
CHAPTER 1
INTRODUCTION

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Figure 1.1 The parts of a nerve cell or neuron. Each neuron consists of a cell body, or soma,
that contains a cell nucleus. Branching out from the cell body are a number of fibers called
dendrites and a single long fiber called the axon. The axon stretches out for a long distance,
much longer than the scale in this diagram indicates. Typically, an axon is 1 cm long (100
times the diameter of the cell body), but can reach up to 1 meter. A neuron makes connec-
tions with 10 to 100,000 other neurons at junctions called synapses. Signals are propagated
from neuron to neuron by a complicated electrochemical reaction. The signals control brain
activity in the short term and also enable long-term changes in the connectivity of neurons.
These mechanisms are thought to form the basis for learning in the brain. Most information
processing goes on in the cerebral cortex, the outer layer of the brain. The basic organi-
zational unit appears to be a column of tissue about 0.5 mm in diameter, containing about
20,000 neurons and extending the full depth of the cortex (about 4 mm in humans).

2 Chapter 1 Introduction

Supercomputer Personal Computer Human Brain

Computational units 106 GPUs + CPUs 8 CPU cores 106 columns
1015 transistors 1010 transistors 1011 neurons

Storage units 1016 bytes RAM 1010 bytes RAM 1011 neurons
1017 bytes disk 1012 bytes disk 1014 synapses

Cycle time 10−9 sec 10−9 sec 10−3 sec
Operations/sec 1018 1010 1017

Figure 1.2 A crude comparison of a leading supercomputer, Summit (Feldman, 2017); a
typical personal computer of 2019; and the human brain. Human brain power has not changed
much in thousands of years, whereas supercomputers have improved from megaFLOPs in
the 1960s to gigaFLOPs in the 1980s, teraFLOPs in the 1990s, petaFLOPs in 2008, and
exaFLOPs in 2018 (1 exaFLOP = 1018 floating point operations per second).

Figure 1.3 A scene from the blocks world. SHRDLU (Winograd, 1972) has just completed
the command “Find a block which is taller than the one you are holding and put it in the box.”

CHAPTER 2
INTELLIGENT AGENTS

Agent Sensors

Actuators

E
n
v
iro

n
m
en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

4 Chapter 2 Intelligent Agents

A B

Figure 2.2 A vacuum-cleaner world with just two locations. Each location can be clean or
dirty, and the agent can move left or right and can clean the square that it occupies. Different
versions of the vacuum world allow for different rules about what the agent can perceive,
whether its actions always succeed, and so on.

Percept sequence Action

[A,Clean] Right
[A,Dirty] Suck
[B,Clean] Left
[B,Dirty] Suck
[A,Clean], [A,Clean] Right
[A,Clean], [A,Dirty] Suck
...

...
[A,Clean], [A,Clean], [A,Clean] Right
[A,Clean], [A,Clean], [A,Dirty] Suck
...

...

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world shown
in Figure 2.2. The agent cleans the current square if it is dirty, otherwise it moves to the other
square. Note that the table is of unbounded size unless there is a restriction on the length of
possible percept sequences.

5

Agent Type Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast,
legal,
comfortable
trip, maximize
profits,
minimize
impact on
other road
users

Roads, other
traffic, police,
pedestrians,
customers,
weather

Steering,
accelerator,
brake, signal,
horn, display,
speech

Cameras, radar,
speedometer, GPS, engine
sensors, accelerometer,
microphones, touchscreen

Figure 2.4 PEAS description of the task environment for an automated taxi driver.

Agent Type Performance
Measure

Environment Actuators Sensors

Medical
diagnosis system

Healthy patient,
reduced costs

Patient, hospital,
staff

Display of
questions, tests,
diagnoses,
treatments

Touchscreen/voice
entry of
symptoms and
findings

Satellite image
analysis system

Correct
categorization of
objects, terrain

Orbiting satellite,
downlink,
weather

Display of scene
categorization

High-resolution
digital camera

Part-picking
robot

Percentage of
parts in correct
bins

Conveyor belt
with parts; bins

Jointed arm and
hand

Camera, tactile
and joint angle
sensors

Refinery
controller

Purity, yield,
safety

Refinery, raw
materials,
operators

Valves, pumps,
heaters, stirrers,
displays

Temperature,
pressure, flow,
chemical sensors

Interactive
English tutor

Student’s score
on test

Set of students,
testing agency

Display of
exercises,
feedback, speech

Keyboard entry,
voice

Figure 2.5 Examples of agent types and their PEAS descriptions.

