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Abstract

Motivated by the lossy compression of an active-vision video stream, we consider the problem of finding the
rate-distortion function of an arbitrarily varying source (AVS) composed of a finite number of subsources with known
distributions. Berger’s paper ‘The Source Coding GaneEE Trans. Inform. Theoryl971, solves this problem
under the condition that the adversary is allowed only strictly causal access to the subsource realizations. We consider
the case when the adversary has access to the subsource realizations non-causally. Using the type-covering lemma,
this new rate-distortion function is determined to be the maximum of the IID rate-distortion function over a set of
source distributions attainable by the adversary. We then extend the results to allow for partial or noisy observations
of subsource realizations. We further explore the model by attempting to find the rate-distortion function when the
adversary is actually helpful.

Finally, a bound is developed on the uniform continuity of the IID rate-distortion function for finite-alphabet
sources. The bound is used to give a sufficient number of distributions that need to be sampled to compute the
rate-distortion function of an AVS to within a certain accuracy. The bound is also used to give a rate of convergence
for the estimate of the rate-distortion function for an unknown IID finite-alphabet source .

Index Terms

Rate-distortion, arbitrarily varying source, uniform continuity of rate-distortion function, switcher, lossy com-
pression, source coding game, estimation of rate-distortion function

. INTRODUCTION
A. Motivation

Active vision/sensing/perception [2] is an approach to computer vision, the main principle of which is that sensors
should choose to explore their environment activedged on what they currently sense or have previously sensed
As Bajcsy states it in [2], “We do not just see, we look.” The contrast to passive sensors can be seen by comparing a
fixed security camera (non-active) to a person holding a camera (active). Even if the person is otherwise stationary,
they may zoom the camera into any part of their visual field to obtain a better view (e.qg. if they see a trespasser).
There is also the possibility that the sensor has noncausal information about the environment. For example, a
cameraman at a sporting event generally has only causal knowledge of the environment. A cameraman on a movie
set, however, has noncausal information about the environment through the script. The noncausal information can
be advantageous to the cameraman in (actively) capturing the important features of a scene.

There is a subtle distinction between causal and strictly causal information and this distinction is related to the
time-scales on which the environment changes. A causal active sensor knows both the present and the past, bu
a strictly causal one knows only the past. If the environment changes at a pace much slower than the sensor car
actively look, there is essentially no difference between knowing the immediate past and knowing the present.
However, if the environment changes at a pace faster then the sensor can actively look (and process information),
there is intuitively a substantial difference between knowing only the past and knowing the present.

As motivation for this paper, we are interested in the fixed-rate lossy compression of an active-vision source. In
reality, there are many interesting questions that need to be answered to truly understand the problem, including:

« What is the relevant distortion measure for active-video?

« Is there a distinction between the compression of an active-video source for use by the closed-loop control
system that points the camera as compared to compression for later off-line use?

« How to model the entire plenoptic function that the active-video source will be dynamically sampling? [3]
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It is also clear that the core issues here extend well beyond vision. They also arise in a series of sensor-
measurements that were dynamically sampled by a distributed sensor network as well as the case of measurement
taken by an autonomously moving sensor that chooses where to go in part based on what it is observing. More
provocatively, similar issues of active-sources arise when the successive source symbols are brought by customers
each of which has free will and can choose among competing codecs for comptession.

We concentrate entirely on the simplest aspect of the problem: what is the impact on the rate-distortion function
of having the source being actively sampled by an entity that knows something about the realizations of the
environment as it does the sampling. Thus, we assume an overly simplified traditional rate-distortion setting with
known finite alphabets and bounded distortion measures. The goal is the traditional block-coding one: meet an
average distortion constraint with high probability using as little rate as possible.

The modeling question is whether or not it is worth building a detailed model for how the active-source is going
to be doing its dynamic sampling of the source. Three basic ways to model the goals of the camera are worst case
(adversarial), random (agnostic), and helpful (joint optimization of camera and coding system). Admittedly, the
most interesting problems involve the compression of sources with memory, but following tradition we focus on
memoryless sources to understand the basic differences between active and non-active sources for lossy compressio

In the context of active-vision, a strictly causal adversary pointing a camera is intuitively no more threatening than
a robot randomly pointing the camera when the scene being captured is memoryless. This intuition was formally
proved correct in [5] by Berger as he determined the rate-distortion function for memoryless sources and a strictly
causal adversarial model. This paper determines the rate-distortion function for the additional cases of causal and
non-causal adversaries. The model is then extended to allow only noisy observations by the adversary doing the
sampling of the scene. To see the impact of the details of the dynamic sampling on the rate-distortion function, the
paper also considers how the rate-distortion function changes when the ‘adversary’ is actually a helpful party.

B. Causality in information theory

The issue of causality arises naturally in several major problems of information theory where noncausal knowledge
of the realizations of randomness in the problem can be advantageous. Shannon [6] studied the problem of
transmitting information over a noisy channel with memoryless state parameter revealed to the encoder causally.
Gelfand and Pinsker [7] studied the same problem with the state parameter available to the encoder noncausally. Ir
general, the capacity is larger when the channel state is available noncausally to the encoder. When the channel stat
corresponds to Gaussian interference known noncausally, Costa [8] showed that the capacity is the same as whe
the interference is not present at all. Willems ([9], [10]) gave achievable strategies when the Gaussian interference is
known only causally. Lattice strategies for both causal and non-causal knowledge of the interference are discussec
in [11], but the advantage of finitely anticipatory knowledge of interference is not yet explicitly understood even
in the case of Gaussian interference.

Agarwal et.al. [12] find the capacity for an arbitrarily varying channel whose input is constrained to look like an
IID source with known distribution. The adversary is constrained to distort over a block to at most some (additive)
distortion, but is not constrained to act causally. [12] shows that the rate-distortion function turns out to be the
capacity for this channel. Because the codewords are constrained to look IID, simulating the action of a causal
memoryless channel turns out to be sufficient for the adversary to minimize the capacity.

Causality also has implications for the problem of lossy source coding, as studied by Neuhoff and Gilbert [13].
There, for an 1ID source, causal source codes generally require a higher rate to achieve distdtieom non-
causal source codes. It is also shown that optimal causal source codes can be constructed by time-sharing betwee
memoryless codes. Hence, there is a rate penalty for using causal coders (as opposed to noncausal coders), b
no further penalty for using memoryless coders. Similar results have been derived by Weissman and Merhav [14]
for lossy source coding with causal and noncausal side information. In [13], the channel was implicitly assumed
to noiseless and binary. Tatikonda, et.al [15] show that even if the channel is matched properly to achieve the
sequentialrate-distortion function, there is a penalty for using causal coders when the sources have memory. For
example, they show that proper matching for a Gauss-Markov source is a Gaussian channel with feedback, but the
rate-distortion performance with this causal matching still does not meet the performance of noncausal coders.

1This is related to a particularly odd kind of moral hazard in private health insurance markets. Somewhat counterintuitively, private health
insurers actually have a disincentive to provide good treatment of chronic conditions since they fear attracting patients that are intrinsically
likely to get sick! [4]



C. Results and organization of paper

Section Il sets up the notation, model and briefly reviews the literature on lossy compression of arbitrarily
varying sources. Section Il gives the rate-distortion function for an AVS when the adversary has noncausal access
to realizations of a finite collection of memoryless subsources and can sample among them. As shown in Theorem
3.1, the rate-distortion function for this problem is the maximization of the IID rate-distortion function over the
memoryless distributions the adversary can simulate. The adversary requires only causal information to impose this
rate-distortion function. This establishes that when the subsources are memoryless, the rate-distortion function can
strictly increase when the adversary has knowledge of the present subsource realizations, but no further increase
occurs when the adversary is allowed knowledge of the future.

We then extend the AVS model to include noisy or partial observations of the subsource realizations and determine
the rate-distortion function for this setting in Section IV. As shown in Theorem 4.1, the form of the solution is the
same as for the adversary with clean observations, with the set of attainable distributions essentially being related
to the original distributions through Bayes’ rule.

Next, Section V explores the problem when the goal of the active sensor is to help the coding system achieve a
low distortion. Theorem 5.1 gives a characterization of the rate-distortion functions if the helper is fully noncausal
in terms of the rate-distortion function for an associated lossy compression problem. As a corollary, we also give
bounds for the cases of causal observations and noisy observations.

Simple examples illustrating these results are given in Section VI. In Section VII, we discuss how to compute
the rate-distortion function for arbitrarily varying sources to within a given accuracy using the uniform continuity
of the 11D rate-distortion function. The main tool there is an explicit bound on the uniform continuity of the 11D
rate-distortion function that is of potentially independent interest. Finally, we conclude in Section VIII.

All the problems in this paper are studied in the context of fixed-length block coding. Variable-length coding
could perform better in a universal sense by using only as much rate as required when the active sensor is not
adversarial. However, we are interested in determining upper and lower bounds for the rate that active sensors might
end up needing and for this purpose, fixed-length block coding is appropriate.

