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Abstract

In the context of hierarchical reinforcement learning, the idea of hierarchies of abstract machines (HAMs) is to write a partial
policy as a set of hierarchical finite state machines with unspecified choice states, and use reinforcement learning to learn
an optimal completion of this partial policy. Given a HAM with potentially deep hierarchical structure, there often exist
many internal transitions where a machine calls another machine with the environment state unchanged. In this paper,
we propose a new hierarchical reinforcement learning algorithm that automatically discovers such internal transitions,
and shortcircuits them recursively in the computation of Q values. We empirically confirm that the resulting HAMQ-
INT algorithm outperforms the state of the art significantly on the benchmark Taxi domain and a much more complex
RoboCup Keepaway domain.
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1 Introduction

Hierarchical reinforcement learning (HRL) aims to scale reinforcement learning (RL) by incorporating prior knowledge
about the structure of good policies into the algorithms [Barto and Mahadevan2003]. Popular HRL solutions include the
options theory [Sutton et al.1999], the hierarchies of abstract machines (HAMs) framework [Parr and Russell1998], and the
MAXQ approach [Dietterich1999]. This paper describes a new HRL algorithm taking advantage of internal transitions
introduced by the input hierarchical structure, following the framework of HAMs. It is our observation that a HAM
with deep hierarchical structure, where there are many calls from a parent machine to one of its child machines over
the hierarchy, induces many internal transitions. An internal transition is a transition over the joint state space, where
only the run-time stack changes, but not the environment state. Internal transitions always come with zero rewards and
deterministic outcomes in the resulting SMDP. It is usually the case that there could be many such internal transitions in
a HAM with arbitrary structure for a complex domain. In the setting of concurrent learning when multiple HAMs are
running concurrently, as shown in [Marthi et al.2005], there are even more opportunities of having internal transitions
over the resulting joint SMDP.

The resulting HAMQ-INT algorithm identifies and takes advantage of internal transitions within a HAM for efficient
learning. HAMQ-INT recursively shortcircuits the computation of Q values whenever applicable. We empirically confirm
that HAMQ-INT outperforms the state of the art significantly on the benchmark Taxi domain and a much more complex
RoboCup Keepaway domain. The two contributions of this paper is that 1) we develop the novel HAMQ-INT algorithm,
and 2) we apply it successfully to the RoboCup Keepaway domain, which, to the best of our knowledge, is the first
application of the HAM framework to a very complex domain.

2 The HAM Framework

The idea of HAM is to encode a partial policy for an agent as a set of hierarchical finite state machines with unspecified
choice states, and use RL to learn its optimal completion. We adopt a different definition of HAM, allowing arbitrary call
graph, despite the original notation of [Parr and Russell1998] which requires that the call graph is a tree. Formally, a HAM
H = {N0,N1, . . . } consists of a set of Moore machinesNi, whereN0 is the root machine which serves as the starting point
of the agent. A machine N is tuple 〈M,Σ,Λ, δ, µ〉, where M is the set of machine states, Σ is the input alphabet which
corresponds to the environment state space S, Λ is the output alphabet, δ is the machine transition function with δ(m, s)
being the next machine state given machine state m ∈ M and environment state s ∈ S, and µ is the machine output
function with µ(m) ∈ Λ being the output of machine state m ∈M . There are 5 types of machine states: start states are the
entries of running machines; action states execute an action in the environment; choose states nondeterministically select
the next machine states; call states invoke the execution of other machines; and, stop states end current machines and
return control to calling machines. A machine N has uniquely one start state and one stop state, referred as N .start and
N .stop respectively. For start and stop states, the outputs are not defined; for action states, the outputs are the associated
primitive actions; for call states, the outputs are the next machines to run; and, for choose states, the outputs are the sets
of possible choices, where each choice corresponds to a next machine state.

