
Coding into a source: a direct inverse Rate-Distortion theorem

Mukul Agarwal, Anant Sahai, and Sanjoy Mitter

Abstract— Shannon proved that if we can transmit bits reliably
at rates larger than the rate distortion function R(D), then we
can transmit this source to within a distortion D. We answer
the converse question “If we can transmit a source to within a
distortion D, can we transmit bits reliably at rates less than the
rate distortion function?” in the affirmative. This can be viewed
as a direct converse of the rate distortion theorem.

I. I NTRODUCTION

In [1], Shannon proved that if there is a channel with
capacityC > R(D), a source can be transmitted to within
a distortionD reliably over this channel (R(D) is the rate
distortion function for the source) in two steps:

1) SupposeC = R(D − α). First, source code to within a
distortion (D − α

2 ) by using random codes. The source
code has rate arbitrarily close toR(D − α

2 ).
2) Transmit these bits reliably1 over the channel.

The traditional converse to this separation theorem is proved
using the data-processing inequality and shows that no other
joint source-channel scheme can do any better.

We want to instead ask the converse question at the en-
gineering level2: if there is a “black box” over which an iid
sourceXi ∼ pX can be transmitted to within a distortion level
D, can we do reliable communication of bits (in the Shannon
sense) over this “black box” at rates less thanR(D)?

If one assumes that the communication ofXi over the
black box satisfies only an expected distortion constraint
Ed(Xi, X̂i) ≤ D, then wecannot guarantee reliable com-
munication. The black box should be viewed as an attacker
and the attacker can do anything that it wishes as long as it
meets the expected distortion constraint.

Consider an equiprobable binary source{0, 1} under the
Hamming distortion. Suppose the black box is constrained to
communicate this source to within an expected distortion of
0.25. A possible attacker could flip a fair coin once at the
beginning of time. If it is heads, then it transmits the symbols
perfectly for all time; if it is tails, it just transmits 0 for
all time. It is then easy to see that one cannot do reliable
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1The bounded nature of the distortion function only becomes important if

we are interested in end-to-end expected distortion. If allthat is desired is
for the probability of excess distortion to be arbitrarily small, then no such
assumptions are needed.

2Fundamentally, we are asking whether reliable lossless communication
is necessarily the right primitive that defines layering in a multipurpose
communication system. Could lossy coding serve as an equally good primitive
in principle?

communication over this attacker at any non-zero rate, whereas
the rate-distortionR(0.25) > 0.

Thus, the expected distortion constraint is not sufficient.It
turns out that a block distortion constraint is sufficient. If the
attacker is such that3

Pr

(

1

n

n
∑

t=1

d(Xt, Yt)

)

> D → 0 asn → ∞ (1)

it can be proved that reliable communication is possible over
this attacker at all rates less thanR(D). This is the main
theorem of this paper which is stated formally in Section III.

Following [2], one can draw an equivalence between all
rate-distortion problems with a given value ofR(D). Consider
the collection of all iid sources and corresponding distortion
levels, (Cβ ,Dβ) such thatRCβ

(Dβ) = R0. If any one of
these sources can be communicated over an attacker such that
the block distortion criterion (1) holds, then all of them can
be communicated to within a distortion level(Dβ + δ) over
this same attacker, for arbitrarily small positiveδ. One way to
show this is:

1) Source code one source to within the distortion level
Dβ + δ by using less thannR0 bits.

2) Communicate thesenR0 bits reliably by embedding
them into the source accepted by the attacker and
recovering them from the distorted sequence.

In Section II, we state the precise formulation of the
above problem. In Section III, we state our main theorem.
In Section IV, we state the connection of the formulated
problem to coding theory, arbitrarily varying channels and
to watermarking with no covertext. In Section V, we prove
the theorems stated in Section III and comment on them in
Section VI. Section VII formulates a conditional version of
the theorem and it is proved in Section VIII. In Section IX, we
state the relation of this problem to watermarking. SectionX
shows how to generalize to the case of non-finite sources
with difference distortion. Section XI, shows how the results
can be easily extended to stationary ergodic sources that mix
appropriately.

Because of space limitations, some of the details in the later
sections are omitted. The full proofs can be found in [3].

II. PROBLEM FORMULATION - UNCONDITIONAL CASE

We start with some notation:
• X = {1, 2, . . . , |X |} → finite set.X∞ is the input space.
• Y = {1, 2, . . . , |Y|} → finite set.Y∞ is the output space.

3For simplicity of notation, the dependence of the attacker onblock-length
n is suppressed. To be precise, (1) should be interpreted as a family of
attackers indexed byn such that the probability of excess distortion can be
made as close to zero as desired by choosing an attacker with anappropriately
largen. This parallels the existence result for channel coding.



• pX → probability distribution onX .
• X∞

1 → iid sequence of random variables, eachXi ∼ pX .
• d : X × Y → R is a non-negative valued function. We

should think ofd(i, j) as the distortion betweeni ∈ X ,
j ∈ Y. The focus is on the average additive distortion on
n-sequences,1

n
dn(xn

1 , yn
1 ) = 1

n

∑n
t=1 d(xt, yt).

• The Attacker is a black box which takes in the input
sequencex∞

1 ∈ X∞
1 and produces an outputy∞

1 ∈ Y∞
1 .

y∞
1 need not be a deterministic function ofx∞

1 ; it can be
randomized.
Note that the attacker is, in general, non-causal in the
sense that it takes in the whole input sequence, looks at
it, and produces an output sequence. The situation that
the attacker looks atx∞

1 and producesy∞
1 is the most

general possible. In practice, the attacker will only look
at finite length sequences and produce an output; this is
a special case of our definition.
The attacker can also be viewed as a channel. We will use
the words attacker and attack channel interchangeably.

• D-distortion attacker→ If the input to the attacker is
the random variable sequenceX∞

1 (defined above - each
Xi iid pX ), the attacker produces the random variable
sequenceY ∞

1 . This results in a joint probability measure
on (X∞

1 , Y ∞
1 ). Under this probability measure, there

should exist some functionf(n) with limn→∞ f(n) = 0
so that:

sup
t

Pr

(

1

n

t+n−1
∑

u=t

d(Xu, Yu) > D

)

≤ f(n) (2)

The above equation says that the average distortion
caused to long sequences is bounded byD with high
probability, and this probability→ 1 at least as fast4 as
1− f(n) with increasing block lengthsn uniformly over
at which time this sliding block5 is taken (hence, the name
D-distortion attacker).
Note that on an individual symbol level, the attacker is
essentially unconstrained — for anyXt, the attacker can
distort it really badly. It is only constrained over very
long blocks.