Il. PROBLEM SETUP

A. Notation
Let X and X be the finite source and reconstruction alphabets respectively’Let (x1,...,z,) denote an
arbitrary vector fromX™ andx"™ = (zy,...,z,) an arbitrary vector from¥’™. When neededx" (x1,...,2k)

will be used to denote the firét symbols in the vectok™. R
Letd: X x X — [0,d*] be a distortion measure on the product ek X with maximum distortiond* < co.
Let B
d= min d(z,x 1
(z,%): d(z,2)>0 ( ) @

be the minimum nonzero distortion. Defidg : X™ x X™ — [0, d*] for n > 1 to be
dp (x", X") Zd Tk, T)- 2)

Let P(X) be the set of probability distributions ofi, let 7, (X’) be the set of types of length strings from
X, and let)V be the set of probability transition matrices frothto X'. Let px-» € P, (X) be the empirical type
of a vectorx”. For ap € P(X), let

Din( Zp mind(x,) 3)

zEX :BEX

be the minimum average distortion achievable for the source distribpitibhe rate-distortion function of € P(X)
at distortionD > Dy, (p) with respect to distortion measudeis defined to be

R(p,D) = in I(p.W 4
(p, D) wan (p, W), (4)
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Fig. 1. A class of models for an AVS. The switcher can set the switch position according to the rules of the model.
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Let B = {x"(1),...,x"(K)} be a codebook with lengths vectors fromX™. Define
dn(x"; B) = min d,(x",X"). (7)
"B

If B is used to represent an 11D source with distributjgrthen the average distortion #f is defined to be

d(B) = Y P(X")dn(x"; B) = Eld,(x"; B)], 8)
xnEX™
where .
P(x") = [[ plxx)- (9)
k=1

Forn > 1, D > Dpuin(p), let K(n, D) be the minimum number of codewords needed in a codeltbakX™ so
that d(B) < D. By convention, if no such codebook exisf§(n, D) = cc. Let the rate-distortion functidnof an
IID source beR(D) = limsup,, % In K (n, D). Shannon’s rate-distortion theorem ([16], [17]) states that forall
11n K(n, D) > R(p, D) and
1
liminf —In K (n, D) = R(D) = R(p, D). (10)

n—oo n,

B. Arbitrarily varying sources

The source coding game is a two-player game introduced in [5] by Berger as a model for an AVS. The two
players are called the ‘switcher’ and ‘coder’. In a coding context, the coder corresponds to the designer of a lossy
source code and the switcher corresponds to a potentially malicious adversary pointing the camera.

Figure 1 shows a model of an AVS. There atdID ‘subsources’ with common alphabat. In [5], the subsources
are assumed to be independent, but that restriction turns out not to be régiiltece can be multiple subsources
governed by the same distribution. In that sense, the switcher has accdsst tuf a» subsources, rather than a set

2\We use natural log, denotdd, and nats in most of the paper. In examples only, we use bits.

*We defineR(Dmin(p)) = limp, p, ., (» R(D). This is equivalent to saying that a sequence of codes represent a source to within distortion
D if their average distortion is tending tB in the limit. The only distortion where this distinction is meaningfullsn (p).

“In [5], the motivation was multiplexing data streams and independence is a reasonable assumption, but the proof does not require it.
Active sources, however, would likely choose among correlated subsources in practice.



of m different distributions. The marginal distributions of the subsources are known to §e;};”, and we let
G={p1,....,pm} Let P(z11,...,2my,1) be the joint probability distribution for the IID sourd€z; i, . .., Zm k) }-
Fix ann > 1 and consider a block of length We letz; ;, denote the output of th#" subsource at timé. We will
usex;' to denote the vectair; 1, ..., ;). At each timek, the AVS outputs a letter;, which is determined by the
position of the switch inside the AVS. The switch positions are dengted (s, ..., s,) With s € {1,2,...,m}
for eachl < k < n. With this notation,z;, = =, 5, for 1 <k < n.

The switcher can set the switch position according to the model for the AVS. For example, in the compound
source setting of Sakrison [18], the switcher chooses{1,...,m} and setss; = s for 1 < k < n. The main
case analyzed in [5] allowed the switcher to chamgerbitrarily, but the switcher only had knowledge at tihe
of s*~1 andx*~!. That is, the switcher only had knowledge of past switch positions and past AVS outputs before
deciding the switch position at each time. One of the cases analyzed in this paper is termed full-lookahead, where
the switcher makes a (possibly random) decision about thes'fullith knowledge ofx?,x%, ..., x}, beforehand.
The other case is termeldstep lookaheay where for eaclk, s, is a (possibly random) function off, ... xk .
The switcher may or may not have knowledge of the codebook, but this knowledge turns out to be inconsequential
for the rate-distortion function.

The coder’s goal is to design a codebadslof minimal size to represent™ to within distortion D on average.
The codebook must be able to do this éaeryallowable strategy for the switcher according to the model. Define

BC X", Eld,(x";B)] <D
M(n, D) =min{ |B] : for all allowable : (11)
switcher strategies

Here, E[d, (x"; B)] is defined to be)__. (3 .. P(s",x")) d,(x"; B), where P(s",x") is an appropriate prob-
ability mass function on{1,...,m}" x X" that agrees with the model of the AVS. When the switcher has full
lookahead,P(s™,x™) must be composed of conditional distributions of the form

P(s", x"|x},...,xp) = P(s"|x},...,x],) - H H(xp =z, k)- (12)
k=1
Then, P(s™,x™) is simply obtained by averaging ovex?, ..., x7,).
P(s",x") = Z (H P(xlyk,...,xmk)) P(s"|xT,...,x]). (13)
(X7 ,.x™) \k=1

For a set of distribution® C P(X), let Dyin(Q) = SUPpeQ Din(p). We are interested in the exponential rate of
growth of M (n, D) with n. Define the rate-distortion function of an AVS to be

1
R(D) £ limsup - In M (n, D). (14)

In every case considered, it will be also be clear tRaD) = lim inf,, .o 2 In M (n, D).

C. Literature Review

a) One IID source:Supposen = 1. Then there is only one IID subsourpge = p and the switch position is
determined to be; = 1 for all time. This is exactly the classical rate-distortion problem considered by Shannon
[16], and he showed

R(D) = R(p, D). (15)

Computing R(p, D) can be done with the Blahut-Arimoto algorithm [19], and also falls under the umbrella of
convex programming.

SWe use the termi-step lookahead even though this term is meant to represent the causal (but not strictly) switcher. In most of the
information theory literature, ‘causal’ knowledge includes knowledge of the present.



b) Compound sourceNow suppose that: > 1, but the switcher is constrained to chogge= s € {1,...,m}
for all k. That is, the switch position is set once and remains constant afterwards. Sakrison [18] studied the rate-
distortion function for this class ofompoundsources and showed that planning for the worst case subsource is
both necessary and sufficient. Hence, for compound sources,

R(D) = Ilrjleagx R(p, D). (16)

This result holds whether the switch position is chosen with or without knowledge of the realizationsraf the
subsources. Herd?(D) can be computed easily sinee is finite and each individuaR(p, D) can be computed.

c) Causal adversarial sourceln Berger's setup [5], the switcher is allowed to choogec {1,...,m}
arbitrarily at any timek , but must do so in a strictly causal manner without access to the current time step’s
subsource realizations. More specifically, the switch positigris chosen as a (possibly random) function of

(s1,...,8k—1) and(z1,...,z_1). The conclusion of [5] is that under these rules,
R(D) = max R(p,D), (17)
peconv(G)

where conv(G) is the convex hull ofG. It should be noted that this same rate-distortion function applies in the
following cases:

« The switcher chooses, at each time: without any observations at all.

« The switcher chooses, as a function of the firsk — 1 outputs ofall m subsources.
Note that in (17), evaluating2(D) involves a maximization over an infinite set, so the computatio®@D) is
not trivial since R(p, D) is not necessarily a concave function. A simple, provable, approximate (to any given
accuracy) solution is discussed in Section VII.

[1l. R(D) FOR THE CHEATING SWITCHER

In the conclusion of [5], Berger poses the question of what happens to the rate-distortion function when the rules
are tilted in favor of the switcher. Suppose that the switcher were given access #o shsource realizations
before having to choose the switch positions; we call such a switcher a ‘cheating switcher’. In this paper, we deal
with two levels of noncausality and show they are essentially the same when the subsources are 11D over time:

o The switcher chooses, based on the realizations of the subsources at timé. We refer to this case as

1-step lookahead for the switcher.

» The switcher choose@;, .. ., s,) based on the entire lengthrealizations of then subsources. We refer to

this case as full lookahead for the switcher.