To run a HAMH, a run-time stack (or stack for short) is needed. Each frame of this stack stores run-time information such
as the active machine, its machine state, the parameters passing to this machine and the values of local variables used by
this machine. Let Z be the space of all possible stacks given HAMH. It has been shown that an agent running a HAMH
over an MDPM yields a joint SMDP H ◦M defined over the joint space of S and Z . The only actions of H ◦M are the
choices allowed at choice points. A choice point is a joint state (s, z) with z.Top() being a choose state. This is an SMDP
because once a choice is made at a choice point, the system — the composition ofH andM— runs automatically until the
next choice point is reached. An optimal policy of this SMDP corresponds to an optimal completion of the input HAM,
which can be found by applying a HAMQ algorithm [Parr and Russell1998]. HAMQ keeps track of the previous choice
point (s, z), the choice made c and the cumulative reward r thereafter. Whenever it enters into a new choice point (s′, z′),
it performs the SMDP Q update as follows: Q(s, z, c) ← (1 − α)Q(s, z, c) + α (r + γτ maxc′ Q(s′, z′, c′)), where τ is the
number of steps between the two choice points. As suggested by the language of ALisp [Andre and Russell2002], a HAM
can be equivalently converted into a piece of code in modern programming languages, with call-and-return semantics and
built-in routines for explicitly updating stacks, executing actions and getting new environment states. The execution of a
HAM can then be simulated by running the code itself.

3 The Main Approach

3.1 Internal Transitions within HAMs

In general, the transition function of the resulting SMDP induced by running a HAM has the form T (s′, z′, τ |s, z, c) ∈
[0, 1], where (s, z) is the current choice point, c is the choice made, (s′, z′) is the next choice point, and τ is the number
of time steps. Given a HAM with potentially a deep hierarchy of machines, it is usually the case that there is no real
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QUpdate(s′ : state, z′ : stack, r : reward, t′ : current time,
P : evaluated predicates):

if t′ = t then
ρ[P,P(s), z, c]← z′

else
QTable(s, z, c)← (1− α) QTable(s, z, c)
+α(r + γt

′−t maxc′ Q(s′, z′, c′) )

(t, s, z)← (t′, s′, z′)

Q(s : state, z : stack, c : choice):
if ∃P s.t. 〈P,P(s), z, c〉 ∈ ρ.Keys() then

q ← −∞
z′ ← ρ[P,P(s), z, c]
for c′ ∈ µ(z.Top()) do

q ← max(q, Q(s, z′, c′) )

return q
else

return QTable(s, z, c)

Figure 1: The HAMQ-INT algorithm.

actions executed between two consecutive choice points, therefore the number of time steps and the cumulative reward
in-between are essentially zero. We call this kind of transitions internal transitions, because the machine state changes,
but not the environment state. Formally, a transition is a tuple 〈s, z, c, r, s′, z′〉with r being the cumulative reward. For an
internal transition, we must have s′ = s and r = 0. In addition, because the dynamics of the HAM after a choice has been
made and before an action is executed is deterministic by design, the next choice point (s, z′) of an internal transition is
deterministically conditioned only on 〈s, z, c〉. Let ρ(s, z, c) be the Z component of the next choice point. If 〈s, z, c〉 leads
to an internal transition, we must have T (s, ρ(s, z, c), 0|s, z, c) = 1. Therefore, we have

Q(s, z, c) = V (s, ρ(s, z, c)) = max
c′

Q(s, ρ(s, z, c), c′). (1)

So, we can store the rules of internal transition as 〈s, z, c, z′〉 tuples, where z′ = ρ(s, z, c). They can be used to recursively
compute Q values according to Equation 1 when applicable. The size of the set of stored rules can be further reduced, be-
cause the machine transition function δ of a HAM is usually determined by a set of predicates defined over environment
state s, rather than the exact values of all state variables. Suppose 〈s1, z, c〉 leads to an internal transition with (s1, z

′)
being the next choice point. Let the set of predicates used to determine the trajectory in terms of active machines and ma-
chine states from z.Top() to z′.Top() be P = {P1, P2, . . . }. Let the value of P given state s be P(s) = {P1(s), P2(s), . . . }.
It can be concluded that the transition trajectory induced by P depends only on P(s1), after choice c is made at choice
point (s1, z). On the other hand, if the set of predicates P over state s2 (s2 6= s1) has the same value as of state s1, namely
P(s2) = P(s1), and the same choice c is made at choice point (s2, z), then the followed transition trajectory before reach-
ing the next choice point must also be the same as of 〈s1, z, c〉. In other words, 〈s2, z, c〉 leads to an internal transition such
that ρ(s1, z, c) = ρ(s2, z, c).

