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Abstract

This paper presents a statistical approach to
collaborative �ltering and investigates the use
of latent class models for predicting individ-
ual choices and preferences based on observed
preference behavior. Two models are discussed
and compared: the aspect model, a proba-
bilistic latent space model which models indi-
vidual preferences as a convex combination of
preference factors, and the two-sided clustering
model, which simultaneously partitions persons
and objects into clusters. We present EM algo-
rithms for di�erent variants of the aspect model
and derive an approximate EM algorithmbased
on a variational principle for the two-sided clus-
tering model. The bene�ts of the di�erent mod-
els are experimentally investigated on a large
movie data set.

1 Introduction

The rapid growth of digital data repositories and the
overwhelming supply of on-line information provided by
today's communication networks bears the risk of con-
stant information overload. Information �ltering refers
to the general problem of separating useful and impor-
tant information from nuisance data. In order to support
individuals with possibly di�erent preferences, opinions,
judgments, and taste, in their quest for information, an
automated �ltering system has to take into account the
diversity of preferences and the relativity of information
value. One commonly distinguishes between (at least)
two major approaches [Resnik et al., 1994]: (i) content{
based �ltering organizes information based on properties
of the object of preference or the carrier of information
such as a text document, while (ii) collaborative �ltering
[Goldberg et al., 1992] (or social �ltering) aims at ex-
ploiting preference behavior and qualities of other per-
sons in speculating about the preferences of a particular
individual.

1.1 Information Filtering

Most information �ltering systems have been designed
for a particular application domain, and a large fraction
of the research in this area deals with problems of sys-
tem architecture and interface design. In contrast, this
paper will take a more abstract viewpoint in order to
clarify some of the statistical foundations of collaborative
�ltering. In particular, the presupposition is made that
no external knowledge beyond the observed preference
or selection behavior is available, neither about proper-
ties of the objects (such as documents, books, messages,
CDs, movies, etc.) nor about the involved persons (such
as computer users, customers, cineasts, etc.). This work-
ing hypothesis is not as unrealistic as it may seem on �rst
sight since, for example, many computer systems which
interact with humans over the Web do not collect much
personal data for reasons of privacy or to avoid time{
consuming questionnaires. The same is often true for
properties of objects where it is sometimes di�cult to ex-
plicitly determine those properties that make it relevant
to a particular person. Moreover, one might integrate
information from both sources in a second step, e.g., by
deriving prior probabilities from person/object features
and then updating predictions in the light of observed
choices and preferences.

1.2 Dyadic Data

We thus consider the following formal setting: Given are
a set of persons X = fx1; : : : ; xNg and a set of objects
Y = fy1; : : : ; yMg. We assume that observations are
available for person/object pairs (x; y), where x 2 X and
y 2 Y; this setting has been called dyadic data in [Hof-
mann et al., 1999]. In the simplest case, an observation
will just be the co-occurrence of x and y, representing
events like \person x buys product y" or \person x par-
ticipates in y". Other cases may also provide some addi-
tional preference value v with an observation. Here, we
will only consider the simplest case, where v 2 f�1;+1g
corresponds to either a negative or a positive example of
preference, modeling events like \person x likes/dislikes
object y".
Two fundamental learning problems have to be ad-

dressed: (i) probabilistic modeling and (ii) structure dis-



covery. As we will argue, di�erent statistical models are
suitable for either task. The aspect model presented in
Section 2 is most appropriate for prediction and recom-
mendation, while the two-sided clustering model intro-
duced in Section 3 pursues the goal of identifying mean-
ingful groups or clusters of persons and objects. All
discussed models belong to the family of mixture mod-

els, i.e., they can be represented as latent variable mod-

els with discrete latent variables. The main motivation
behind the introduction of latent variables in the con-
text of �ltering is to explain the observed preferences
by some smaller number of (typical) preference patterns

which are assumed to underly the data generation pro-
cess. In probabilistic modeling, this is mainly an attempt
to overcome the omnipresent problem of data sparseness.
Models with a reduced number of parameters will in gen-
eral require less data to achieve a given accuracy and are
less sensitive to over�tting. In addition, one might also
be interested in the structural information captured by
the latent variables, for example, about groups of people
and clusters of objects.