Theorem 3.1: Suppose the switcher hasstep lookahead or full lookahead. In both cases,/for Dy, (C),
R(D) = R(D) £ max R(p, D), (18)
p

where

Sievp(i) > Pz eV, 1 <1< m)
C=4 peP : V V such that , (19)
VX

For D < Duin(C), R(D) = oo by convention because the switcher can simulate a distribution for which the
distortion D is infeasible for the coder.
Remarks:

« If there are at least two non-deterministic subsourcesam¥(G) # P(X'), thenconv(G) is a strict subset
of C, and thusR(D) can strictly increase when the switcher is allowed to look at the present subsource
realizations before choosing the switch position. Hence, extra rate must be provisioned for active sensors in
general.

o As a consequence of the theorem, we see that when the subsources within an AVS are 11D, knowledge of
past subsource realizations is useless to the switcher, knowledge of the current step’s subsource realizations i
useful, and knowledge of future subsource realizations beyond the current step is usklstepifookahead
is already given.



« Note that computingR?(D) requires further discussion given in Section VII, just as it does for the strictly
causal case of Berger.

_ Proof: We give a short outline of the proof here. See Appendix I for the complete proof. To By <
R(D), we use the type-covering lemma from [5]. It says for a fixed typge P,(X) ande > 0, all sequences
with type p can be covered within distortio® with at mostexp(n(R(p, D) + €)) codewords for large enough
Since there are at mo$t + 1)I*! distinct types, we can cover all-length strings with types i€ with at most
exp(n(R(D) + '%I In(n + 1) + €)) codewords. Furthermore, we can show that types nat atcur exponentially
rarely even if the switcher has full lookahead, meaning that their contribution to the average distortion can be
bounded byd* times an exponentially decaying term in Hence, the rate needed regardless of the switcher
strategy is at mosR(D) + e with ¢ > 0 arbitrarily small.

Now, to showR(D) > R(D), we describe one potential strategy for the adversary. This strategy requires only
1-step lookahead and it forces the coder to use rate at l&@3). For each sev c X with V # ) and |V| < m,
the adversary has a random ryfé-|V), which is a probability mass function (PMF) oA At each timek, if
the switcher observes a candidate &ety, ...,z s}, the switcher chooses to outpute {x1 4, ...,z } With
probability f(z|{z1k,...,Zmr}). If BV) =P{{z1 k.., 2mi} =V), let

p(z) = ng&mgm BV)f(xlV),z € X
DES peP f(-|V) is a PMF onV, : (20)
VVSLVYCAX, [V <m

D is the set of IID distributions the AVS can ‘simulate’ using these memoryless rules requistep lookahead.
It is clear by construction tha® C C. Also, it is clear that botlf andD are convex sets of distributions. Lemma
1.3 in Appendix | uses a separating hyperplane argument to §hewC. The adversary can therefore simulate
any IID source with distribution i€ and henceR(D) > R(D). |

Qualitatively, allowing the switcher to ‘cheat’ gives access to distributipasC which may not be irconv(G).
Quantitatively, the conditions placed on the distribution<imare precisely those that restrict the switcher from
producing symbols that do not occur often enough on average. For example=Iét } wherel € X, and suppose
that the subsources are independent of each other. Then for ewefy

p(1) = [[pu(D). (21)
=1

[T;%, m(1) is the probability that alln subsources produce the letteat a given time. In this case, the switcher
has no option but to output the letter hence any distribution the switcher mimics must have) > [T, pi(1).
The same logic can be applied to all subsgtef X.

IV. NOISY OBSERVATIONS OF SUBSOURCE REALIZATIONS

A natural extension of the AVS model is to consider the case when the adversary has noisy access to subsource
realizations through a discrete memoryless channel before pointing the camera. Since the subsource probability
distributions are already known, this model is equivalent to one in which the switcher observes a state noiselessly.
Conditioned on the state, the subsources output symbols independent of the past according to a conditional
distribution. This model is depicted in Figure 2.

The overall AVS is comprised now of a ‘state generator’ and a ‘symbol generator’ that outpsiimbols at a
time. The state generator produces the statat time k£ from a finite set7. We assume the states are generated
[ID across time with distributiom(t). At time k, the symbol generator outputs , ...,z ) according to
P(x1k,...,zmi|ts). This model allows for correlation among the subsources at a fixed timep;Lét),l =
1,...,m, be the marginals of this joint distribution so that conditionedn; ;, has marginal distributiop;(-|¢;).

For ant € T, let G(t) = conv(p1(-|t), . .., pm(-|t)).

The switcher can observe states either with full lookahead-step lookahead, but these two cases will once
again have the same rate-distortion function when the switcher is an adversary. So assume that athtime
switcher chooses the switch positiep with knowledge oft”,x’f‘l, ...,x"1 The non-cheating and cheating
switcher can be recovered as special cases of this model. If the conditional distributiojt$ do not depend
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Fig. 2. A model of an AVS encompassing both cheating and non-cheating switchers. Additionally, this model allows for noisy observations
of subsource realizations by the switcher.

on t, the non-cheating switcher is recovered. The cheating switcher is recovered by Fetting™ and letting
pi(z|t) = 1(x = t(1)) where the state is anm dimensional vector consisting of the outputs of each subsource.
With this setup, we have the following extension of Theorem 3.1.
Theorem 4.1: For the AVS problem of Figure 2, where the adversary has access to the states eithest®jth
lookahead or full lookahead,

R(D) = Lpax R(p, D), (22)
unere () = Sier (10
_ . PU) = « :
Dstates - {p € P(X) . f(’t) c ée(z;)’v te T } . (23)
Proof: See Appendix Il. ]

One can see that in the case of the cheating switcher of the previous section, Thefsequation (20) equates
directly with D45 Of equation (23). In that sense, from the switcher’s point of viBws a more natural description
of the set of distributions that can be simulated tidarAgain, computingR(D) in (22) falls into the discussion
of Section VII.

V. THE HELPFUL SWITCHER

In general, the active-source may be acting in such a way that optimizes its own objectives. When its objective
is to output a source sequence that is not well represented by the codebook, we arrive at the traditional adversaria
setting considered above. The objective of the switcher, however, may vary from adversarial to agnostic to helpful.
In this section, we consider tHeelpful cheating switcher. The model is as follows:

« The coder chooses a codebook that is made known to the switcher.

» The switcher chooses a strategy to help the coder achieve dist@itmm average with the minimum number

of codewords. We consider the cases where the switcher has full lookahéestem lookahead.
As opposed to the adversarial setting, a fatis now achievable at distortioP if there exisswitcher strategies and
codebooks for each with expected distortion at mog? and the rates of the codebooks tenditoThe following
theorem establisheB(D) if the cheating switcher has full lookahead.

Theorem 5.1: Let XY* = {V C X : V #0,|V| <m}. Letp: X* x X — [0,d*] be defined by

Z) = mind(x, 7). 24
p(V, ) min (z,7) (24)

LetVy, = {z1k,...,2m} forall k. Note thatV;,i = 1,2, ... is a sequence of IID random variables with distribution
BV)=P{z11,...,2m1} = V). Let R*(3, D) be the rate-distortion function for the 11D source with distribution



G at distortionD with respect to the distortion measyrg, -). For the helpful cheating switcher with full lookahead,

R(D) = R*(3,D). (25)
Proof: Rate-distortion problems are essentially covering problems, so we equate the rate-distortion problem
for the helpful switcher with the classical covering problem for the observed/selsthe switcher is helpful, has
full lookahead, and knowledge of the codebook, the problem of designing the codebook is equivalent to designing
the switcher strategy and codebook jointly. At each timéhe switcher observes a candidatedetind must select
an element fromy;.. For any particular reconstruction codeweot®, and a string of candidate seg;, Vs, ..., V,),
the switcher can at best output a sequextesuch that

dn (x",X") ZP Vi, Tk) (26)

Hence, for a codebook, the helpful switcher with full Iookahead can select switch positions to ouwtpuguch
that
dp = = , 27
(x"; = Inin — Z p(Vk, Tg). (27)
Therefore, for the helpful switcher, the problem of covering #iespace with respect to the distortion measure
d(-,-) now becomes one of covering tl&* space with respect to the distortion measpife-). [ |

Remarks:

o ComputingR(D) in (25) can be done by the Blahut-Arimoto algorithm[20].

« In the above proof, full lookahead was required in order for the switcher to align the entire output word of
the source with the minimum distortion reconstruction codeword as a whole. This process cannot be done
with 1-step lookahead and so ti#& D) function for a helpful switcher with-step lookahead remains an open
guestion, but we have the following corollary of Theorems 3.1 and 5.1.

Corollary 5.1: For the helpful switcher withi-step lookahead,
R*(, D) < R(D) < min R(p, D) (28)
p
Proof: If the switcher has at leadtstep lookahead, it immediately follows from the proof of Theorem 3.1
that R(D) < minyec R(p, D). The question is whether or not any lower rate is achievable. We can make the
helpful switcher withl-step lookahead more powerful by givingritstep lookahead, which yields the lower bound

R*(B, D). [ |

An example in Section VI-B shows that in general, we have the strict inequalfity, D) < min,cc R(p, D).