Thus, the rule of internal transition 〈s1, z, c, z′〉 can be equivalently stored and retrieved as 〈P,P(s1), z, c, z′〉, which auto-
matically applies to 〈s2, z, c, z′〉, if P(s2) = P(s1). Here, z′ is the stack of the next choice point such that z′ = ρ(s1, z, c) =
ρ(s2, z, c). The size of the joint space of encountered predicates and their values is determined by the HAM itself, which
is typically much smaller than the size of the state space. For example, for a problem with continuous state space (such
as the RoboCup Keepaway domain we considered), this joint space is still limited. In summary, we can have an efficient
way of storing and retrieving the rules of internal transition by keeping track of the predicates evaluated between two
choice points.

3.2 The HAMQ-INT Algorithm

The idea of HAMQ-INT is to identify and take advantage of internal transitions within a HAM. For this purpose, HAMQ-
INT automatically keeps track of the predicates that are evaluated between two choice points, stores the discovered rules
of internal transition based on predicates and the corresponding values, and uses the learned rules to shortcircuit the
computation of Q values whenever it is possible. To detect internal transitions, a global environment time t is maintained.
It is incremented by one only when there is an action executed in the environment. When the agent enters a choice point
(s′, z′) after having made a choice c at choice point (s, z), and finds that t is not incremented since the previous choice
point, it must be the case that s′ = s and 〈s, z, c〉 leads to an internal transition. Let P be the set of predicates that
have been evaluated between these two choice points. Then a new rule of internal transition 〈P,P(s), z, c, z′〉 is found.
The agent can conclude that for any state x, if P(x) = P(s), then 〈x, z, c〉 leads to an internal transition as well. In the
implementation, the agent uses a hash table ρ to store the learned rules, such that ρ[P,P(s), z, c] = z′, if 〈P,P(s), z, c, z′〉
is a rule of internal transition. One thing to note is that, because z′ is deterministically conditioned on 〈P,P(s), z, c〉 for
an internal transition, the value of ρ[P,P(s), z, c] will not be changed after it has been updated for the first time.

When the agent needs to evaluate a Q function, say Q(s, z, c), and finds that 〈s, z, c〉 leads to an internal transition ac-
cording to the current learned rules, Equation 1 is used to decompose Q(s, z, c) into the Q values of the next choice
points, which are evaluated recursively in the same way, essentially leading to a tree of exact Bellman backups. In fact,
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Figure 2: The Taxi domain (a) and the experimental result (b).

Root(s : environment state):
while not s.Terminate() do

m← Choose1(Get, Put)
s← Run(m, s)

return s

Get(s : environment state):
s← Navigate(s, s.Passenger())
s←Execute(Pickup, s)
return s

Put(s : environment state):
s← Navigate(s, s.Destination())
s←Execute(Putdown, s)
return s

Navigate(s : environment state, w : target):
while s.Taxi() 6= w do

m← Choose2(North, East, South, West)
n← Choose3(1, 2)
for i ∈ [1, n] do

s← Execute(m, s)

return s

Figure 3: The HAM in pseudo-code for Taxi.

only the terminal Q values of this tree needs to be learned, enabling efficient learning for the agent. Figure 1 gives the
pseudo-code of the HAMQ-INT algorithm. Here, the QTable function returns the stored Q value as request. It can be
implemented in either tabular or function approximation ways. The Q function evaluates the Q value of (s, z, c) tuple. It
first checks whether (s, z, c) subjects to any learned internal transition rule. This is done by checking whether there exists
an encountered set of predicates P , such that 〈P,P(s), z, c〉 ∈ ρ.Keys(). The uniqueness of transition trajectory for an
internal transition ensures that there will be at most one such P . If there is such P , Q uses the retrieved rule to recursively
decompose the requested Q value according to Equation 1; otherwise, it simply returns the stored Q value.