6 Chapter 2 Intelligent Agents

Task Environment Observable Agents Deterministic Episodic Static Discrete

Crossword puzzle Fully Single Deterministic Sequential Static Discrete
Chess with a clock Fully Multi Deterministic Sequential Semi Discrete

Poker Partially Multi Stochastic Sequential Static Discrete
Backgammon Fully Multi Stochastic Sequential Static Discrete

Taxi driving Partially Multi Stochastic Sequential Dynamic Continuous
Medical diagnosis Partially Single Stochastic Sequential Dynamic Continuous

Image analysis Fully Single Deterministic Episodic Semi Continuous
Part-picking robot Partially Single Stochastic Episodic Dynamic Continuous

Refinery controller Partially Single Stochastic Sequential Dynamic Continuous
English tutor Partially Multi Stochastic Sequential Dynamic Discrete

Figure 2.6 Examples of task environments and their characteristics.

function TABLE-DRIVEN-AGENT(percept) returns an action
persistent: percepts, a sequence, initially empty

table, a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action←LOOKUP(percepts, table)
return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and re-
turns an action each time. It retains the complete percept sequence in memory.

function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Figure 2.8 The agent program for a simple reflex agent in the two-location vacuum environ-
ment. This program implements the agent function tabulated in Figure 2.3.

7

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do now

Condition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent. We use rectangles to denote the
current internal state of the agent’s decision process, and ovals to represent the background
information used in the process.

function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition–action rules

state← INTERPRET-INPUT(percept)
rule←RULE-MATCH(state, rules)
action←rule.ACTION
return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches the
current state, as defined by the percept.

8 Chapter 2 Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

IWhat action
should do now

State

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

transition model, a description of how the next state depends on
the current state and action

sensor model, a description of how the current world state is reflected
in the agent’s percepts

rules, a set of condition–action rules
action, the most recent action, initially none

state←UPDATE-STATE(state, action, percept, transition model, sensor model)
rule←RULE-MATCH(state, rules)
action←rule.ACTION
return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

9

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
 if I do action A

Goals

Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

Agent

E
n
v
iro

n
m

en
t

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with a
utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

10 Chapter 2 Intelligent Agents

Performance standard

Agent

E
n
v
iro

n
m

en
t

Sensors

Performance
element

changes

knowledge

learning
 goals

Problem
generator

feedback

 Learning
element

Critic

Actuators

Figure 2.15 A general learning agent. The “performance element” box represents what we
have previously considered to be the whole agent program. Now, the “learning element” box
gets to modify that program to improve its performance.

B C

(a) Atomic (b) Factored (c) Structured

B C

Figure 2.16 Three ways to represent states and the transitions between them. (a) Atomic
representation: a state (such as B or C) is a black box with no internal structure; (b) Factored
representation: a state consists of a vector of attribute values; values can be Boolean, real-
valued, or one of a fixed set of symbols. (c) Structured representation: a state includes
objects, each of which may have attributes of its own as well as relationships to other objects.

CHAPTER 3
SOLVING PROBLEMS BY SEARCHING

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

12 Chapter 3 Solving Problems by Searching

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

Figure 3.2 The state-space graph for the two-cell vacuum world. There are 8 states and three
actions for each state: L = Left, R = Right, S = Suck.

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Figure 3.3 A typical instance of the 8-puzzle.

13

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Arad Fagaras Oradea AradArad LugojRimnicu Vilcea Oradea

Zerind

Arad

Sibiu Timisoara

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Figure 3.4 Three partial search trees for finding a route from Arad to Bucharest. Nodes
that have been expanded are lavender with bold letters; nodes on the frontier that have been
generated but not yet expanded are in green; the set of states corresponding to these two
types of nodes are said to have been reached. Nodes that could be generated next are shown
in faint dashed lines. Notice in the bottom tree there is a cycle from Arad to Sibiu to Arad;
that can’t be an optimal path, so search should not continue from there.