One can also investigate the helpful switcher problem when the switcher has access to noisy or partial observations
as in Section IV. This problem has the added flavor of remote source coding because the switcher can be thought
of as an extension of the coder and observes data correlated with the source to be encoded. However, the switche
has the additional capability of choosing the subsource that must be encoded. For now, this problem is open and
we can only say thaiz(D) < minyep,,,,.. R(p, D).

VI. EXAMPLES

_We illustrate the results with several simple examples using binary alphabets and Hamming distortin: i.e.
X ={0,1} andd(z,z) = 1(x # 7). Recall that the rate-distortion function of an 11D binary source with distribution
(p7 1 _p). pe [07 %] is

R((l —p,p),D) _ { hb(p) Bhb(D) Dl)6>[0;)p] , (29)

wherehy(p) is the binary entropy function (in bits for this section).



A. Bernoullil/4 and 1/3 sources

Let m = 2 so the switcher has access to two 11D Bernoulli subsources. Subsbureputsl with probability
1/4 and subsource outputs1 with probability 1/3, sop; = (3/4,1/4) andpy = (2/3,1/3). First, we consider
the switcher as an adversary. Figure 3 shows this example in the traditional strictly causal setting of [5], where the
switcher gets only outputs of the source after the switch position has been decided. Figure 4 shows the AVS in the
noncausal setting, where the switcher has the subsource realizations before choosing the switch position.

8(1/4) T1,1,%1,2,%1,3,. -

\. T1,T2y. ..
o

T2,1,%2,2,22,3, .- -

B(1/3)

Switch
Selection si1,s2,. ..

Fig. 3. The adversary chooses the switch position with knowledge only of the past AVS outputs. For Hamming distortion, the rate-distortion
function is R(D) = hy(1/3) — hy(D) for D € [0,1/3].

6(1/4) T1,1,%1,2,%1,3,. -
\._ T1,T2,...
>
8(1/3) T2,1,%2,2, 22,3, - - -
— ™ Switch
' Selection si, s2, ...

Fig. 4. The adversary chooses the switch position with knowledge of both subsource realizations. For Hamming distortion, the rate-distortion
function isR(D) =1 — hy(D) for D € [0,1/2].

For any timek,

392 1
P(l’]ﬂk—l‘lk—O) = Zg—i (30)
11 1
P(xl,k—l‘z,k:—l) T 13 12 (31)
Pz g aas) = {0,1}) = 1-2- L _ 35 (32)
Lk B2k ] = 15 - 27 12 12

If the switcher is allowed -step lookahead and has the option of choosing either 1, suppose the switcher
choosesl with probability f;. The coder then sees an 11D binary source with a probability bfogcurring being

equal to: . ;
p(l) =55+ (33)
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onv(G)
0 1/4 ;7 1/3 1

1/12 A .

C

Fig. 5. The binary distributions the switcher can mingonv(G) is the set of distributions the switcher can mimic with causal access to
subsource realizations, aifdis the set attainable with noncausal access.

8(1/4) 21,1,21,2,L1,3,- - -

\._ T1,T2,...
——

213271, m2’2, T2.3y -

B(1/3)

»é s | Switch

Selection si1,s2,. ..

Fig. 6. The adversary observes the mod-2 sum of the two subsources, a Betri8ullubsource and a Bernoulli/4 subsource. For
Hamming distortion, the rate-distortion function (D) = hy(1/3) — hy(D) for D € [0,1/3].

By using fi as a parameter, the switcher can produte with any probability betweeri/12 and 1/2. The
attainable distributions are shown in Figure 5. The switcher with lookahead can simulate a significantly larger
set of distributions than the causal switcher, which is restricted to outputingith probability in [1/4,1/3].
Thus, for the strictly causal switcheR(D) = hy(1/3) — hy(D) for D € [0,1/3] and for the switcher with-step
or full lookahead,R(D) =1 — hy(D) for D € [0,1/2].

We now look at several variations of this example to illustrate the utility of noisy or partial observations of the
subsources for the switcher. In the first variation, shown in Figure 6, the switcher observes tResomadsf the
two subsources. Theorem 4.1 then implies tRaD) = hy(1/3) — hy(D) for D € [0,1/3]. Hence, the mo@-sum
of these two subsources is useless to the switcher in deciding the switch position. This is intuitively clear from the
symmetry of the mod-sum. If¢ = 0, either both subsources aveor both subsources aig so the switch position
doesn’t matter in this state. #f= 1, one of the subsources has outpuand the other has outp0t but because
of the symmetry of the mod-function, the switcher’s prior as to which subsource outputltltwes not change
and it remains that subsour@ewas more likely to have output thie

In the second variation, shown in Figure 7, the switcher observes the second subsource directly but not the
first, sot, = xgy for all k. Using Theorem 4.1 again, it can be deduced that in this &4ge) = 1 — hy(D)
for D € [0,1/2]. This is also true ift;, = x for all k, so observing just one of the subsources noncausally is
as beneficial to the switcher as observing both subsources noncausally. This is clear in this example because the
switcher is attempting to output as mallg as possible. It = 1, the switcher will set the switch position fhand
if ¢ =0, the switcher will set the switch position foas there is still a chance that the first subsource outputs a

For this example, the helpful cheater witkstep lookahead has a rate-distortion function that is upper bounded
by hy(1/12) — hy(D) for D € [0,1/12]. The rate-distortion function for the helpful cheater with full lookahead can
be computed from Theorem 5.1. In Figure 8, the rate-distortion function is plotted for the situations discussed so
far. In an active sensing situation, we see that there can be a large gap between the required rates for adversariall
modelled active sensors and sensors which have been jointly optimized with the coding system.
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8(1/4) L1,1,21,2,T1,3, .- -

\._ T1,L2,. ..
I

X2,1,22,2,T2,3y -

B(1/3)

t1,ta, . .. Switch
Selection si1,s2,. ..

Fig. 7. The adversary observes the second subsource perfectly, but does not observe the first subsource. For Hamming distortion, the
rate-distortion function isR(D) = 1 — hy(D) for D € [0,1/2].

R(D) for Bernoulli 1/3 and 1/4 example

1 T T
‘/‘ == Cheating adversary, t = X,
0.9\ — Not cheating adversary, t = X+ X, mod 2 H
‘/‘ non Qptimistic random, R(D) = hb(1/4) - hb(D)
0-82 . Helpful with 1-step lookahead, upper bound ]
=\ % = Helpful with full lookahead
0.7r - g h
006 7
é
90.5 r b
©
xo.4} b
0.3 |
0.2 |
0.1r b
0
0 0.5

Fig. 8. R(D) for the cheating switcher and the non-cheating switcher. Also, the rate-distortion function for the examples of Figures 6 and
7.
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8(1/4) T1,1,71,2,T1,3,- - -

\._ T1,T2y. ..
—

T2,1,T2,2,%2,3,. .-

B(1/3) 9

ti,ta, ... Switch
———————

BSC(90) Selection si, sz, ...

Fig. 9. The adversary observes the second subsource transmitted over a binary symmetric channel with crossover probability
Hamming distortion, the rate-distortion function B(D) = hs(1/3) — hs(D) for D € [0,1/3] if 6 € [2/5,1/2]. If § € [0,2/5),
R(D) = hy(1/2 —56/12) — hy(D) for D € [0,1/2 — 55/12].

Rate—distortion function at D = 1/4 and D = 1/3 vs.

— RD), D=1
--R(D),D=1/3

0.06 S
~ ~
~,
~,
0.04f S
~,
~,
0.02 S,
-,
~
O L L L /‘1
0 0.1 0.2 0.3 0.4 05

Fig. 10. R(D) as a function of the noisy observation crossover probahilifgr two different distortions for the example of Figure 9.

Finally, in Figure 9, an adversarial switcher observes the second subsource through a binary symmetric channel
with crossover probability € [0,1/2]. Applying Theorem 4.1 again, it can be shown thai & [0,2/5],

R(D) = hy (; - 1525> — hy(D), D € {0, % - 1525} (34)
and if§ € [2/5,1/2],
R(D) = hy (;) — (D), D€ [0, H . (35)

Here, increasing decreases the switcher’'s knowledge of the subsource realizations. Somewhat surprisingly, the
utility of the observation is exhausted &t 2/5, even before the state and observation are completely independent
atd = 1/2. This can be explained through the switchex’posterioribelief that second subsource output wak a

given the state. If the switcher observes 1 anddé < 1/2, p(x2 = 1|ty = 1) > 1/3 > 1/4 so the switch position

will be set to2. When the switcher observes= 0, if § < 2/5, p(z2; = 1|t = 0) < 1/4, so the switch will be

set to positionl. However, if§ > 2/5, p(z2 = 1|ty = 0) > 1/4, so the switch position will be set t even if

t = 0 because the switcher& posterioribelief is that the second subsourcesidl more likely to have output &

than the first subsource. Figure 10 shai®(&D) for this example as a function af for two values ofD.
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R(D) for two Bernoulli 1/2 sources

0.9+ = Helpful with full lookahead
== Helpful with 1-step lookahead, upper bound
= Adversarial

R(D) (bits)

I N
0.3 0.4 0.5

Fig. 11. TheR(D) function for a helpful switcher with full lookahead. Farstep lookahead, the upper bound is shown.