• pX ± ǫ will denote the set of all probability measuresqX

on X such that|qX(i) − pX(i)| ≤ ǫ∀i ∈ X .

As we can see, the rate-distortion problem when the input
sequence is iidpX is solved (in the sense of [2] by this attacker
for distortion valueD. The question we want to ask is, “Can
we transmit bits reliably over this attacker in the Shannon
sense, and if yes, at what rates?”

4No restrictions are made on how fastf(n) tends to zero — just that
we know how fast this probability goes to zero for this particular family of
attackers so that we can pick an appropriate block-length for the code.

5The purpose of the sliding block is merely to reduce notation in stating
the condition. All theorems will be proved within a single block of lengthn
that is sufficiently long on its own. This can be repeated withdisjoint blocks
if a stream of data needs to be transmitted.

III. M AIN RESULTS - UNCONDITIONAL CASE

Theorem 1: Assuming that there is common randomness
available at the transmitter and the receiver, all rates

R < RX(D) , inf
X ∼ pX

Ed(X,Y ) ≤ D

I(X;Y ) (3)

are achievable over aD-distortion attack channel, and in fact,
this can be done by using iidpX random codes.

The above theorem says that we can solve the Shannon com-
munication problem over aD-distortion attacker at all rates
less than the rate distortion function,RX(D). We comment
on the need for common randomness in Section VI after we
prove the above theorem.

We also have a converse theorem:
Theorem 2: Rates larger thanRX(D) can in general not be

achieved over aD-distortion attacker.

After a few comments about this formulation in the next
section, it is proved in the section after next.

IV. CONNECTIONS TOAVCS AND WATERMARKING

We can view the attacker as a non-causal arbitrarily varying
channel (AVC). The AVC is constrained in such a way that it
distortsmost input sequences to an average distortion less than
or equal toD where “most” is according to the iidpX measure
over the input sequences. The question that we are asking
is, “What is the capacity of this AVC?” The foundational
papers on AVCs are the papers by Blackwell, Breiman and
Thomasian, [4], [5]. [4] considers the case when the channel
is a fixed DMC coming from a particular set, but unknown. [5]
considers the case when the channel can vary arbitrarily, but
is a DMC at each time, and comes from a particular set based
on past history unlike in our case where the attack channel
at each time does not come from a particular set, nor is it
causal. Stiglitz [6] has the same setup as [5], but calculates
error exponents. Csiszar and Narayan [7] uses a minimum
distance decoding rule similar to the one that we will use, but
it does not consider AVCs in the form that we do.

To the extent that minimum distance is the relevant idea, this
work can also be considered a generalization of the original
formulation of coding theory in [8] with the distortion measure
generalizing the Hamming distance. In addition, the composi-
tion of the codewords is specified in advance. Fundamentally,
Theorem 1 says that every rate-distortion problem is also
associated with a coding theory problem.

This paper’s formulation can also be viewed as a wa-
termarking problem ([9]) with no covertext. The goal is to
embed our data in the input to an attacker that acts within
a distortion constraint. [10] by Somekh-Baruch and Merhav
is the closest to our work. It allows for non-causal attackers
and the definition of attacker is very similar to ours. But [10]
does not use a minimum distortion decoding rule — they use
another decoding rule which is superior in the sense that it
achieves the best possible error exponent. We believe that
proofs in [10], with slight modification, should be applicable



in our scenario too, but we use a different decoding rule (a
variant of minimum distance decoding) since it is arguably
more natural and achieves capacity. The distinction between
the two papers is more significant in the conditional case.

V. PROOFS- UNCONDITIONAL CASE

We first prove Theorem 1 stated in Section III and show that
by usingpX random codes, we can transmit reliably (in the
Shannon sense) at all ratesR < RX(D) over the D-distortion
attack channel.

Codebook Construction: Generate2nR codewords iidpX .
This is the codebook, which we denote byC.

Decoding: Fix ǫ > 0. Restrict attention to those codewords
which arepX -typical, that is, whose type lies inpX ±ǫ (recall
the definition ofpX±ǫ in Section II: allqX such that|qX(i)−
pX(i)| ≤ ǫ∀i ∈ X ).

Denote this restricted set of codewords byCR.
Let yn

1 denote the output of the attacker. If there is a
uniquepX -typical xn

1 in the codebook which is at an average
distortion less than or equal toD from the output sequence,
declare thatxn

1 was transmitted, else declare error.
We call our decoding rule the “ǫ-Nearest Typical Neighbor”

decoding rule. The truly nearest neighbor decoding rule might
be a bit more natural, but it is harder to analyze.

In what follows,
• xn

1 denotes the transmitted codeword.
• yn

1 denotes the received sequence (output of the attacker).
• zn

1 denotes apX typical codeword (that is,zn
1 ∈ CR) such

that zn
1 is NOT transmitted.

The error event can be decomposed into 3 parts.
• E1 → transmitted codeword atypical:xn

1 /∈ CR.
• E2 → Distortion caused by the attacker is not typical:

1
n

∑n
t=1 d(xt, yt) > D.

• E3 → a typical codeword which is not transmitted is at
an average distortion less than or equal toD from the
received sequence. Mathematically,∃zn

1 ∈ CR such that
zn
1 is not transmitted and1

n

∑n
t=1 d(xt, yt) ≤ D.

Clearly, Pr(error) ≤ Pr(E1) + Pr(E2) + Pr(E3). By the
weak law of large numbers,Pr(E1) → 0 as n → ∞.
Pr(E2) → 0 as n → ∞ follows by the definition ofD-
distortion attacker (2). To upper boundPr(E3), we do a type-
based calculation [11] on the probability of error for a given
received sequenceyn

1 .
In what follows, it will be helpful to remember thatq

will always denote probability measures withobserved types,
whereasp will always denote probability measures withtrans-
mitted types. Recall that the received sequence isyn

1 . Let the
type of yn

1 be qY , that is,∀j ∈ Y, the number ofj occurring
in yn

1 is nqY (j).
Sort the output to place all thej ∈ Y together, and

correspondingly shuffle the positions in the codebook’s code-
words. This leads to no change in distortion between shuffled
codewords and the sorted received sequenceyn

1 .
Look at a generic shuffled codewordzn

1 ∈ CR which is not
transmitted. Over the chunk of lengthnqY (j), let the type of
the corresponding entries ofzn

1 be qX|Y =j . (See Figure 1)

.......................... ...............................