The QUpdate function performs the SMDP Q update. It is called once the agent enters a new choice point. The caller has
to keep track of the current state s′, the current stack z′, the evaluated predicates P on state since the previous choice
point and the cumulative reward r in-between. If the current time t′ equals to the time t of the previous choice point, it
must be the case that 〈s, z, c, 0, s, z′〉 is an internal transition. Thus, a new rule 〈P,P(s), z, c〉 is learned, and the ρ table
is updated accordingly. If t′ 6= t, meaning there are some actions executed in the environment, it simply performs the Q
update. Finally, it uses the current (t′, s′, z′) tuple to update the (global) previous (t, s, z) tuple, so the function will be
prepared for the next call.

4 Experiments

4.1 The Taxi Domain

On the Taxi domain, a taxi navigates in a grid map to pick up and deliver a passenger [Dietterich1999]. There are 6 prim-
itive actions for the taxi: a) 4 navigation actions: North, West, South and East; b) the Pickup action; and c) the Putdown
action. Each navigation action has probability 0.2 of moving into perpendicular directions. At each time step, unsuccess-
ful Pickup and Putdown have a reward of -10, successful Putdown has a reward of 20, and all other actions have a reward
of -1. Figure 3 shows the HAM written in pseudo-code for this experiment. It is worth noting that Choose3 is used for
encouraging the discovery of temporally-extended action and creating more opportunities of internal transitions. The in-
ternal transition happens after a choice is made within the Root machine. For example, when a Get machine is selected
at the choice point Choose1 within the Root machine, the next choice point must be Choose2 within the Navigate
machine. We compare HAMQ-INT with HAMQ, MAXQ-0 and MAXQ-Q algorithms. The standard task graph for Taxi
is used for MAXQ-0 and MAXQ-Q algorithms. MAXQ-Q is additionally encoded with a pseudo-reward function for the
Navigation sub-task, which gives a reward of 1 when successfully terminated. Comparing with MAXQ algorithms, one
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Figure 4: The RoboCup Keepaway domain (a) and the experimental result (b).

Keeper(s : environment state):
while not s.Terminate() do

if s.BallKickable() then
m← Choose1(Pass, Hold)
s← Run(m, s)

else if s.FastestToBall() then
s← Intercept(s)

else
m← Choose2(Stay, Move)
s← Run(m, s)

return s

Move(s : environment state):
d← Choose5(0◦, 90◦, 180◦, 270◦)
v ← Choose6(Normal, Fast)
i← s.TmControlBall()
while i = s.TmControlBall() do

v ←Run(Move, d, v)
return s

Pass(s : environment state):
k ← Choose3(1, 2, . . .)
v ← Choose4(Normal, Fast)
while s.BallKickable() do

s← Run(Pass, k, v)
return s

Hold(s : environment state):
s← Run(Hold)
return s

Intercept(s : environment state):
s← Run(Intercept)
return s

Stay(s : environment state):
i← s.TmControlBall()
while i = s.TmControlBall() do

s←Run(Stay)
return s

Figure 5: The HAM for RoboCup Keepaway.

advantage of HAM is that the Get and Put machines are encoded with the right order of calling other machines, while
MAXQ algorithms have to learn this order by themselves. Figure 2b shows the experimental result averaged over 400
runs. It can be seen from the result that MAXQ-Q outperforms MAXQ-0 as expected, HAMQ outperforms MAXQ-Q at
the early stage of learning, and HAMQ-INT outperforms HAMQ significantly.