B. Two Bernoullil/2 subsources

Supposem = 2, and both subsources are Bernoulfi2 IID processes. For this example, the rate-distortion
function is R(D) = 1 — hy(D) for D € [0,1/2] whether the adversarial switcher is strictly causal, causal or
noncausal. When the helpful switcher Hastep lookahead(D) < Ry (D) = hy(1/4) — hy(D) for D € [0,1/4].

One can also think of this upper bound as being the rate-distortion function for the helpful switchdrsiggh
lookahead that is restricted to using memoryless, time-invariant rules. Using Thearénof [21], one can show
that when the switcher has full lookahead,

R(D) = R*(,D) = 5 [1 - my(2D)], D € [0,1/4]. (36)
The plot of these functions in Figure 11 shows that the rate-distortion function can be significantly reduced if the
helpful switcher is allowed to observe the entire block of subsource realizations. It is also interestinghowibie
switcher with full lookahead helps the coder achieve a rat&'d@f3, D). In this exampleX* = {{0},{1},{0,1}},
p({0},7) = 1(0 # 2), p({1},2) = 1(1 # &), p({0,1},2) = 0 and 3 = (1/4,1/4,1/2). The R*(3, D) achieving
distribution on.X’ is (1/2,1/2), but R*(3, D) < 1 — hy(D). The coder is attempting to cover strings with types
near(1/2,1/2) but with far fewer codewords than are needed to do so. This problem is circumvented through the
aid provided by the switcher in pushing the output of the source inside the Hamalral of a codeword. This
is in contrast to the strategy that achieves(D), where the switcher makes the output an IID sequence with as
few 1's as possible and the coder is expected to caeMestrings with types neaf3/4,1/4).

VIl. COMPUTING R(D) FOR AN AVS

The R(D) function for an AVS with either causal or noncausal access to the subsource realizations is of the

form

R(D) = max R(p, D), (37)

peEQ

where Q is a set of distributions irfP(X). In (17), (19), and (23)Q is defined by a finite number of linear
inequalities and hence is a polytope. The number of constraints in the definitighi®fexponential in|X’| or
|7'| when the adversary has something other than strictly causal knowledge. Unfortunately, the problem of finding
R(D) is not a convex program becauB¢p, D) is not a concave function of p in general. In factR(p, D) may
not even be quasi-concave and may have multiple local maxima with values different from the global maximum
as shown by Ahlswede [22].

Since standard convex optimization tools are unavailable for this problem, we consider the question of how to
approximateR (D) to within some (provable) precision. That is, for any 0, we will consider how to provide an
approximationR, (D) such that R,(D) — R(D)| < e. Note that for fixedp, R(p, D) can be computed efficiently
by the Blahut-Arimoto algorithm to any given precision, say much less ¢haherefore, we assume th&{(p, D)
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can be computed for a fixgedland D. We also assum® > D.,;,(Q) since otherwise?(D) = co. Checking this
condition is a linear program sina@ is a polytope and),i,(p) is linear inp.

We will take a ‘brute-force’ approach to computid® D). That is, we wish to comput&(p, D) for (finitely)
many p and then maximize over the computed values to yiRldD). Since R(p, D) is uniformly continuous
in (p, D) and hence imp, it is possible to do this and hav&,(D) — R(D)| < e provided enough distributions
p are ‘sampled’. Undoubtedly, there are other algorithms to comp(#e) that likely have better problem-size
dependence. In this section, we are only interested in showingrifiaj can provably be computed to within any
required precision with a finite number of computations.

A. Uniform continuity ofR(p, D)

The main tool used to show that the rate-distortion function can be approximated is an explicit bound on the
uniform continuity of R(p, D) in terms of [p — q[j1 = Y cy [p(z) — q(x)| for distortion measures that allow
for O-distortion to be achieved regardless of the source. In [20], a bound on the continuity of the entropy of a
distribution is developed in terms dp — ¢||1.

Lemma 7.1 (£, bound on continuity of entropy [20]): Letp andq be two probability distributions oA’ such
that ||p — ¢|l1 < 1/2, then

_ TR 1
|H(p) — H(g)| < [lp — qllx] b —dl (38)

In the following lemma, a similar uniform continuity is stated f(p, D). The proof makes use of Lemma 7.1.

Lemma 7.2 (Uniform continuity of R(p, D)): Letd : X x X — [0,d*] be a distortion functiond is the
minimum nonzero distortion from (1). Also, assume Ehat for eack X, there is aniy(x) € X such that
d(z,2(z)) = 0. Then, forp, ¢ € P(X) with ||p — g||y < 4%, for any D > 0,

—|lp — q||1 In —————. 39
d I Is P —all1 (39)

Proof: See Appendix IIl. [ ]

[R(p.D) — R(q.D)| < "2

The restriction thati(z, -) has at least one zero for everycan be relaxed if we are careful about recognizing
when R(p, D) is infinite. For an arbitrary distortion measufe X x X — [0, d*], define
do(z,z) = d(x,z) — mind(z, T). (40)
FeX
Now let dj = max, 5 do(z,2) and dy = Min(, 3).4,(,3)>0 do(z, 7). We have defined(z, ) so that Lemma 7.2
applies, so we can prove the following lemma. N
Lemma 7.3: Let p,q € P(X) and letD > max(Dmin(p), Dmin(q))- If |lp — ¢q|l1 < do/4d*,

11d* x| X|

|R(p, D) — R(¢,D)| < —|lp—qliln ———. (41)
do lp — gl

Proof: See Appendix IV. ]

As ||p — ¢q|]1 goes to0, —1In||p — ¢||1 goes to infinity slowly and it can be shown that for ahy (0,1) and
v €10,1/2],

v PG
IR XU s

S - (42)

In the sequel, we lef(v) = fylnmwﬁ for v € [0,1/2] with f(0) = 0 by continuity. It can be checked thgit
is strictly monotonically increasing and continuous [onl /2] and hence has an inverse functign f(]0, 1/2]) —
[0,1/2], i.e. g(f(v)) =~ for all v € [0,1/2]. Note thatg is not expressible in a simple ‘closed-form’, but can be
computed numerically.
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B. A bound on the number of distributions to sample
Returning to the problem of computing(D) in equation (37), consider the following simple algorithm. Without
loss of generality, assum& = {1,2,...,|X|}. Lety € (0,1) and letyZ!*I=! be the|X'| — 1 dimensional integer
lattice scaled byy. Let O = [0, 1]1¥I=* N yZI*¥I=1. Now, define
Jg€0,
O=(qePX): q(z‘):&(z‘),izl,}é..,\)(\—l, ) (43)
-1 ~/.
a( X)) = 1= X6 = 0

In words, sample théX'| — 1 dimensional unit cubelo, 1]!*1=1, uniformly with points from a scaled integer
lattice. Embed these points iRl*! by assigning the last value of the new vector tolbeinus the sum of the
values in the original point. If this last value is non-negative, the new point is a distributiBit). The algorithm
to computeR, (D) is then one where we compul®p, D) for distributionsqg € O that are also in or close enough
to Q.

1) Fixagq € O. If minyeg ||p —ql[1 < 2|X|y, computeR(q, D), otherwise do not comput®(q, D). Repeat for

all ¢ € O.
2) Let R,(D) be the maximum of the computed valuesifq, D), i.e.

Ro(D) = max { R(g. D) 9 € O,y Ip — alls < 21X . (44)

Checking the conditiomnin,co ||p — ¢|l1 < 72|X| is essentially a linear program, so it can be efficiently solved.
By setting~ according to the accuracy> 0 we want, we get the following result.
Theorem 7.1: The preceding algorithm computes an approximatiD) such that R,(D) — R(D)| < € if

1 66%
< .
7= 9x)? (11d*> (45)
The number of distributions for whick(g, D) is computed to determin&(D) to within accuracye is at most
|¥]—1
2|
N(e) < X +2 . (46)

ECT(J
g (Hd*) _
Proof: The bound onV (¢) is clear because the number of point<Qris at most([1/~] +1)I*!=! and every

distribution in© is associated with one i®, so || < |O]. )
Now, we prove|R,(D) — R(D)| < e. For this discussion, we letf = ﬁg (%). First, for allp € Q, there

isageOwith |[p—gll <g (Hd;) = 2|X|. To see this, lef(i) = |22 |y for i = 1,...,|x| — 1. Theng € O,
and we letg(i) = q(i) fori =1,...,|X| — 1. Note that

|X|-1 |[X|-1 (4) |X|-1
WX =1-3 gliy=1- % V)VJ’YZl— S pi) = p(1X]) > 0. 47)
=1 =1 =1
Thereforeq € © and furthermore,
|x|—1 |x|—1 (0
p-dh < [1- 3 @@ - -pix))| + > <p<i>— V’J 7) (48)
=1 =1 ’Y
< 2|~ 1)y (49)
< 2|X|y (50)
edy
< g<11d*>- (51)

®This is clearly not the best bound as many of the points in the unit cube on do not yield distributi®i{stonThe factor by which we
are overbounding is roughly’|!, but this factor does not affect the dependence:.on
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By Lemma 7.3,R(q, D) > R(p, D) — €. This distributiong (or possibly one closer tp) will always be included
in the maximization yieldingR, (D), so we haveR,(D) > maxycg R(p, D) — € = R(D) — e.
Conversely, for &y € O, if min,eco ||p — ¢|l1 < 2|X|y, Lemma 7.3 again gives

R(q,D) <maxR(p,D)+e¢=R(D)+¢ (52)
peEQ

Therefore,|R,(D) — R(D)| <. |

C. Estimation of the rate-distortion function of an unknown IID source

An explicit bound on the continuity of the rate-distortion function has other applications. Recently, Harrison and
Kontoyiannis [23] have studied the problem of estimating the rate-distortion function of the marginal distribution
of an unknown source. Let.. be the (marginal) empirical distribution of a vecto? € X™. They show that the
‘plug-in’ estimator R(p«~, D), the rate-distortion function of the empirical marginal distribution of a sequence, is
a consistent estimator for a large class of sources beyond just IID sources with known alphabets. However, if the
source is known to be IID with alphabet sigz&|, estimates of the convergence rate (in probability) of the estimator
can be provided using the uniform continuity of the rate-distortion function.