.......................... ...............................

Blown up

nqY (1) nqY (j) nqY (|Y|)

nqY (j)qX|Y (1|j) nqY (j)qX|Y (i|j) nqY (j)qX|Y (|X||j)

Fig. 1. The sorted received sequenceyn
1 and the correspondingly shuffled

codewordzn
1 illustrating the relevant types.

For the error eventE3,
1) zn

1 is typical, that is,
∑

j∈Y

qY (j)qX|Y (i|j) ∈ pX ± ǫ∀i ∈ X (4)

Denote
∑

j∈Y qY (j)qX|Y (i|j) asqX(i). Thus,

qX ∈ pX ± ǫ (5)

2) zn
1 is at an average distortion≤ D from the received

sequenceyn
1 so
∑

i∈X ,j∈Y

qY (j)qX|Y (i|j)d(i, j) ≤ D (6)

Denote the distributionqY (j)qX|Y (i|j) on X × Y by
qX,Y (i, j). Thus,

EqXY
d(X,Y ) ≤ D (7)

Let us now bound the probability of eventE3.
First, the probability that over the chunk of lengthnqY (j),

the corresponding entries ofZn
1 have typeqX|Y =j (recall that

pX is the generating distribution of codewordZn
1 ) is given by:

≤ 2−nqY (j)D(qX|Y =j ||pX) (8)

Thus, the probability that over the whole block of lengthn,
in the chunksnqY (j), the corresponding entries ofzn

1 have
type qX|Y =j , for all j

≤ Πj∈Y2−nqY (j)D(qX|Y =j ||pX) (9)

= 2−n
P

j∈Y qY (j)D(qX|Y =j ||pX) (10)

= 2−nD(qXY ||pXqY ) (11)

It would be helpful to note the positions of wherep occur and
whereq occur, in the above expression.

To bound the probability thatzn
1 is at a distortion≤ D from

yn
1 , we have to sum the above probability over all possible

typesqX|Y =j , 1 ≤ j ≤ |Y| such that conditions 1 and 2 above
(equivalently, (5) and (7)) are satisfied.

Number ofqX|Y =j types≤ (n + 1)|X ||Y|. Also recall that
number of non-transmitted codewords|CR| ≤ 2nR.

Putting all this together and using the union bound,

Pr(E3| type of yn
1 is qY ) (12)

≤ (n + 1)|X ||Y|2nR2−n infqXY ∈S D(qXY ||pXqY )

whereS denotes the set of types satisfying conditions 1 and
2 (equivalently, (5) and (7)), and is

S =







qXY :
qX ∈ pX ± ǫ
EqXY

d(X,Y ) ≤ D
qY fixed







(13)



Now, qY , the type of the received sequenceyn
1 is arbitrary.

Thus, an easy way to boundPr(E3) is to just remove theqY

fixed condition from the above definition ofS.
Thus finally,

Pr(E3) ≤ (n + 1)|X |(|Y|+1)2nR2−n infqXY ∈T D(qXY ||pXqY )

(14)
whereT is the set

T =

{

qXY :
qX ∈ pX ± ǫ
EqXY

d(X,Y ) ≤ D

}

(15)

The only difference between the setsS andT is that theqy

fixed condition which exists inS has been removed inT .
Since (n + 1)|X |(|Y|+1) is a polynomial,Pr(E3) → 0 as

n → ∞ if

R < inf
qX ∈ pX ± ǫ

EdqXY
(X,Y ) ≤ D

D(qXY ||pXqY ) (16)

Thus to prove Theorem 1, it suffices to prove that

Θ1 , lim
ǫ→0

inf
qX ∈ pX ± ǫ

EqXY
d(X,Y ) ≤ D

D(qXY ||pXqY ) (17)

= RX(D) = inf
X ∼ pX

Ed(X,Y ) ≤ D

I(X;Y )

= inf
pX fixed

pY can vary
EpXY

d(X,Y ) ≤ D

D(pXY ||pXpY ) , Θ2

The main difference betweenΘ1 andΘ2 (note the definitions
of Θ1 andΘ2 in the above equation) is that:

• In Θ1, we haveD(qXY ||pXqY ); qX ∈ pX ± ǫ
• In Θ2, we haveD(pXY ||pXpY )

It is clear thatΘ1 has “more freedom” and hence,Θ1 ≤ Θ2.
All we need to prove is thatΘ1 ≥ Θ2.
This we do with a simple trick:

D(qXY ||pXqY ) = D(qX ||pX) + D(qXY ||qXqY ) (18)

≥ D(qXY ||qXqY )

Thus,

Θ1 ≥ lim
ǫ→0

inf
qX ∈ pX ± ǫ

EqXY
d(X,Y ) ≤ D

D(qXY ||qXqY ) (19)

So we only need to prove that

lim
ǫ→0

inf
qX ∈ pX ± ǫ

EqXY
d(X,Y ) ≤ D

D(qXY ||qXqY ) (20)

≥ lim
ǫ→0

inf
pX fixed

Ed(X,Y ) ≤ D

D(pXY ||pXpY )

This holds with equality, and follows from the continuity of
the rate distortion functionRX(D) in pX and proves the direct
theorem.

The sequence of choosingn, ǫ depending on the rateR <
RX(D) and probability of errorpe is:

1) Chooseǫ small enough so thatR < infX∈pX±ǫ RX(D).
2) Choosen large enough so that the total probability of

error from the eventsE1, E2 andE3 adds up to a value
less thanpe.

We now sketch the proof of the converse theorem, Theo-
rem 2, that is, in general, we cannot transmit at rates larger
than RX(D) over a D-distortion attacker. Another way of
stating this is that if one tries to transmit at rates larger than
RX(D), there is aD-distortion attacker such that we cannot
transmit reliably over this attacker.

First, consider the case that we are restricted to using iid
pX random codes; we will remove this restriction later.

Let the rate at which we want to transmit,R = RX(D −
α) > RX(D) for someα > 0.

We will show that there is a D-distortion attacker which is
a DMC for which error probability9 0.

Look at all DMCs that produce an average distortion of
(D − α

2 ) between the input and output when input ispX

distributed.