4.2 The RoboCup Keepaway Domain

The RoboCup Keepaway problem is a sub-task of RoboCup soccer simulation 2D challenge [Stone et al.2005,
Bai et al.2015]. In Keepaway, a team of keepers tries to maintain the ball possession within a limited field, while a team
of takers tries to take the ball. Figure 4a shows an instance of Keepaway with 3 keepers and 2 takers. The system has
continuous state and action spaces. A state encodes positions and velocities for the ball and all players. At each time step
(within 100 ms), a player can execute a parametrized primitive action, such as turn(angle), dash(power) or kick(power,
angle), where the turn action changes the body angle of the player, the dash action gives an acceleration to the player, and
the kick action gives an acceleration to the ball if the ball is within the maximal kickable area of the player. All primitive
actions are exposed to noises. Each episode begins with the ball and all players at fixed positions, and ends if any taker
kicks the ball, or the ball is out of the field. The cumulative reward for the keepers is the total number of time steps for
an episode. Instead of learning to select between primitive actions, the players are provided with a set of programmed
options including: 1) Stay() remaining stationary at the current position; 2) Move(d, v) dashing towards direction d with
speed v; 3) Intercept() intercepting the ball; 4) Pass(k, v) passing the ball to teammate k with speed v; and 5) Hold() re-
maining stationary while keeping the ball kickable. In our experiments, the taker is executing a fixed policy. It holds the
ball if the ball is kickable, otherwise it intercepts the ball. This policy is commonly used in the literature. The goal is then
to learn a best-response policy for the keepers given fixed takers. We develop a HAM policy from the perspective of a
single keeper, and run multiple instances of this HAM concurrently for each keeper to form a joint policy for all keepers.
To run multiple HAMs concurrently, they have to be synchronized, such that if any machine is at its choose state, the
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other machines have to wait; if multiple machines are at their choose states, a joint choice is made instead of indepen-
dent choice for each machine. For this purpose, players have to share their learned value functions and the selected joint
choice. A joint Q update is developed to learn the joint choice selection policy as an optimal completion of the resulting
joint HAM. Figure 5 outlines the HAM written in pseudo-code for a single keeper. Here, Keeper is the root machine. The
Runmacro runs a machine or an option with specified parameters. BallKickable, FastestToBall, TmControlBall
are predicates used to determine the transition inside a machine. It is worth noting that the Move machine only considers
4 directions, with direction 0◦ being the direction towards the ball, and so on. There are many internal transitions within
this single HAM. For example, when the Pass machine is selected at the choice point Choose1 of the Keeper machine,
the next 2 consecutive choice points must be Choose3 and Choose4 within the Pass machine. When multiple HAMs are
executing concurrently, there are even more internal transitions in the resulting joint HAM. For example, in a scenario of
the 3 vs. 2 Keepaway game, where only keeper 1 can kick the ball, suppose the joint machine state is [Choose1, Choose2,
Choose2] with each element being the machine state of a HAM. If the joint choice made is [Pass, Move, Stay], then the
next 2 consecutive machine states must be [Choose3, Choose5, Stay] and [Choose4, Choose6, Stay] following the
joint HAM.

We compare concurrent-HAMQ-INT, concurrent-HAMQ, concurrent-Option, Option and Random algorithms. The Op-
tion algorithm is adopted from [Stone et al.2005], where the agent learns an option-selection policy over Hold() and
Pass(k, v) options if it can kick the ball, otherwise it follows a fixed policy: if it is the fastest one to intercept the ball, it
intercepts; otherwise, it follows a GetOpen() option. The GetOpen() option, which enables the agent to move to an open
area in the field, is manually programmed beforehand. In the original Option learning algorithm, each agent learns inde-
pendently. We argue that this setting is problematic, since it actually incorrectly assumes that other keepers are stationary.
We extend Option to concurrent-Option, by sharing the learned value functions and the option selected. The HAM al-
gorithms are not provided with the GetOpen() option. Instead, they have to learn their own versions of GetOpen() by
selecting from Stay and Move machines. The SARSA-learning rule with a linear function approximator (namely tile
coding) is used to implement the SMDP Q update for all learning algorithms. The Random algorithm is a non-learning
version of Option, which selects available options randomly as a baseline. Figure 4b shows the experiment result on a 3
vs. 2 instance of RoboCup Keepaway averaged using a moving window with size of 1000 episodes. It can be seen from
the result that concurrent-Option outperforms Option significantly, concurrent-HAMQ outperforms concurrent-Option
after about 15 hours of training, and concurrent-HAMQ-INT has the best performance. Short videos showing the initial
and converged policies of HAMQ-INT can be found at 1 and 2 links.

5 Conclusion

In this paper, we present a novel HAMQ-INT algorithm which automatically discovers and takes advantage internal
transitions within a HAM for efficient learning. We empirically confirm that HAMQ-INT outperforms the state of the art
significantly on the benchmark Taxi domain and a much more complex RoboCup Keepaway domain. The way we taking
advantage of internal transitions within a HAM can be seen as leveraging some prior knowledge on the transition model
of a reinforcement learning problem, which happens to have some deterministic transitions. In future work, we would
like to extend this idea to more general reinforcement learning problems, where models are partially known in advance.
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