Figure 3.5 A sequence of search trees generated by a graph search on the Romania problem
of Figure 3.1. At each stage, we have expanded every node on the frontier, extending every
path with all applicable actions that don’t result in a state that has already been reached.
Notice that at the third stage, the topmost city (Oradea) has two successors, both of which
have already been reached by other paths, so no paths are extended from Oradea.

14 Chapter 3 Solving Problems by Searching

(a) (b) (c)

Figure 3.6 The separation property of graph search, illustrated on a rectangular-grid prob-
lem. The frontier (green) separates the interior (lavender) from the exterior (faint dashed).
The frontier is the set of nodes (and corresponding states) that have been reached but not yet
expanded; the interior is the set of nodes (and corresponding states) that have been expanded;
and the exterior is the set of states that have not been reached. In (a), just the root has been
expanded. In (b), the top frontier node is expanded. In (c), the remaining successors of the
root are expanded in clockwise order.

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
node←NODE(STATE=problem.INITIAL)
frontier←a priority queue ordered by f , with node as an element
reached←a lookup table, with one entry with key problem.INITIAL and value node
while not IS-EMPTY(frontier) do

node←POP(frontier)
if problem.IS-GOAL(node.STATE) then return node
for each child in EXPAND(problem, node) do

s←child.STATE
if s is not in reached or child.PATH-COST < reached[s].PATH-COST then

reached[s]←child
add child to frontier

return failure

function EXPAND(problem, node) yields nodes
s←node.STATE
for each action in problem.ACTIONS(s) do

s′←problem.RESULT(s, action)
cost←node.PATH-COST + problem.ACTION-COST(s, action, s′)
yield NODE(STATE=s′, PARENT=node, ACTION=action, PATH-COST=cost)

Figure 3.7 The best-first search algorithm, and the function for expanding a node. The data
structures used here are described in Section 3.3.2. See Appendix B for yield.

15

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

Figure 3.8 Breadth-first search on a simple binary tree. At each stage, the node to be ex-
panded next is indicated by the triangular marker.

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node←NODE(problem.INITIAL)
if problem.IS-GOAL(node.STATE) then return node
frontier←a FIFO queue, with node as an element
reached←{problem.INITIAL}
while not IS-EMPTY(frontier) do

node←POP(frontier)
for each child in EXPAND(problem, node) do

s←child.STATE
if problem.IS-GOAL(s) then return child
if s is not in reached then

add s to reached
add child to frontier

return failure

function UNIFORM-COST-SEARCH(problem) returns a solution node, or failure
return BEST-FIRST-SEARCH(problem, PATH-COST)

Figure 3.9 Breadth-first search and uniform-cost search algorithms.

Sibiu Fagaras

Pitesti

Rimnicu Vilcea

Bucharest

99

80

97

101

211

Figure 3.10 Part of the Romania state space, selected to illustrate uniform-cost search.

16 Chapter 3 Solving Problems by Searching

✕
✕

✕
✕

✕
✕

✕

✕

✕
✕

✕
✕

✕
✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕
✕

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕
✕

✕

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Figure 3.11 A dozen steps (left to right, top to bottom) in the progress of a depth-first search
on a binary tree from start state A to goal M. The frontier is in green, with a triangle marking
the node to be expanded next. Previously expanded nodes are lavender, and potential future
nodes have faint dashed lines. Expanded nodes with no descendants in the frontier (very faint
lines) can be discarded.

17

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution node or failure
for depth = 0 to ∞ do

result←DEPTH-LIMITED-SEARCH(problem, depth)
if result 6= cutoff then return result

function DEPTH-LIMITED-SEARCH(problem, `) returns a node or failure or cutoff
frontier←a LIFO queue (stack) with NODE(problem.INITIAL) as an element
result← failure
while not IS-EMPTY(frontier) do

node←POP(frontier)
if problem.IS-GOAL(node.STATE) then return node
if DEPTH(node) > ` then

result←cutoff
else if not IS-CYCLE(node) do

for each child in EXPAND(problem, node) do
add child to frontier

return result

Figure 3.12 Iterative deepening and depth-limited tree-like search. Iterative deepening re-
peatedly applies depth-limited search with increasing limits. It returns one of three different
types of values: either a solution node; or failure, when it has exhausted all nodes and proved
there is no solution at any depth; or cutoff , to mean there might be a solution at a deeper depth
than `. This is a tree-like search algorithm that does not keep track of reached states, and thus
uses much less memory than best-first search, but runs the risk of visiting the same state mul-
tiple times on different paths. Also, if the IS-CYCLE check does not check all cycles, then
the algorithm may get caught in a loop.