Cworst = inf
X ∼ pX

Ed(X,Y ) ≤ (D − α
2 )

I(X;Y ) (21)

But this value is preciselyRX(D − α
2 ). Also, any DMC that

produces an average distortion of(D − α
2 ) is a D-distortion

attacker (follows from the weak law of large numbers). Thus,
we have exhibited a DMC which is aD-distortion attacker and
over which, we cannot reliably at rates larger thanRX(D −
α
2 ) < RX(D − α) = R.

To remove the assumption that we have to usepX random
codes, consider the following attacker:

Fix ǫ > 0. The attacker looks at inputs of lengthn and if
the input is notpX typical (that is, the empirical type does not
lie in pX ± ǫ), the attacker will produce junk output, say the
all 1 sequence, whereas if the input sequence ispX -typical,
the attacker will act like the above DMC. The attacker needs
to keep increasing the length of sequences which it looks at
and attacks, and correspondingly decreaseǫ. It is intuitively
clear that if a codebook is chosen with a codeword which is
not pX -typical, the output of the attacker will give no positive
rate information about what was transmitted, and hence, the
encoder can not use such codewords to transmit reliably at
rates larger thanRX(D).

VI. COMMENTS ON THE PROOF

If one compares the proofs of Shannon’s channel coding
theorem and the above, the two are quite similar in the error
calculation for the eventE3, but there is one difference. In
Shannon’s theorem, proving that the average error probability
over the ensemble of codes→ 0 implies that there exists a
codebook for which the error probability→ 0 for every single
message. This is not immediately true in our case because the
attacker can use different strategies over different blocks.



Furthermore, if we were to use the same codebook over
and over again, the input would no longer look iidpx on
very long sequences and the attacker would be free to just
drive us to zero. Thus, the codebook has to be generated
at least somewhat independently in each block of lengthn.
This is where we use the assumption that there is common
randomness available — using this common randomness, the
transmitter and the receiver can generate the codebook again
and again, independently.

However, the code as given requires an exponentially large
amount of common randomness. This can easily be reduced
to a polynomial (in the block-lengthn) amount of common
randomness by using the following tricks:(details in [3])

• Simulate in advance whether the input block will beǫ-
typical or not. (Can useO(log n) bits) If it is atypical,
just declare error no matter what message was sent.

• Make slight modifications to the proof to instead show
the existence of deterministic codebooks with input types
like px ± ǫ that can be list-decoded to some possibly
large, but constant, list-sizel when facing a worst-case
attacker inducing a distanceD. This is done by patching
the above proof with arguments analogous to those for
Theorem 5.1 in [12]. The additional trick is just noticing
that I(X;Y ) = H(Y ) − H(Y |X) and that2nH(Y ) is
essentially the total number of output sequences6 of type
qY . When l is large enough, l

l+1H(Y ) − H(Y |X) is as
close as desired7 to RX(D).

• Once the deterministic codes are constant composition,
a random permutation of the indices will make each of
them behave as though they were drawn from the original
iid px distribution conditioned on the empirical type being
typical. This takesO(n log(n)) commonly-random bits.

• By using the code at a rate slightly less than the rate of the
code, the message can be padded with a randomly chosen
hash of the true message. This takes at most another
O(n) commonly-random bits and allows the decoder
to uniquely disambiguate the decoded lists with high
probability by just rejecting messages whose hashes do
not match up correctly.

VII. T HEOREM - CONDITIONAL CASE

Until now, we assumed that the input to the attacker should
be apX -iid sequence. Now, consider the case that the input is
still an independently generated sequence but the distribution
of Xi depends on an iid random variable sequenceV ∞

1 that
is revealed non-causally to all parties.

We state some notation to add to the notation previously.
• V →= {1, 2, . . . |V|} is a finite set. A generic element of

V will be denoted bys.

6Rather than computing the probability of error, we are computing the
expected number ofD-balls that have at leastl+1 codewords in them. For a
given l+1 codeword positions, this is just the existing probability of collision
raised to thel + 1 power times the number of possibleD-balls. The total
number of such combinations is also no more than2nR(l+1).

7And so the expected total number of collisions is as small as we want and
so there exists at least one deterministic codebook that has no such collisions
at thel-list level.

• pV → probability distribution onV.
• V ∞

1 → iid sequence of random variables generatedpV . In
watermarking terms, this can be thought of as the “cover-
story.” We will talk about relations to watermarking in
Section IX.

• pX|V =s → If Vi = s, Xi is generated according to the
distributionpX|V =s, but independently of otherXj . The
joint distribution on(Vi,Xi) will be denoted bypV X

• Attacker→ We assume thatVi is known noncausally
to the encoder, decoder and the attacker.

The next theorem is a conditional version of the inverse
rate-distortion theorem, Theorem 1.

Theorem 3: Assuming that there is common randomness
available at the transmitter and the receiver, all rates

R < RX|V (D) , inf
(V,X) ∼ pV X

Ed(X,Y ) ≤ D

I(X;Y |V ) (22)

are achievable over aD-distortion attack channel, and in fact,
this can be done by using iidpX|V random codes.

We omit a converse theorem though the same arguments as
above would give one.

VIII. PROOFS- CONDITIONAL CASE

The proof is very similar to the proof of the theorem in the
unconditional case. Recall thatV ∞

1 is known to the transmitter,
receiver, and attacker.

Codebook Construction: Generate2nR codewords iid
pX|V . This is the codebook, which we denote byC.

Decoding: Fix ǫ > 0. Restrict attention to those codewords
xn

1 such that(vn
1 , xn

1 ) is pV X typical, that is, whose type lies
in pV X ± ǫ.

Denote this restricted set of codewords byCR.
Note that ifvn

1 is not typical,CR will be empty. Thus:

• The definition ofCR implicitly assumes an error ifvn
1 is

not strongly typical.
• CR depends onvn

1 , that is, the codewords ofC which lie
in CR are different for differentvn

1 .

Let yn
1 denote the output of the attacker. If there is a unique

xn
1 in the restricted codebook which is at an average distortion

less than or equal toD from the output sequence, declare that
xn

1 was transmitted, else declare error. We call this the “ǫ-
Nearest Conditionally Typical Neighbor” decoding rule.

In what follows,zn
1 will denote a non-transmitted codeword

as before. As in the unconditional case, the error event consists
of 3 parts:

• E1 → (vn
1 , xn

1 ) is not typical. This is a slight modification
of E1 in the unconditional case.