2 The Aspect Model

2.1 Model Speci�cation

In the aspect model [Hofmann et al., 1999], a latent class
variable z 2 Z=fz1; : : : ; zKg is associated with each ob-
servation (x; y). The key assumption made is that x and
y are independent, conditioned on z. The probability
model can thus simply be written as

P (x; y) =
X
z2Z

P (z)P (xjz)P (yjz) ; (1)

where P (xjz) and P (yjz) are class{conditional multi-
nominal distributions and P (z) are the class prior prob-
abilities. Notice that the model is perfectly symmet-
ric with respect to the entities x and y. Yet, one may
also re-parameterize the model in an asymmetric man-
ner, e.g., by using the identity P (z)P (xjz) = P (x; z) =
P (x)P (zjx) which yields

P (x; y) = P (x)P (yjx); where (2)

P (yjx) =
X
z2Z

P (zjx)P (yjz) : (3)

A dual formulation can be obtained by reversing the role
of x and y. Eq. (3) is intuitively more appealing than
(1) since it explicitly states that conditional probabilities
P (yjx) are modeled as a convex combination of aspects
or factors P (yjz). In the case of collaborative �ltering,
this implies that the preference or selection behavior of
a person is modeled by a combination of typical pref-
erence patterns, represented by a distribution over ob-
jects. Notice that it is neither assumed that persons form
`groups', nor is stipulated that objects can be partitioned
into `clusters'. This o�ers a high degree of exibility in
modeling preference behavior: Persons may have a mul-
titude of di�erent interests, some of which they might

share with some people, some with others, a fact which
can be expressed perfectly well in the aspect model. It is
also often the case that objects are selected by di�erent
people for di�erent reasons. In this case, one might have
a number of aspects with high probability P (yjz) for a
particular object y.

2.2 Model Fitting by EM

The standard procedure for maximum likelihood estima-
tion in latent variable models is the Expectation Max-
imization (EM) algorithm [Dempster et al., 1977]. EM
alternates two steps: (i) an expectation (E) step where
posterior probabilities are computed for the latent vari-
ables z, based on the current estimates of the parame-
ters, (ii) an maximization (M) step, where parameters
are updated for given posterior probabilities computed
in the previous E{step.
For the aspect model in the symmetric parameteriza-

tion Bayes' rule yields the E{step

P (zjx; y) =
P (z)P (xjz)P (yjz)P
z0 P (z0)P (xjz0)P (yjz0)

: (4)

By standard calculations one arrives at the following M{
step re-estimation equations

P (yjz) =

P
x n(x; y)P (zjx; y)P

x;y0 n(x; y0)P (zjx; y0)
; (5)

P (xjz) =

P
y n(x; y)P (zjx; y)P

x0;y n(x
0; y)P (zjx0; y)

; (6)

where n(x; y) denotes the number of times the pair (x; y)
has been observed. Alternating (4) with (5) and (6)
de�nes a convergent procedure that approaches a local
maximum of the log{likelihood.
Implicit in the above derivation is a multinomial sam-

pling model, which in particular implies the possibility
of multiple observations. This may or may not be appro-
priate and one might also consider hypergeometric sam-
pling without replacement, although according to sta-
tistical wisdom both models are expected to yield very
similar results for large populations.

2.3 Extension to Preference Values

Let us now focus on extending the aspect model to cap-
ture additional binary preferences v 2 f�1;+1g.1 We
distinguish two di�erent cases: (I.) situations where the
selection of an object is performed by the person, which
then announces her or his preference in retrospect, (II.)
problems where the selection of y is not part of the be-
havior to be modeled, for instance because it is controlled
or triggered by some other external process.

1The presented models can be further generalized to han-
dle arbitrary preference values, but this requires to specify
an appropriate likelihood function based on assumptions on
the preference scale.
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Figure 1: Graphical model representation of the aspect model (a) and its extensions to model preference values
(b)-(d) (case I) and (e),(f) (case II).

Case I. In the �rst case, there are three di�erent ways
to integrate the additional random variable v into the
model, as shown by Figure 1 (b)-(d). In (b) v is con-
ditionally independent of x and y given z, which is a
very strong assumption. One implication is that aspects
are typically employed to either model positive or nega-
tive preferences. In variant (c) and (d), v also depends
on either x or y which o�ers considerably more exibil-
ity, but also requires to estimate more parameters. It is
straightforward to modify the EM equations appropri-
ately. We show the equations for model (c), the other
variants require only minor changes. For the E{step one
obtains

P (zjx; y; v)=
P (z)P (xjz)P (y; vjz)P
z0P (z0)P (xjz0)P (y; vjz0)

(7)

while the M{step equations can be summarized into

P (y; vjz) =

P
x
n(x; y; v)P (zjx; y; v)P

x;y0;v0 n(x; y0; v0)P (zjx; y0; v0)
; (8)

where n(x; y; v) denotes the number of times a particu-
lar preference has been observed (typically n(x; y; v) 2
f0; 1g). From P (y; vjz) one may also derive P (yjz) and
P (vjy; z), if necessary. The M{step equation for P (xjz)
does not change. E�ectively the state space of Y has
been enlarged to Y0 = Y � f�1;+1g.
Notice that one might also consider to combine the

model variants in Figure 1 by making di�erent condi-
tional independence assumptions for di�erent values of z.
The resulting combined model corresponds to a Bayesian
multinet [Geiger and Heckerman, 1996].