Suppose the true source is IID with distributipre P(X) and fix a probabilityr € (0,1) and ane € (0, 1In|X|).

We wish to answer the question: How many sampieseed to be taken so th&R(px, D) — R(p, D)| < e with
probability at leastt — 7? The following lemma gives a sufficient number of samples

Theorem 7.2: Letd : X x X — [0,d*] be a distortion measure for which Lemma 7.2 holds. ForaayP(X),
7€ (0,1), ande € (0,In|X|), then

P(|R(px», D) — R(p,D)| > ¢) <7 (53)
if
2 1
ed T
9\ 7a-
Proof: From Lemma 7.2, we have
ed
P(|R(px», D) — R(p, D) >¢) < P <prn —plli>yg <7d*>> (55)
b1 2
< 9lX] _n €
< 2%Mexp 2g 7 (56)

The last line follows from Theorem 2.1 of [24]. This bound is similar to, but a slight improvement over, the
method-of-types bound of Sanov’s Theorem. Rather thamman1)*! term, we just have al*! term multiplying
the exponential. Takingn of both sides gives the desired result. ]

We emphasize that this numberis a sufficient number of samples regardless of what the true distribution
p € P(X) is. The bound of (54) depends only on the distortion meadu@phabet sizesY| and | X|, desired
accuracye and ‘estimation error’ probability-.

VIIl. CONCLUDING REMARKS

As mentioned in the introduction, the active-source problem is truly interesting when the sources have memory.
Dobrushin [25] has analyzed the case of the non-anticipatory AVS composed of independent sources with memory
with different distributions when the switcher is passive and blindly chooses the switch position. In the case of
sources with memory, additional knowledge will no doubt increase the adversary’s power to increase the rate-
distortion function. If we letR*) (D) be the rate-distortion function for an AVS composed of sources with memory
and an adversary with step lookahead, one could imagine that in general,

RO(D) < RY(D) < RP(D) < --- < R™)(D). (57)

Another interesting problem, at least mathematically, is the arbitrarily varying channel formulation analogous to
the problems of Sections Il and IV. Similar techniques to those developed here might prove useful in considering
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a cheating ‘jammer’ for an arbitrarily varying channel. While the problem is well defined, it seems unphysical in
the usual context of jamming or channel noise. The idea may make more sense in the context of watermarking,
where the adversary can try many different attacks on different letters of the input before deciding to choose one
for each.

For the original motivation of compressing active-vision sources, the results here suggest that treating it as an
adversarial black box might be overly conservative. There is a large gap between the adversarial and helpful rate-
distortion functions. This suggests that an interesting question to study is one of mismatched objectives where the
switcher is trying to be helpful for some particular distortion metric but the source is actually being encoded with a
different metric in mind. Finally, if the active-sensor and coding system are part of a tightly delay-constrained control
loop, we would want to study these issues from the causal source code perspective of [13]. It seems likely that
the adversarial results of Theorems 3.1 and 4.1 would follow straightforwardly with the same sets of distributions
C and D, with the IID rate-distortion function for noncausal source codes replaced by the the IID rate-distortion
functions for causal source codes.

APPENDIX |
PROOF OFTHEOREM 3.1

A. Achievability for the coder

The main tool of the proof is:

Lemma 1.1 (Type Covering): Let Sp(x") 2 [x" € X" : d,(x",X") < D} be the set oft™ strings that are
within distortion D of a X" string X™. Fix ap € P,(X) and ane > 0. Then for alln large enough, there exist
codebooks3 = {x"(1),x"(2),...,X" (M)} where M < exp(n(R(p, D)+ €)) and

7 c | S, (58)
xneB
whereT}} is the set ofX™ strings with typep.

Proof. See [5], Lemma 1. B ]
We now show how the coder can get arbitrarily close?td) for large enough. For § > 0, defineCs as

Y ey P(®) > Plr; e V,1<1<m) -0
Cs =4 PEPX) - Y V such that ' (59)
yCcx

Lemma 1.2 (Converse for switcher):Let ¢ > 0. For all n sufficiently large
1 ~
—InM(n,D) < R(D) +e. (60)
n

Proof: We know R(p, D) is a continuous function gf ([19]). It follows then that becausg is monotonically
decreasing (as a set) withthat for alle > 0, there is a > 0 so that
max R(p, D) < max R(p, D) + ¢/2. (61)
pECs peC
We will have the coder use a codebook such thatidll strings with types irCs are covered within distortion
D. The coder can do this for large with at mostM codewords in the codebodg, where

M < (n+1)* exp(nmax R(p, D)) (62)
pels
< exp(n(max R(p, D) + e)). (63)

Explicitly, this is done by taking a union of the codebooks provided by the type-covering lemma and noting that
the number of types i, (X) is less thar(n +1)I*l. Next, we will show that the probability of the switcher being
able to produce a string with a type not@y goes to0 exponentially withn.

Consider a typg € P,,(X) N (P(X) —Cs). By definition, there is som® C X" such thaty _ _,, p(z) < P(x; €
V,1<1<m)—4. Let (,(V) be the indicator function

GV) = [[1@rev). (64)
=1
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(x indicates the event that the switcher cannot output a symbol outsitteabtime k. Then(, (V) is a Bernoulli
random variable with a probability of beingequal tox(V) £ P(z; € V,1 <1 < m). Since the subsources are
lID over time, (x(V) is a sequence of 1ID binary random variables with distribuo&: (1 — x(V), x(V)).

Now for the typep € P,,(X) N (P(X) —Cs), we have that for all strings™ in the type clasg},, 1 >7 | 1(z; €
V) < k(V) — 4. Let p’ be the binary distributioril — x(V) + d, x(V) — d). Therefore||p’ — ¢'||1 = 26, and hence
we can bound the binary divergené¥p’||¢’) > 262 by Pinsker’s inequality. Using standard types properties [20]
gives

1 n
P3G <n) =) < @+ Des(-nDG ) (65)
k=1
< (n+1)exp(—2nd?). (66)
This bound holds for al ¢ X,V # ), so we sum over types not ify to get
P(pxn ¢ C5) < > (n+ 1) exp(—2nd”) (67)
PEPL(X)N(P(X)—Cs)
< (n+ 1)|X‘ exp(—2nd?) (68)
= exp (n (262 - |X’ln(n+l))> . (69)
n

Then, regardless of the switcher strategy,
E[d(x";B)] < D +d" - exp (—n<252— X‘ln(nn—i-1)>> (70)

So for largen we can get arbitrarily close to distortiaB while the rate is at mosk(D) + e. Using the fact
that the IID rate-distortion function is continuous in gives us that the coder can achieve at most distortioon
average while the asymptotic rate is at mé&gtD) + e. Sincee is arbitrary, R(D) < R(D). [

B. Achievability for the switcher

This section shows thak(D) > R(D) when the switcher has-step lookahead. We will show that the switcher
can target any distributiop € C and produce a sequence of 1ID symbols with distributiorin particular, the
switcher can target the distribution that yieldsx,cc R(p, D), so R(D) > R(D).

The switcher will use a memoryless randomized strategy. L&t X and suppose that at some timkethe
set of symbols available to choose from for the switcher is exacgtlje. {z ,...,zm i} = V. Recall 5(V) =
P({z11,...,zm1} = V) is the probability that at any time the switcher must choose among elemesaofl
no other symbols. Then let(z|V) be a probability distribution o’ with supportV, i.e. f(z|V) >0, V z € X,
fxz|V)=0if z ¢ V,and}_ ., f(z|V) = 1. The switcher will have such a randomized rule for every nonempty
subsetV of X such thatV| < m. Let D be the set of distributions o’ that can be achieved with these kinds of

rules,
{ p() = ng\f,w\gm BW) (V) }
D=4 peP(X) : VVstVYCX, |V|<m,
f(-|V) is a PMF onV

It is clear by construction tha® C C because the conditions hare those that only prevent the switcher from
producing symbols that do not occur enough on average, but put no further restrictions on the switcher. So we need
only show thatC C D. The following gives such a proof by contradiction.