• E2 → Distortion caused by the attacker is not typical, that
is, transmitted codeword is at an average distortion larger
than D from the received sequence. Mathematically,
1
n

∑n
t=1 d(xt, yt) > D. This is exactly the same as in

the unconditional case.
• E3 → a typical codeword which was not transmitted is

at an average distortion less than or equal toD from
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nqV (1) nqV (s) nqV (|V|)

nqV (s)qY |V (1|s) nqV (s)qY |V (j|s) nqV (s)qY |V (|Y||s)

nqV (s)qY |V (j|s)qX|V Y (i|s,j)

Fig. 2. The various types illustrated in the conditional rate-distortion case.

the received sequence. This is exactly the same as in the
unconditional case.

Pr(error)≤ Pr(E1)+Pr(E2)+Pr(E3). Pr(E1),Pr(E2) →
0 as in the unconditional case.

All we need to do is to upper boundPr(E3). As before, we
do a method-of-types calculation on the probability of possible
zn
1 that will cause an error for a given received sequenceyn

1 .
The only essential difference between this proof and in the

proof of the unconditional case is that we first do a sorting
based onV and then proceed exactly the same as before, that
is, do a sorting based onY and then do a sorting based onX.

Let the type ofvn
1 look like qV . Sort, so that allt such that

Vt = s are together. Over the subsequence whereVt = s, let
the type of the output produced by the attacker beqY |V =s.
Again, do a sub-sorting such that allYt = j are together
in each subsequence ofVt = s. In this (Vt = s, Yt = j)
subsequence, let the type of the subsequence ofzn

1 (recall
- zn

1 is a codeword which is NOT transmitted) look like
qX|Y =j,V =s. See Figure 2.

We now do thePr(E3) calculation.
First restrict attention to the subsequenceVt = s. Over this

subsequence, we do exactly what we did in the unconditional
case. It follows from the proof of the unconditional case that
the probability thatZn

1 looks like qX|V =s,Y =j given that the
yn
1 subsequence type looks likeqY |V =s is

≤ 2−nqV (s)D(qXY |V =s||pX|V =sqY |V =s) (23)

The probability that over the whole sequence, theZn
1 type

is qX|V,Y given that theY type isqY |V

≤ 2−n
P

s∈V qV (s)D(qXY |V =s||pX|V =sqY |V =s) (24)

= D(qXY |V ||pX|V qY |V |qV ) (25)

There are a polynomial number ofqV XY types, ≤ (n +
1)|V||X ||Y| and by argument similar to that in the unconditional
case,

Pr(E3) ≤ (26)

2nR(n + 1)|V||X |(|Y|+1)2−n infqV XY ∈R D(qXY |V ||pX|V qY |V |qV )

where the setR over which the above infimum is taken is:

1) (vn
1 , zn

1 ) is typical, that is,qV X ∈ pV X ± ǫ.
2) zn

1 is at an average distortion≤ D from the received
sequenceyn

1 , that is,EqV XY
d(X,Y ) ≤ D

Thus,

R =

{

qV XY :
qV X ∈ pV X ± ǫ
EqV XY

d(X,Y ) ≤ D

}

(27)

It follows that we only need to prove that

lim
ǫ→0

inf
qV X ∈ pV X ± ǫ

EqV XY
d(X,Y ) ≤ D

D(qXY |V ||pX|V qY |V |qV ) (28)

= RX|V (D) = inf
(V,X) ∼ pV X

Ed(X,Y ) ≤ D

I(X;Y |V )

= inf
pV X fixed

EdpV XY
(X,Y ) ≤ D

D(pXY |V ||pX|V pY |V |pV )

The proof of this follows in almost the same way as in the
unconditional case, just that we have to use the continuity of
RX|V (D) in pV X (in the unconditional case, we had used the
continuity of RX(D) in pX ).

This proves the conditional theorem, Theorem 3.

IX. RELATION TO WATERMARKING

We can view this conditional problem as a watermarking
problem with a coverstory8. In watermarking, the user is
allowed to make some tolerable level of distortion to the
covertext. We have a restriction of another kind, that is, if
the coverstory entry iss, the input distribution should be
pX|V =s. Also, in watermarking, the covertext is not known
to the attacker.9 We assume that the covertext is known to the
attacker. If one looks at (38) in the paper of Somekh-Baruch
and Merhav [10], this is the reason for the Markov Chain
condition U → X → Y . We do not have the Markov Chain
conditionV → X → Y because the covertextV is known to
the attacker.

X. CONTINUOUS ALPHABETS

In this section, we consider the case whenX , Y andV are
not necessarily finite discrete alphabets. We divide the problem
into 6 cases:

1) X finite, Y finite, V not there.
2) X finite Y finite, V finite.
3) X non-finite,Y non-finite,V not there.
4) X non-finite,Y non-finite,V finite.
5) X finite, Y finite, V non-finite.
6) X non-finite,Y non-finite,V non-finite.
We will refer to these as Cases 1 through 6. Case 1 is

the unconditional case covered in Theorem 1, Case 2 is the
conditional case covered in Theorem 3. We now go on to the
rest. The proofs will be based on quantization of the above
sets and using ideas from the proofs of Theorem 1 and 3.

For Case 3, we need to prove that rates< RX(D) are
achievable and for Cases 4,5,6, we need to prove that rates
< RX|V (D) are achievable.

8To distinguish it from the “covertext” in traditional watermarking
9Since otherwise, presumably the attacker could just replacethe input with

the covertext itself. The same is not true if it is considered as a coverstory.
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Fig. 3. Dependence graph for the proofs of the various cases

Figure 3 is a dependency graph of which proofs depend on
which.

A. Compact support

We first tackle Case 3, that is,X ,Y are non-finite sets, and
there is noV. We first assume thatX and Y are bounded
subsets ofRγ , for some positive integerγ. The case of
unbounded support is addressed later.

We first state some notation:

• X ,Y → bounded subsets ofRγ .
• a → generic point inX . We do not usex because of

potential confusion with the transmitted sequence.
• b → generic point inY. We do not usey because of

potential confusion with the received sequence.
• d : Rγ × Rγ → R is a difference distortion measure

which is assumed to beuniformly continuous with
respect to the Euclidean metric.

• D-distortion attacker→ Same as before. If the input
to the attacker is the random variable sequenceX∞

1 (
Xi iid pX ) , the attacker produces the random variable
sequenceY ∞

1 . This results in a joint probability measure
on (X∞

1 , Y ∞
1 ). Under this probability measure,

sup
t

Pr

(

1

n

t+n−1
∑

u=t

d(Xu, Yu) > D

)

→ 0 asn → ∞

(29)
• X∆,Y∆ → ∆-hypercube grid quantization ofX ,Y re-

spectively. The boundary of the hypercube can be put in
any of the adjoining sets but not both. The quantization
point is taken as the center of the hypercube.