Case II. In the second case, the multinomial sampling
model of selecting y or a (y; v) pair conditioned on z is no
longer adequate. We thus propose a modi�cation of the
aspect model starting from (3) and replace multinomials
P (yjz) with Bernoulli probabilities P (vjy; z), assuming
that y is always conditioned on (cf. Figure 1 (e)). This
modi�cation results in the E{step

P (zjx; y; v) =
P (z)P (xjz)P (vjy; z)P
z0 P (z0)P (xjz0)P (vjy; z)

: (9)

and a M{step re-estimation formula

P (vjy; z) =

P
x P (zjx; y; v)P

v=�1

P
x P (zjx; y; v)

: (10)

Comparing (9) with (7) one observes that P (y; vjz)
is now replaced by P (vjy; z) since y is treated as
a �xed (observation{dependent) conditioning variable.
Note that by conditioning on both, x and y, one gets
P (vjx; y) =

P
z P (vjy; z)P (zjx) which reveals the asym-

metry introduced into the aspect model by replacing
one of the class{conditional multinomials with a vector
of Bernoulli probabilities. The presented version is the
\collaborative" model. Reversing the role of x and y

yields the dual counterpart in Figure 1 (f), where the
prediction of v depends directly on x and only indirectly
on y (through z). Again combining both type of depen-
dency structures in a multinet might be worth consider-
ing.

3 The Two{Sided Clustering Model

3.1 Model Speci�cation

In the two{sided clustering model the strong assump-
tion is made that each person belongs to exactly one
group of persons and that each object belongs to exactly
one group of objects. Hence we have latent mappings
c(x) 2 C = fc1; : : : ; cKg and d(y) 2 D = fd1; : : : ; dLg
which partition X into K groups and Y into L groups,
respectively. This is very di�erent in spirit from the as-
pect model, where the leitmotif was to use convex com-
binations of prototypical factors. While we expect the
clustering model to be less exible in modeling prefer-
ences and less accurate in prediction (a fact which could
be veri�ed empirically), it might nevertheless be a valu-
able model for structure discovery which has applications
of its own right. To formalize the model, let us intro-
duce the following sets of parameters: P (x) and P (y)
for the marginal probabilities of persons and objects,
P (c) and P (d) for the prior probabilities of assigning
persons/objects to the di�erent clusters, and, most im-
portantly, cluster association parameters �(c; d) 2 IR+

0

between pairs of cluster (c; d). Now we may de�ne a
probabilistic model by

P (x; yjc(x)=c; d(y)=d;�)=P (x)P (y)�(c; d): (11)

A factorial prior on the latent class variables

P (c(x)=c)=P (c); P (d(y)=d)=P (d) (12)



Star Trek IV 0.024 Dr. Strangelove 0.029 Pinocchio 0.281 Richard III 0.160

Star Trek II 0.023 A Clockwork Orange 0.020 The Aristocats 0.213 Les Miserables 0.124

Star Trek VI 0.023 Delicatessen 0.018 Snow White and the Seven Dwarfs 0.211 The Madness of King George 0.113

Star Trek III 0.021 Cinema Paradiso 0.018 The Jungle Book 0.049 In the Name of the Father 0.076

The Fifth Element 0.018 Brazil 0.017717 The Lion King 0.020 The Visitors (Les Visiteurs) 0.043

The Rock 0.553 The Piano 0.288 Ready to Wear 0.097 Como Agua Para Chocolate 0.132

Eraser 0.232 The Remains of the Day 0.077 What's Love Got To Do With It? 0.091 Three Colors: Red: 0.086

Independence Day (ID4) 0.089 In the Name of the Father 0.067 Circle of Friends 0.070 Three Colors: Blue: 0.079

Mission: Impossible 0.077 Forrest Gump 0.052 Dolores Claiborne 0.037 Three Colors: White: 0.068

Trainspotting 0.021 Shadowlands 0.047 When a Man Loves a Woman: 0.030 The Piano: 0.064

Figure 2: Movie aspects extracted from EachMovie along with the probabilities P (yjz).

completes the speci�cation of the model. The associa-
tion parameters � increase or decrease the probability
of observing a person/object pair (x; y) with associated
cluster pair (c; d) relative to the unconditional indepen-
dence model P (x; y) = P (x)P (y). In order for (11) to
de�ne a proper probabilistic model, we have to ensure a
correct global normalization, which constrains the choice
of admissible values for the association parameters �.