Lemma 1.3 (Achievability for switcher): The set relatiorC C D is true.

(71)

Proof: Without loss of generality, le&’ = {1,...,|X|}. Supposep € C butp ¢ D. It is clear thatD is a
convex set. Let us view the probability simplex ®*!. SinceD is a convex set, there is a hyperplane through
p that does not interse®. Hence, there is a vectdny, ..., ay|) such thatzzl1 a;p(i) =t for some real but

t < mingep Z‘Zﬂ aiq(i). Without loss of generality, assumg > a2 > ... > ay| (otherwise permute symbols).
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Now, we will constructf(-|V) so that the resulting hasZLi'l a;p(i) > Z‘Zﬂ a;q(i), which contradicts the initial
assumption. Let

V) é{ (1) if i:elgneax(V) 7 (72)

so for example, ifV = {1,5,6,9}, then f(9]V) = 1 and f(:i|V) = 0 if i # 9. Call ¢ the distribution ont’ induced
by this choice off(:|V). Recall thatx(V) = P(z; € V,1 <1 < m). Then, we have

|X|
D agli) = as({1}) +a2lx({1,2}) - w({1})] +
i=1
o Fap k(L. 1 X]) = k({TL [ X] = 1)) (73)
By the constraints in the definition (19) 6f we have the following inequalities far.
p(1) = w({1})=q(1) (74)
p(D)+p(2) = rw({1,2}) =q(1) +q(2) (75)
|X|—1 ' |xX|—1
Sop) = w({L. X -1 = g (76)

=1 =1
Therefore, the difference of the objective is
|X| B

S ailpl) — a(i) = ap [Zp@ ~ 4(i)
=1

=1

_|_

| S

|X|—1
(@~ )| 3 o) = a)] +

<t (o = o) (1) — (1) @
|¥]-1 i i

— Z (a; — a;41) [ p(j) — ZQ(j)] (78)
=1 j=1 j=1

> 0. 79)

The last step is true because of the monotonicity indhand the inequalities we derived earlier. Therefore, we
see thatZLf'1 a;p(i) > Zlﬂ a;q(i) for the p we had chosen at the beginning of the proof. This contradicts the
assumption thaE‘i):('1 a;p(i) < mingep Zlﬂ a;q(7), therefore it must be that C D. [

APPENDIXII
PROOF OFTHEOREM4.1

It is clear thatR(D) > maxyep.,.,.. R(p, D) because the switcher can select distributigitgt) € G(t) for
all t € 7 and upon observing a state the switcher can randomly select the switch position according to the
convex combination that yields(-|¢). With this strategy, the AVS is simply an IID source with distribution) =
5>, a(t) f(|t). Hence,R(D) > maxyep,.... R(p, D).

We will now show thatR(D) < max,cp.,.,.. R(p, D). This can be done in the same way as in Appendix I. We
can use the type covering lemma to cover sequences with types in or verPpgar and then we need only
show that the probability ok™ having a typee far from Dy .tes goes to0 with block lengthn.

Lemma 2.1: Let px~» be the type ofx™ and fore > 0 let Dyqies,c be the set op € P(X) with £; distance at
moste from a distribution inDg;es. Then, fore > 0,

P(pxn ¢ Dstat%,e) < AT ||X|exp(—né(e)), (80)
where&(e) > 0 for all e > 0. So for largen, px~ is IN Dgates,c With high probability.
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Proof. Lett™ be then-length vector of the observed states. We assume that the switcher has advance knowledge
of all these states before choosing the switch positions. First, we show that with high probability, the states that
are observed are strongly typical. Lit(¢[t™) be the count of occurrence ofc 7 in the vectort™. Fix ad > 0
and fort € 7, define the event N

t|t"
A= { MU oy

n

> 5} . (81)

SinceN (t[t") = > ", 1(t; = t) and each term in the sum is an 1ID Bernoulli variable with probability efual
to a(t), we have by Hoeffding's tail inequality [26],

P(A%) < 2exp(—2nd?). (82)

Next, we need to show that the substrings output by the AVS at the times when the stdtavis a type in
or very nearG(t). This will be done by a martingale argument similar to that given in Lemma 3 of [5]t¥et
denote the infinite state sequenge, t2,...) and letF, = o(t>) be the sigma field generated by the stait&s
Fori=1,2,..., letF = o(t>®,s, x},...,x%,). Note that{F;}2°, is a filtration and for each, the z; is included
in F; trivially becauser; = z, ;.

Let C; be the|X|-dimensional unit vector with a in the position ofz;. That is,C;(z) = 1(z; = z) for each
x € X. DefineT; to be

T, = C; — E[Cy| Fi—1] (83)
and letSy; = 0. Fork > 1,
k
Se=> T (84)
=1

We claim thatS, k > 1 is a martingalé with respect to the filtratioq{ F;} defined previously. To see this, note
thatE[|Sk|] < oo for all k£ since Sy, is bounded (not uniformly). Alsa$, € F, becausd’; € F; for each:. Finally,
ElSk+11Fe] = E[Tktr + Skl F]
= EJ
E[Cr+1 — E[Cry1|Fi]|Fk] + Sk
E[Cht1|Fk] — E[Cr1|Fr] + Sk

Now, define for eacht € 7,
T{ =T, -1(ti =1t) (85)

and analogously,
Sp=>Y_Ti. (86)

It can be easily verified that! is a martingale with respect t6; for eacht € 7. Expanding, we also see that

n

1

1

1 1
Nt Ztci‘ NUD) > E[Ci|Fi]. (88)

7 b= 7. t;=t

The first term in the difference above is the type of the output of the AVS during times when the stateiis
any ¢ such thatt; = t,

m

E[Ci|Fio1] = Y PUIFi-)m([t) € G(t). (89)
=1

Sy is a vector, so we show that each component of the vector is martingale. For ease of notation, we drop the dependence on the
component of the vector until it is explicitly needed.
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In the above P(I|F;_1) represents the switcher’s possibly random strategy because the switcher chooses the switch
position at time; with knowledge of events if;_;. The source generator’s outputs, conditioned on the state at
the time are independent of all other random variablesy 30, P(I|F;_1)pi(-|t) is the probability distribution of
the output at time conditioned onF;_;.

Thus, the second term in the difference of equation (88) (i) because it is the average of(¢|t") terms in
G(t) andG(t) is a convex set. Thereforé! /N (t|t") measures the difference between the type of symbols output
at times when the state isand some distribution guaranteed to bejift).

Let px» be the empirical type of the string”, and letp’. be the empirical type of the sub-string af
corresponding to the timeswhent; = t. Then,

N(t|t™
pen = 3 NUED (90)
n
teT

Let G(t). be the set of distributions at mostin £, distance from a distribution ig(¢). Recall that for|X|
dimensional vectorg|p — ¢||~ < €/|X| implies ||p — ¢||1 < e. Hence, we have

P <U {p. ¢ g(t)€}> < Y P ( { N t‘tn)s;(x)' > !XE!D (91)

teT teT
€
< T2 (|vaem ] > ) ©2)

Let (A4%)° denote the complement of the evetlf. So, for every(t, z) we have
1 t

P< N )| > ‘;O < P(AL) +P< = t|tn)sg(x) > |€,(A§)C> (93)
< 26Xp(—2n52)—|—P< (t‘tn)s;( z)| > |€|,(Ag)0>. (94)
In the event of(A%)°, we haveN (t[t") > n(a(t) — 6), S0
P(|sams@]> @) = P (IS0 nla0 - 05 (a8 (%5)
< (IS4 > nlal) - 05 ) (96)

Si.(x) is a martingale with bounded differences sinég. , (z) — S;(z)| = |T},,(z)| < 1. Hence, we can apply
Azuma’s inequality [27] to get

t LN g (L (al) - o
P <|Sn(a:)] > n(a(t) —9) |X]> < 2exp < REE > . (97)

Plugging this back into equation (92),

P U {pln € G(t)} | < 2T||X| [ exp(—2n6?) + exp —nM (98)
g ) 2
< A4X||T]exp(—ng(e, 9)) (99)
where
_ : 5 (ax —08)*¢
&(e,0) = mln{25 oA (100)
A .
@ = min a(t). (101)
We assume without loss of generality that > 0 since7 is finite. We will soon need that < ¢/|7, so let
£(e) = max £(e,0) (102)

0<d<min{e/|T|, .}
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and note that it is always positive provided- 0, sinceé(e, d) > 0 whenevers € (0, ). Hence,

P (U {Pln ¢ g(t)e}> < 4|X[| T | exp(—n&(e)) = 0. (103)

teT

We have shown that with probability at leaist- 4|.X||T| exp(—né(e)), for eacht € T there is some' € G(t)
such that|p. — p'[ly < e and (Af )¢ occurs. Let

p=>_a(t)p'. (104)

teT
By constructionp € Dsiqates- TO finish, we show thaipx. — pll1 < 2e.

lpxe —pli = D Ipxn (@) — p(a))| (105)
reX
= > ZL(ﬂtn)pﬁw () — a(t)p'(x) (106)
x | teT n
< M) . (@)~ o' () (107)
- ;au)g nﬂj'(f;)pw) ~p'(a) (108)
< Yol X bhelo) - # @) + | s = 1]k o), (109)
t T
From (81), we are assumed to be in the event that
N (t|t") )
Hence,
0
[px» —plli < zt:a(t) <€ + a(t)> (111)
= e+ |70 < 2e. (112)

We have provedP(px» ¢ Dstates2e) < 4|X||7T| exp(—né(e)), so we arrive at the conclusion of the lemma by
letting £(e) = £(€/2).