• a∆ → Generic point ofX∆. a∆ ∈ X∆ is obtained by
quantizinga ∈ X .

• b∆ → Generic point ofY∆. b∆ ∈ Y∆ is obtained by
quantizingb ∈ Y.

• pX∆
→ Probability distribution onX∆ obtained from the

distributionpX on X in the obvious way.

Note that since the difference distortion function
is uniformly continuous and X ,Y are bounded,
1
n

∑n
t=1 d(xt∆, yt∆) ≤ 1

n

∑n
t=1 d(xt, yt) + g(∆)∀(xn

1 , yn
1 ) ∈

Xn × Yn whereg(∆) → 0 as∆ → 0.
It follows that under the distribution governing(Xn

1∆, Y n
1∆)

under theD-distortion attacker,

sup
t

Pr

(

1

n

t+n−1
∑

u=t

d(Xu∆, Yu∆) > D + g(∆)

)

→ 0 asn → ∞

(30)
If we work in the quantized world, this suggests what the
decoding rule should be.

Codebook Construction: Generate2nR codewords iidpX .
This is the codebookC. Let C∆ denote the quantized codebook
obtained by quantizing each codeword.

Decoding: Fix ǫ > 0.
Restrict attention to those quantized codewords which are

pX∆
-typical. Denote this restricted set of quantized codewords

by C∆
R .

Let yn
1∆ denote the quantized output of attacker. If there

is a uniquepX∆
-typical quantized codewordxn

1∆ which is
at an average distortion less than or equal toD + g(∆)
(note the changeD + g(∆) instead of D) from the output
sequence, declare thatxn

1 was transmitted, else declare error.
Mathematically, if∃!xn

1 ∈ CR such that 1
n

∑n
t=1 d(xt, yt) ≤

D + g(∆), declare thatxn
1 was transmitted, else declare error.

This decoding rule has reduced the problem to Case 1(finite
X and Y), and we can use results from there. Thus, we
can transmit at ratesR < RX∆

(D + g(∆)) using this
decoding rule. It can be shown using the appropriate continuity
arguments thatlim∆→0 RX∆

(D + g(∆)) = RX(D). This
proves that we can transmit at all rates< RX(D).

The sequence in whichn,∆, ǫ need to be chosen depending
on the desired rateR < RX(D) and the error probabilitype

is:

1) Choose∆ small enough so thatR < RX∆
(D + g(∆)).

2) Choose ǫ small enough so that R <
infX∆∈pX∆

±ǫ RX∆
(D + g(∆)).

3) Choosen large enough so that the sum of error proba-
bilities of eventsE1, E2, E3 is less thanpe.

Case 4, whereX ,Y are non-finite while the “coverstory”V
is finite, is proved in exactly the same way — by quantizing
X,Y finely enough.

Next we consider Case 5, that is,X ,Y are finite andV is
non-finite. We assume thatV is a bounded subset ofRη for
some positive integerη.

We introduce some notation regardingV.

• V → bounded subset ofRη.
• s → generic element ofV.
• V∆′ → ∆′ hypercube quantization ofV. The boundary

of the hypercube can be put in any of the adjoining sets.
Quantization is taken as the center of the hypercube. We
use∆′ instead of∆ because we use∆ for quantizingX
andY.

• s∆′ → Generic point ofV∆′ . s∆′ in V∆′ is got by
quantizings in V.

• S∆′ → quantization region (hypercube) ofV containing
the points∆′ ∈ V∆′ .

• pV∆′ → probability distribution onV∆′ got from pV on
V in the obvious way.



What is not obvious, though, is how to definepX|V∆′ .
We need to make definitions in such a way that we can do
probability of error calculations for the eventE3 (the other
two events,E1 andE2 will be trivial as usual).

psup
X|V∆′=s∆′

= sup
s∈S∆′

pX|V (i|s), i ∈ X (31)

pinf
X|V∆′=s∆′

= inf
s∈S∆′

pX|V (i|s), i ∈ X (32)

psup
X|V∆′=s∆′

is not, in general, a probability measure. It is a
measure with mass≥ 1 and denotes a measure which “domi-
nates” all probability measurespX|V =s over the quantization
region ofV which containss∆′ .

pinf
X|V∆′=s∆′

is not, in general, a probability measure. It
is a measure with mass≤ 1. It denotes a measure which
“is dominated by” all probability measurespX|V =s over the
quantization region ofV which containss∆′ .

Intuitively, if we make some continuity assumptions on
pX|V =s as s ∈ V varies, thenpsup

X|V∆′=s∆′
and pinf

X|V∆′=s∆′

will be close to each other. For small enough∆′, all s ∈ S∆′

are almost the same in the distribution induced onX .
Another reason for definingpsup

X|V∆′=s∆′
is that it helps us

to do error probability calculations. This is demonstratedby
the following lemma:

Lemma 1: Let pX be a probability distribution onX . Let
µX be a measure onX such thatµX(i) > pX(i) for all i ∈ X
(that is, µX dominatespX ). Let qX be another probability
distribution onX .

Then, probability that ann length sequence generated iid
pX has typeqX

pn
X(T (qX)) ≤ 2−nD(qX ||µX) (33)

where D(qX ||µX) is defined in the obvious way,
D(qX ||µX) ,

∑

i∈X qX(i)log qX(i)
µX(i)

Proof:

pn
X(T (qX))

≤ 2−nD(qX ||pX) (by method of types)

≤ 2−nD(qX ||µX) (trivial by definition of D(qX ||µX))

This lemma gives us a way of upper bounding the error
probability of a type class when we do not know the generating
distribution, but have an upper bound on the same, and this is
precisely the situation we are in.

We definepavg

X|V∆′=s∆′
as the probability measure obtained

by normalizingpsup
X|V∆′=s∆′

.
If we have some continuity conditions (which we will make

rigorous later) onpX|V , as measures,psup
X|V∆′=s∆′

, pinf
X|V∆′=s∆′

,
pavg

X|V∆′=s∆′
, {pX|V =s, s ∈ S∆′} will be quite close to each

other.
Also, the distributionspV∆′ and pavg

X|V∆′=s∆′
result in a

probability distribution on (V∆′ ,X) which we denote by
pavg

V∆′X
.