3.2 Variational EM for Model Fitting

The main di�culty in the two-sided clustering model
is the coupling between the latent mappings c(x) and
d(y) via the cluster association parameters �(c; d). An
additional problem is that the admissible range of � also
depends on c(x) and d(y). Since an exact EM algorithm
seems to be out of reach, we propose an approximate
EM procedure. First, since c(x) and d(y) are random
variables we de�ne the admissible range of � to be the
set of values for which

E

"X
x;y

P (x)P (y)�(c(x); d(y))

#
= 1; (13)

where the expectation is taken w.r.t. the posterior class
probabilities

P
x;y
c;d (�) � P (c(x)=c; d(y)=djn; �): (14)

Secondly, the posteriors P x;y
c;d (�) are approximated by a

variational distribution of factorial form,

P
x;y
c;d (�) � Q(x; c)Q(y; d); (15)

where the Q distributions are free parameters to be de-
termined. In the (approximate) M{step one has to max-
imize [Hofmann and Puzicha, 1998]

L(�j�0) =
X
x;y

n(x; y)
X
c;d

P
x;y
c;d (�

0) log�(c; d); (16)

with respect to �. Technically, one introduces a La-
grange multiplier to enforce (13) and after some rather

lengthy calculations arrives at the equation

�(c; d) =

P
x;y P

x;y
c;d (�

0)n(x; y)

(
P

xP
x
c (�

0)n(x))
�P

y P
y

d (�
0)n(y)

� ; (17)

where P x
c and P

y
d are marginals of the posteriors P x;y

c;d

and n(x), n(y) are marginal counts. Eq. (16) can be
given a very intuitive interpretation by considering the
hard clustering case of P x;y

c;d 2 f0; 1g, where it reduces to
the expected mutual information between pairs of classes
c and d in either spaces: the numerator in (17) then sim-
ply counts the number of times a person x belonging to
a particular cluster c has been observed in conjunction
with an object y from cluster d, while the denominator
reduces to the product of the probabilities to (indepen-
dently) observe a person from cluster c and an object
from d.
It remains to perform the variational approximation

and to determine values for the Q{distributions by
choosing Q in order to minimize the KL{divergence to
the true posterior distribution. Details on this method {
also known as mean-�eld approximation { can be found
in [Jordan et al., 1998; Hofmann and Puzicha, 1998]. For
brevity, we report only the �nal form of the variational
E-step equations:

Q(x; c)/P (c) exp

"X
y

n(x; y)
X
d

Q(y; d) log�(c; d)

#
; (18)

Q(y; d)/P (d) exp

"X
x

n(x; y)
X
c

Q(x; c) log�(c; d)

#
: (19)

Notice that these equations form a highly non-linear,
coupled system of transcendental equations. A solu-
tion is found by a �xed{point iteration which alternates
the computation of the latent variables in one space (or
more precisely their approximate posterior probabilities)
based on the intermediate solution in the other space,
and vice versa. However, the alternating computation



Four Weddings and a Funeral Apollo 13 E.T.: The Extraterrestrial M*A*S*H Kalifornia

Home Alone Batman Alice in Wonderland Full Metal Jacket Short Cuts

Sleepless in Seattle Batman Forever Cinderella The Bridge on the River Kwai Smoke

Dave Star Trek: Generations Old Yeller Apocalypse Now Red Rock West

Pretty Woman Stargate Mary Poppins Chinatown Romeo is Bleeding

The Piano Goldeneye The Fox and the Hound The Shining Crumb

Figure 3: Movie clusters extracted from EachMovie.

has to be interleaved with a re-computation of the �{
parameters, because certain term cancelations have been
exploited in the derivation of (18,19). The resulting al-
ternation scheme optimizes a common objective function
and always maintains a valid probability distribution.
To initialize the model we propose to perform one-sided
clustering, either in the X or the Y space.