[ |
APPENDIXIII
PROOF OFLEMMA 7.2
Let W, , = arg miny ¢y, pyL (p, W). Then
|R(p, D) — R(q, D)| = [1(p, Wy p) — 1(a, Wy p)I- (113)
Considerd(p, W;D), the distortion of source acrossg’s distortion D achieving channel.
d(p, W;,D) < d(Qa ;,D) + ’d(pa ;,D) - d(q’ ;,D)| (114)
= ZZ *p(lz)d(x, Z) (115)
< D+Z|px ]ZW (Z|z)d(z, T) (116)
< D+p—qlhd". (117)
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By definition, W ,, is in W(p, d(p, W 1)), S0 R(p, (p, Wyp)) <I(p,W;p).
R(p,d(p, Wy p)) I(p,Wgp) (118)
1(g; ) + 1 (p, Wy p) = 1(a; Wy p)l (119)
R( q, ) + |I(p> q7 ) I(Qa q*,D>|' (120)

VANVAN

Expanding mutual informations yields

[ I(p,Wyp) —1(a,Wyp)l = [H(p)+H@Wgp) —Hp, Wgp)--- (121)
—H(q) — H(q W*D)+H(Qa )l
< \H(p)—H(q)IHH(pW;,D)—H( q,D)H
[H(p, Wg.p) — H(g, Wg p)l. (122)
Above, for a distributiorp on X and channelV’ from X to X, H(pW) denotes the entropy of a distribution on
X with probabilities (pW)(z) = > . plx)W(z|xz). H(p, W) denotes the entropy of the joint source &hx X

with probabilities(p, W)(x,z) = p(z)W (Z|z). It is straightforward to verify thaljpiV — ¢W||; < |lp — ¢J}» and
l(p, W) — (¢, W)]||1 < Hp— ¢l[1. So using Lemma 7.1 three times, we have

) . x| ||
Ip,W —](LW < p—qllni‘i‘ p—911117+
1 Wyp) = La: W)l < llp—ahnpm=m 4+ llp =l n e
X||X
Ip— gl XL (123)
lp — qll1
X||X

Now, we have seet(p, W, ) < D +d*[|p—g|[1. We will use the uniform continuity of(p, D) in D to bound
|R(p, D) — R(p, D+ d*||p — qH )|. This will give an upper bound oR(p, D) — R(q, D) as seen through equation
(120), namely,

< [I(p,Wyp) —1(a; Wyp)l+ R(p, D) — R(p, D + d"|lp — ql[1), (126)

where the last step follows becaugép, D) is monotonically decreasing i. For a fixedp, the rate-distortion
function in D is convexU and decreasing and so has steepest descéntab. Therefore, for any < Dy, Dy < d*,

|R(p, D1) = R(p, D2)| < |R(p,0) — R(p, |D2 — D1])]. (127)

Hence, we can restrict our attention to continuity Rfp, D) aroundD = 0. By assumption)V(p,0) # ) Vp €
P(X). Now consider an arbitrary) > 0, and letiW € W(p, D). We will show that there is som& € W(p,0)
that is close tdV in an £;-like sense (relative to the distributigr). SinceWW € W(p, D), we have by definition

D > Z ZW Z|z)d(z,T) (128)
= Zp@c) Y W(@Ez)d(x,?) (129)
x z: d(z,2)>0
> dy px) Y. W(@k). (130)
x #: d(z,2)>0

Now, we will construct a channel iW(p, 0), denotedi?y. First, for eachr, z such thatd(z,z) = 0, let V(Z|z) =
W (z|z). For all other(x,z), setV(z|x) = 0. Note thatV is not a channel matrix i#¥ ¢ W(p,0) since it is
missing some probability mass. To creaig, for eachz, we redistribute the missing mass frovf(-|z) to the
pairs (z, ) with d(z,z) = 0. Namely, for(x,z) with d(z,z) = 0, we define

Zj’: d(z,2")>0 W(.f/’l‘)

@ d ) =0 (13)

Wo(zlz) = V(zlz) +
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For all (z, z) with d(x,z) > 0, defineWy(z|z) = 0. So,Wj is a valid channel inV(p, 0). Now for a fixedz € X,

YW @z) - Wo@le)| = Y W@y + D |W(@w) - Wo(@la)|
z Z: d(z,)>0 Z: d(z,2)=0
= > W@k +
& d(z,2)>0
ZQE': d(

>0 W(@’Ix)

Tlz) — W(z|z) — &)
> W) - W) - S

Z: d(z,2)=0

_ W (3|x).
#: d(z,)>0

Therefore, using (130)

2 o) X2 W (3le) — W@l < =,

(132)

(133)

(134)

(135)

So, forW = W, b there is alvy € W(p,0) Wlth the above ‘modifiedC; distance’ with respect tp betweeni

and W, being less tha@D/J. Going back to the bound ofR(p,0) — R(p, D)|,

R(p,0) — R(p,D)| = in I(p,W)—1 *
[R(p,0) — R(p, D)| wsin (p, W) = I(p, W, p)

< I(p,Wo) —I(p, W, p)
< [H(pWo) — H(pW, p)| + [H(p, Wo) — H (p,

Now, note that theZ; distance betweepiV ande D is
IpWo — pWiplh = D> pla)Wo(Zlz) — p(x)W; p(Ez)
< D op@)> ] (Wo@lz) — Wi ()]

2D
L

<

similarly, [[(p, Wo) — (p, Wy p)lh < 2D/d.
Now, assumingD < d/4, we can again invoke Lemma 7.1 to get
d|X| djx||X)|
4D | djX||X|
—_— ln .
d 2D

<

Going back to (126), we see that|jp — ¢||; < ﬁ,

4d*|lp — qllx d|X||X|

R(p,d+d*|lp—q p,D)| < = In

| R( [ 1)) — R(p, D)| 5 5o —alh

Ad'llp — gl | |XIIX]
d P — qll1

The last step follows becauéé(d* < 1. Substituting into equation (126) gives

XX
Rp.D)~ R@.D) < 3lp—aliinge - || 1 +4~up—q|| it
7d*H I |X\|X|
~lp — gl In ————.
d lp — gl

IN

o)l

lp — all

(136)

(137)
(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

(147)
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Finally, this bound holds uniformly op andq as long as the condition ofp — ¢||; is satisfied. Therefore, we can
interchangep and ¢ to get the other side of the inequality.

X1

—_ . 148
o —als (148)

Td*
R(q¢, D) — R(p, D) < 7Hp —¢q|[1In
This concludes the proof.

APPENDIX IV
PROOF OFLEMMA 7.3

We now assume : X' x X — [0,d*] to be arbitrary. However, we let
do(z,7) = d(x,7) — mind(x, ) (149)
TeX
so that Lemma 7.2 applies th. Let Ro(p, D) be the IID rate-distortion function fop € P(X’) at distortionD

with respect to distortion measutg(z,x). By definition, R(p, D) is the IID rate-distortion function fop with
respect to distortion measudz,z). From Problem 13.4 of [20], for an) > Din(p),

R(p, D) = Ro(p, D — Dyin(p))- (150)
Hence, forp, q € P(X), D > maX(Dmin(p)7 Dmin(Q))1
< |Ro(p, D — Dwin(p)) — Ro(p, D — Dmin(q))| +
[Ro(p, D — Diin(q)) — Ro(q, D — Diin(q))|- (152)

Now, we note that Dyin(p) — Dmin(q)| < d*||p — q|l1. The first term of equation (152) can be bounded using
equation (143) and the second term of (152) can be bounded using Lemma 7.2. The first term can be bounded
if |p—qlly < do/4d* and the second can be bounded|jf— q||; < do/4dy. Sincedf < d*, we only require

lp—qll1 < d0/4d*

Ad* do| X || X| 7d0 XX
|R(p, D) — R(q,D)| < = ||P—CIH11H7* || qllin ——— (153)
2d*|lp — qllx lp— gl
4d* X[ X 7d* X)X
< —=lp—qhilni——+=|p—qliln7——. (154)
do lp—dqllr  do P — gl
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