Next, we state the codebook formation and decoding rule:
Codebook Construction: Generate2nR codewords iid

pX|V . This is the codebookC.

Decoding: Fix ǫ > 0. Restrict attention to those codewords
xn

1 that(xn
1 , vn

1∆′) have an empirical typeqX,V∆′ that ispavg

V∆′X

typical. Denote this restricted set of codewords byCR.
Let yn

1 denote the output of the attacker. If there is a unique
xn

1 in the restricted codebookCR that is at an average distortion
less than or equal toD from the output sequence, declare that
xn

1 was transmitted, else declare error.
We impose the following technical condition10 on

psup
X|V∆′=s∆′

and pinf
X|V∆′=s∆′

, which captures mathematically,
the closeness ofpX|V =s1

andpX|V =s2
for s1 ands2 close.

Technical Condition: ∀i ∈ X

lim
∆′→0

max
s∆′∈V∆′

∣

∣

∣
psup

X|V∆′=s∆′
(i|s∆′) − psup

X|V∆′=s∆′
(i|s∆′)

∣

∣

∣
= 0

(34)
This condition says that psup

X|V∆′=s∆′
(i|s∆′) −

psup
X|V∆′=s∆′

(i|s∆′) → 0 as∆′ → 0 uniformly over all
partitions ofV.

We now do the probability of error calculations.
It is easy to check that with the above decoding rule, the

probabilities of error eventE2 → 0 as n → ∞. For E1, all
that is required is forn to be large enough whileǫ is also
large enough relative to∆′ so that[pinf

V∆′X − ǫ
2 , psup

V∆′X
+ ǫ

2 ] ∈
pavg

V∆′X
± ǫ. At that point, the weak law of large numbers is

enough to guarantee what is desired.
For Pr(E3), we follow the steps in the proof of Case 2 (X

finite Y finite, V finite) (Theorem 3) and use Lemma 1 to
replacepX|V with psup

X|V∆′
. It follows that we can transmit at

rates

R < lim
ǫ→0

inf
qV∆′X ∈ pavg

V∆′X
± ǫ

EdqV
∆′XY

(X,Y ) ≤ D

D
(

qXY |V∆′ ||p
sup
X|V∆′

qY |V∆′ |qV∆′

)

(35)
First thing that we need to take care ofpsup

X|V∆′
appearing

above - we want to somehow replace it bypavg

X|V∆′
. Using

the technical condition (34), it is easy to see that there is a
function h such that we can transmitR <

lim
ǫ→0

inf
qV∆′X ∈ pavg

V∆′X
± ǫ

EdqV
∆′XY

(X,Y ) ≤ D

D
(

qXY |V∆′ ||p
avg

X|V∆′
qY |V∆′ |qV∆′

)

−h(∆′)

(36)
where h(∆′) → 0 as ∆′ → 0. The first term above is the
same as that appearing in the proof of Case 2, the conditional
case withX ,Y,V finite, Equation 28. It follows that we can
transmit at all rates

R < inf
(V∆′ ,X) ∼ pavg

V∆′X

Ed(X,Y ) ≤ D

I(X;Y |V∆′)−h(∆′) = RX|V∆′ (D)−h(∆′)

(37)

10It can be shown to be satisfied for any joint distribution forX, V that
satisfies weak convergence in thatp(X|V = sn) → p(X|V = s) whenever
sn → s.



Now, lim∆′→0 RX|V∆′ (D) − h(∆′) = RX|V (D) (we need
to use the technical condition (34) for proving this), and it
follows that we can transmit at all rates less thanRX|V (D).

The sequence in which we choosen, ǫ,∆′ depending on the
rateR and the probability of errorpe is

1) Choose∆′ small enough so thatR < RX|V∆′ (D) −
h(∆′)

2) Choose ǫ small enough such that R <
inf(V∆′ ,X)∈p

avg
V
∆′X

±ǫ RX|V∆′ (D) − h(∆′)

3) Choosen large enough so that sum of error probabilities
of eventsE1, E2, E3 < pe.

Finally, we consider Case 6, that ofX ,Y,V non-finite. This
is just a mixture of decoding rules for Case 4 (X non-finite,Y
non-finite,V finite) and the previous case, Case 5 (X finite,
Y finite , V non-finite).

First quantizeX ,Y to size ∆. This way, we getpX∆|V .
This reduces the problem to previous case whereX and Y
are finite and by combining the decoding rules of Case 4 and
Case 5, it is easy to see that we can transmit at all ratesR <
RX∆|V (D + g(∆)) whereg(∆) is defined analogous to that
in Case 3.

Taking ∆ → 0, it follows that we can transmit at all rates
R < RX|V (D).

Clearly, the technical condition in place of (34) in this case
of X ,Y non-finite, but bounded support, is:∀x∆ ∈ X·

lim
∆′→0

max
s∆′∈V∆′

∣

∣

∣
psup

X∆|V∆′=s∆′
(x∆|s∆′) − psup

X∆|V∆′=s∆′
(x∆|s∆′)

∣

∣

∣
= 0

(38)
This is just saying that the technical condition of the finiteX
case should hold for all partitions ofX in this non-finite case.

The sequence in which we chooseǫ, n,∆,∆′ to achieve a
rate R and probability of error< pe is

1) Choose∆ small enough so thatR < RX∆|V (D+g(∆)).
2) Choose∆′ small enough so thatR < RX∆|V∆′ (D +

g(∆)) − h(∆′).
3) Choose ǫ small enough so that R <

inf(V∆′ ,X∆)∈p
avg
V
∆′X∆

±ǫ RX∆|V∆′ (D + g(∆)) − h(∆′)

4) Choosen large enough so that sum of error probabilities
caused by eventsE1, E2, E3 add up to less thanpe.

Next, we state (without proof) sufficient conditions for the
technical conditions, Equations (34) and (38) to hold.

1) Case 5, that is,X ,Y finite, V non-finite: The following
weak convergence condition is sufficient for the techni-
cal condition (34) to hold:

sα → s =⇒ pX|V =sα

w
−→ pX|V =s (39)

2) Case 6, that is,X ,Y,V non-finite: what we want is that
after discretizingX andY, the same technical condition
should hold. Assuming thatpX|V =s have densities, the
above condition,

sα → s =⇒ pX|V =sα

w
−→ pX|V =s (40)

is sufficient for the technical condition (38) to hold.