3.3 Clustering with Preference Values

Like the basic aspect model, the two{sided clustering
model is based on multinomial sampling, i.e., it models
independently generated occurrences of (x; y) pairs. To
model preference values v conditioned on (x; y) pairs, we
modify the model by replacing the association parame-
ters � with Bernoulli parameters P (vjc; d),

P (vjx; y; c(x)=c; d(y)=d) = P (vjc; d) : (20)

The assumption is that v is independent of x and y,
given their respective cluster memberships.2 Although
the latent mappings c and d are coupled, this model is
somewhat simpler than the model in (11), since there is
no normalization constraint one needs to take care of.
The conditional log{likelihood is thus simply

L =
X
x;y

X
v=�1

n(x; y; v) logP (vjc(x); d(y)); (21)

where of course P (�1jc; d) = 1 � P (+1jc; d). In the
M-step we have to maximize E[L], the expected log{
likelihood under the posterior distribution of the latent
mappings c(x) and d(y) which yields the formula

P (vjc; d) =

P
x;y P

x;y
c;d (�)n(x; y; v)P

v0=�1

P
x;y P

x;y
c;d (�)n(x; y; v

0)
: (22)

In the hard clustering limit, this simpli�es to counts of
how many persons in cluster c like (v = +1) or dis-
like (v = �1) objects from cluster d (ignoring missing
values). The denominator then corresponds to the to-
tal number of votes available between x's belonging to
c and y's belonging to d. A factorial approximation of

2Re�ned models may also consider additional weights to
account for individual preference averages.

K(L) Aspect Cluster Aspect
Co-occ. (a) Co-occ. Pref. (d)

1 (1) 442 442 827
8 (8) 255 349 475
16 (16) 241 335 442
32 (32) 237 (228) 308 434 (401)
64 (64) 234 (224) 341(301) 425 (395)
128(128) 231 (219) 380(298) 418 (388)

Table 1: Perplexity results on EachMovie for di�erent
model types (columns) and di�erent model complexities
(rows).

the posterior probabilities P x;y

c;d
along the same lines as

discussed above, yields

Q(x; c)=P (c)exp

2
4X
y;v;d

n(x; y; v)Q(y; d) logP (vjc; d)

3
5;(23)

Q(y; d)=P (d)exp

"X
x;v;c

n(x; y; v)Q(x; c) logP (vjc; d)

#
:(24)

These equations are very similar to the ones derived in
[Ungar and Foster, 1998]. The clustering model they
present is identical to the Bernoulli model in (20), but
the authors propose Gibbs sampling for model �tting,
while we have voted for the computationallymuch faster
variational EM algorithm.3

4 Experimental Results

To demonstrate the utility of latent class models for col-
laborative �ltering, we have performed a series of ex-
periments with the EachMovie dataset which consists of
data collected on the internet (almost 3 million prefer-
ence votes on a 0-5 scale which we have converted to
�1/+1 preferences by thresholding).4 Table 1 summa-

3For example, on the EachMovie database used in the
experiments we were not able to train models with Gibbs
sampling because of the immense computational complexity.

4For more information on this dataset see
www/research.digital.com/SRC/EachMovie.



Data #1 Recommendations Data #2 Recommendations

Star Trek: The Motion Picture The Empire Strikes Back Pulp Fiction The Silence of the Lambs

Star Trek: Generations Star Trek: First Contact Fargo Toy Story

Star Trek II Raiders of the Lost Ark Smoke Dead Man Walking

Star Trek III Stargate Three Colors: Blue Batman

Star Trek V The Terminator Four Weddings and a Funeral Leaving Las Vegas

Star Trek VI Return of the Jedi A2001: A Space Odyssey The Piano

Figure 4: Two exemplary recommendations computed with an aspect model (K = 128).

rizes perplexity results5 obtained with the aspect model
and the two{sided clustering model for di�erent number
of latent classes. As expected the performance of the as-
pect model is signi�cantly better than the one obtained
with the clustering model. The aspect model achieves a
reduction of roughly a factor 2 over the marginal inde-
pendence model (baseline at K = 1). By using anneal-

ing techniques (cf. [Hofmann and Puzicha, 1998]) slightly
better results can be obtained (numbers in brackets).
To give an impression of what the extracted movie

aspects and movie clusters look like, we have displayed
some aspects of a K = 128 model in Figure 2 and clus-
ters of a K = L = 32 solution represented by their
members with highest posterior probability in Figure 3.
Notice that some movies appear more than once in the
aspects (e.g. 'The Piano'). Both authors have also been
subjected to a test run with the recommendation sys-
tem. The result { which was perfectly satisfying from
our point of view { is shown in Figure 4. We hope the
reader might also spot one or another valuable recom-
mendation.

5 Conclusion

We have systematically discussed two di�erent types of
latent class models which can be utilized for collabora-
tive �ltering. Several variants corresponding to di�erent
sampling scenarios and/or di�erent modeling goals have
been presented, emphasizing the exibility and richness
of latent class models for both, prediction and struc-
ture discovery. Future work will address alternative loss
functions and will have to deal with a more detailed per-
formance evaluation.
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