition (34) to hold: The other terms in the probability of error can be bounded
w by pretending that the attacker knows not only the dirty
Sa =8 == PX|[V=so — PX|V=s (39) positions, but also the bad ones. Assume it also knows that

our decoding rule is going to ignore all the dirty and bad

positions. With this knowledge, the worst thing it can do is

choose to allocate no distortion to those positions anddpen

that distortion over the clean positions. However, thisyonl

increases average distortion by a facﬁdjj—g over the clean
Sa — S = DxX|Ves. LN PX|V=s (40) positions that figure in the decoding process. By choosing

sufficiently small, we can be sure th@ < R(D(%)).
is sufficient for the technical condition (38) to hold.  Everything else proceeds as before.

2) Case 6, that isY, ),V non-finite: what we want is that
after discretizingX and), the same technical condition
should hold. Assuming thaty |y —, have densitiesthe
above condition,



Xl. STATIONARY-ERGODIC SOURCES 6) For the codewords, independently generate ttheng

So far, the information-embedding arguments seemed to Slots that are not bad by drawing from the stationary
depend strongly on the assumption of memorylessness. This distribution for Xi. Draw bad slots using”’ from (41)
is what allowed the method-of-types to be used. To deal with  and the prefix of the codewottiso far.
more general sources with memory, we can just apply a trick/) Generate thel-length dead-time slots in between by
similar to the truncation argument in Section X-B. Once agai sampling from the appropriate conditional distribution
in the interest of space, we simply sketch the key ideas in the once the followingt-long slot has been chosen.
context of finite-alphabet rate-distortion problems. It is clear that every codeword is thus a simulation of the
Suppose that the source process;} is stationary! and original process with memory. Conditioned on knowing where
ergodic. In such cases, the rate-distortion and conditi@ia- the good slots of length are, the process is iid from both the
distortion functions are defined in terms of limits of longexd encoder and decoder’s point of view and so reverts to the
longer finite-horizon problems(?. So, for anyt sufficiently previous case. The decoder can focus entirely on the good
long, thenR < Rx (D) implies also thatR < Rx:(tD). slots viewed as an iid process. Once again, the probability o
But before we simply pick & long enough, we need tohaving fewer than g1 — 2)) proportion of good slots goes
impose a technical condition that requires the process tg"“m to zero. Decoding error can be bounded by supposing that the
appropriately uniformly fast towards its stationary distition.  attacker knew which slots were good and what time-segments
Assume that for every > 0, 8 > 0, there exists a uniform were “dead-time.” Thus, the attacker can choose to coratentr
delayr so that for allt > 0, all possible valué$ ¢, all k > 0, all its distortion on the good slots. This increases the ayer

and all measurable subsetsof X*:

P(X[TaT1 e AIXT = al) = (1-M\)Pg( XF € A)+AP'(A)

(41)
where P’ is a probability measure that can depend explicitlyll]
on t,d,z! while Pgtat is a measure that does not have any
such dependence and is withirB of the stationary probability (2]
distribution for the original process.

Essentially, (41) just captures the idea that the process ha
fading memory and that if we wait long enough, the proces#!
will return to its stationary distribution regardless of ath
values the process might have taken in the past. It is eaj
to verify that (41) holds for all finite-state stationary edic
Markov chain$® as well as hidden Markov models with an !
underlying finite-state stationary ergodic Markov chain.

With this condition, the codebook construction proceeds iff]
the following sequence: 7]

1) Pick small enough\, 3

2) Based on the technical condition, calculate the require@]
delayd to make the process “forget” its past. [9]
Pick at sufficiently long so thatt%d is close tol, and
the finite horizon rate-distortion function is close to it
infinite-horizon limit.

Segment time regularly with time units of potentially
embedded data followed hytime units of dead-time. [11]
Use common-randomness to generate Bernoyliian- 1]
dom variables used to marklong slots as being bad.
This is done for the entire codebook, not on a codeword
by codeword basis.

3)
T10]
4)

5)

Usince time for us starts at, assume that it has been initialized into its
stationary distribution.

2]l the arguments here immediately generalize to the conditioate-
distortion case if the technical condition holds uniformlyeo all possible
realizations for the cover-story sequericg®. Essentially, we want to capture
the idea that the cover-story should not be able to force{thig} process
to strongly remember what it did in its distant past. This ctindican be
relaxed so that it is only required to hold for most realizat®f the cover-
story process.

distortion by a factor of at mostr?(3£22) — which is as
close tol as we want.

1-2A

REFERENCES

C. E. Shannon, Coding theorems for a discrete source witidedity
criterion, IRE National Convention Record, vol. 7, no. 4, pp 142-163.
A. Sahai, S. K. Mitter, The necessity and sufficiency oftame capacity
for stabilization of a linear system over a noisy communicatiok. Part
I: scalar systemdEEE Transactions on Information Theory, vol. 52, no.
8, pp 3369-3395.

M. Agarwal, A. Sahai, S. K. Mitter, A direct equivalencengpective
on the separation theorerfEEE Transactions on Information Theory,
in preparation.

D. Blackwell, L. Breiman, A. J. Thomasian, The capacity oflass of
channelsAnn. Math. Satistics, vol. 30, no. 4, December 1959

D. Blackwell, L. Breiman, A. J. Thomasian, The capacity @frtain
channel classes under random codifgp. Math. Satistics, vol. 31, no.
4, September 1960

I. G. Stiglitz, A coding theorem for a class of unknown ohals,|EEE
Tran. Info. Th., Vol. 13, Issue 2, Apr 1967, pp 217-220

I. Csiszar, P. Narayan, Channel capacity for a given dewp metric,
IEEE Tran. Info. Th,, Vol. 41, Issue 1, Jan. 1995, pp 35-43

R. W. Hamming, Error detecting and error correcting cod@ssl System
Technical Journal, Vol. 29, Apr. 1950, pp 147-160

P. Moulin, J. A. O'Sullivan, Information-theoretic aais of informa-
tion hiding, IEEE Tran. Info. Th., Vol. 49, Issue 3, March 2003, pp
563-593

A. Somekh-Baruch, N. Merhav, On the error exponent anpacay
games of private watermarking systenhSEE Tran. Info. Th, Vol. 49,
Issue 3, March 2003, pp 537-562

I. Csiszar, J. Kornefnformation Theory: Coding theorems for discrete
memoryless systems, Akademiai Kiado, 1981

V. Guruswami,List decoding of error correcting codes, PhD Thesis,
MIT, Aug. 2001

141f the block code is intended to be used over and over agaem th
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