B. Unbounded support

The compact support condition is what allowed us to use
quantization to reduce everything to the finite-alphabet case
where the method of types could work since the number of
possible types grew only polynomially in the block-lengthn.
Dealing with this requires an appropriate truncation argument.
For space reasons, we merely sketch the essential ideas here:

1) Pick a smallδ > 0.
2) Pick a sufficiently large compact regionXc × Vc (with

the obvious modifications if there is no coverstory) so
that it satisfies the following properties:

• P (Xc × Vc) ≥ 1 − δ
• P (Xc|V = s) ≥ 1 − δ for all s ∈ Vc

• Let Xc, Vc be the random variablesX,V condi-
tioned on their values lying within the compact re-
gionXc×Vc. ThenRXc|Vc

(D) ≥ (1−δ)RX|V (D).
Given this, the distribution forP (X|V = s) can be
written as a convex combination(1 − δ)PXc|Vc=s +
δP ′

X|Vc=s for some other distributionP ′
X|Vc=s.

3) Employ a two-part strategy for generating the random
codebook. First, we classify positions in the codebook
as “clean” or “dirty” or “bad”:

• Mark as “dirty” all positions whereVt is not inVc.
• Flip a commonly random iid biased coin withδ

probability of coming up heads for each position.
Mark as “bad” all positions where the coin turns up
heads.

• All remaining positions are “clean.”
Next, we generate the2nR random codewords iid using
PXc|Vc

in the clean positions. For dirty positions, we
draw from PX|V while bad positions are drawn from
P ′

X|Vc
. The resulting codewords look as though they are

drawn fromPX|V .
4) For decoding, look at only the clean positions. If their

number is less than(1 − 4δ)n, declare error. Beyond
that, we treat it as in the previous cases dealing with
compact support, using the appropriate quantization and
nearest typical neighbor decoding.

In terms of the probability of error, there is now a new error
eventE0 which corresponds to there being more than4δn bad
or dirty positions. By the weak law of large numbers (since bad
and dirty positions arrive no faster than a Bernoulli processes
with expected rate2δ), this cannot happen very often and so
P (E0) → 0 asn → ∞.

The other terms in the probability of error can be bounded
by pretending that the attacker knows not only the dirty
positions, but also the bad ones. Assume it also knows that
our decoding rule is going to ignore all the dirty and bad
positions. With this knowledge, the worst thing it can do is
choose to allocate no distortion to those positions and spend
that distortion over the clean positions. However, this only
increases average distortion by a factor1+4δ

1−4δ
over the clean

positions that figure in the decoding process. By choosingδ
sufficiently small, we can be sure thatR < R(D( 1+4δ

1−4δ
)).

Everything else proceeds as before.



XI. STATIONARY-ERGODIC SOURCES

So far, the information-embedding arguments seemed to
depend strongly on the assumption of memorylessness. This
is what allowed the method-of-types to be used. To deal with
more general sources with memory, we can just apply a trick
similar to the truncation argument in Section X-B. Once again,
in the interest of space, we simply sketch the key ideas in the
context of finite-alphabet rate-distortion problems.

Suppose that the source process{Xt} is stationary11 and
ergodic. In such cases, the rate-distortion and conditional rate-
distortion functions are defined in terms of limits of longerand
longer finite-horizon problemsXt

1. So, for anyt sufficiently
long, thenR < RX(D) implies also thattR < RXt

1
(tD).

But before we simply pick at long enough, we need to
impose a technical condition that requires the process to “mix”
appropriately uniformly fast towards its stationary distribution.

Assume that for everyλ > 0, β > 0, there exists a uniform
delayτ so that for allt > 0, all possible values12 xt

1, all k > 0,
and all measurable subsetsA of X k:

P (Xt+d+k−1
t+d ∈ A|Xt

1 = xt
1) = (1−λ)P β

stat(X
k
1 ∈ A)+λP ′(A)

(41)
whereP ′ is a probability measure that can depend explicitly
on t, d, xt

1 while P β

stat is a measure that does not have any
such dependence and is within±β of the stationary probability
distribution for the original process.

Essentially, (41) just captures the idea that the process has
fading memory and that if we wait long enough, the process
will return to its stationary distribution regardless of what
values the process might have taken in the past. It is easy
to verify that (41) holds for all finite-state stationary ergodic
Markov chains13 as well as hidden Markov models with an
underlying finite-state stationary ergodic Markov chain.

With this condition, the codebook construction proceeds in
the following sequence:

1) Pick small enoughλ, β
2) Based on the technical condition, calculate the required

delayd to make the process “forget” its past.
3) Pick at sufficiently long so that t

t+d
is close to1, and

the finite horizon rate-distortion function is close to its
infinite-horizon limit.

4) Segment time regularly witht time units of potentially
embedded data followed byd time units of dead-time.

5) Use common-randomness to generate Bernoulli(λ) ran-
dom variables used to markt-long slots as being bad.
This is done for the entire codebook, not on a codeword
by codeword basis.

11Since time for us starts at1, assume that it has been initialized into its
stationary distribution.

12All the arguments here immediately generalize to the conditional rate-
distortion case if the technical condition holds uniformly over all possible
realizations for the cover-story sequenceV∞1 . Essentially, we want to capture
the idea that the cover-story should not be able to force the{Xt} process
to strongly remember what it did in its distant past. This condition can be
relaxed so that it is only required to hold for most realizations of the cover-
story process.

13Because they must mix exponentially fast based on the second largest
eigenvalue of the transition matrix.

6) For the codewords, independently generate thet-long
slots that are not bad by drawing from the stationary
distribution forXt

1. Draw bad slots usingP ′ from (41)
and the prefix of the codeword14 so far.

7) Generate thed-length dead-time slots in between by
sampling from the appropriate conditional distribution
once the followingt-long slot has been chosen.

It is clear that every codeword is thus a simulation of the
original process with memory. Conditioned on knowing where
the good slots of lengtht are, the process is iid from both the
encoder and decoder’s point of view and so reverts to the
previous case. The decoder can focus entirely on the good
slots viewed as an iid process. Once again, the probability of
having fewer than a(1 − 2λ) proportion of good slots goes
to zero. Decoding error can be bounded by supposing that the
attacker knew which slots were good and what time-segments
were “dead-time.” Thus, the attacker can choose to concentrate
all its distortion on the good slots. This increases the average
distortion by a factor of at mostt+d

t
( 1+2λ
1−2λ

) — which is as
close to1 as we want.
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general the dead-times must be interpolated in a way that takesinto account
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