18 Chapter 3 Solving Problems by Searching

✕
✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕
✕

✕
✕

✕

✕

✕

✕
✕

✕

✕

✕
✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕
✕

✕
✕

✕

✕ ✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕

✕
✕

✕
✕

✕

✕

✕

✕

✕
✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕✕ ✕ ✕ ✕ ✕ ✕ ✕

✕
✕

✕
✕

✕
✕

✕

✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕
✕

✕
✕

✕
✕

A

B C

D E F G

A

B C B C

A A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

limit: 0

limit: 1

limit: 2

limit: 3

Figure 3.13 Four iterations of iterative deepening search for goal M on a binary tree, with
the depth limit varying from 0 to 3. Note the interior nodes form a single path. The triangle
marks the node to expand next; green nodes with dark outlines are on the frontier; the very
faint nodes provably can’t be part of a solution with this depth limit.

19

function BIBF-SEARCH(problemF , fF , problemB, fB) returns a solution node, or failure
nodeF←NODE(problemF .INITIAL) // Node for a start state
nodeB←NODE(problemB.INITIAL) // Node for a goal state
frontierF←a priority queue ordered by fF , with nodeF as an element
frontierB←a priority queue ordered by fB, with nodeB as an element
reachedF←a lookup table, with one key nodeF .STATE and value nodeF
reachedB←a lookup table, with one key nodeB.STATE and value nodeB
solution← failure
while not TERMINATED(solution, frontierF , frontierB) do

if fF (TOP(frontierF)) < fB(TOP(frontierB)) then
solution←PROCEED(F, problemF , frontierF , reachedF , reachedB, solution)

else solution←PROCEED(B, problemB, frontierB, reachedB, reachedF , solution)
return solution

function PROCEED(dir, problem, frontier, reached, reached2, solution) returns a solution
// Expand node on frontier; check against the other frontier in reached2.
// The variable “dir” is the direction: either F for forward or B for backward.

node←POP(frontier)
for each child in EXPAND(problem, node) do

s←child.STATE
if s not in reached or PATH-COST(child) < PATH-COST(reached[s]) then

reached[s]←child
add child to frontier
if s is in reached2 then

solution2← JOIN-NODES(dir, child, reached2[s]))
if PATH-COST(solution2) < PATH-COST(solution) then

solution←solution2
return solution

Figure 3.14 Bidirectional best-first search keeps two frontiers and two tables of reached
states. When a path in one frontier reaches a state that was also reached in the other half of
the search, the two paths are joined (by the function JOIN-NODES) to form a solution. The
first solution we get is not guaranteed to be the best; the function TERMINATED determines
when to stop looking for new solutions.

20 Chapter 3 Solving Problems by Searching

Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirectional
First Cost First Limited Deepening (if applicable)

Complete? Yes1 Yes1,2 No No Yes1 Yes1,4

Optimal cost? Yes3 Yes No No Yes3 Yes3,4

Time O(bd) O(b1+bC∗/εc) O(bm) O(b`) O(bd) O(bd/2)

Space O(bd) O(b1+bC∗/εc) O(bm) O(b`) O(bd) O(bd/2)

Figure 3.15 Evaluation of search algorithms. b is the branching factor; m is the maximum
depth of the search tree; d is the depth of the shallowest solution, or is m when there is
no solution; ` is the depth limit. Superscript caveats are as follows: 1 complete if b is
finite, and the state space either has a solution or is finite. 2 complete if all action costs are
≥ ε > 0; 3 cost-optimal if action costs are all identical; 4 if both directions are breadth-first
or uniform-cost.

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Drobeta
Craiova

Fagaras

Iasi

 0

160

242

161

77

151

366

244

226

176

241

253

329

80

199

380

234

374

100

193

Figure 3.16 Values of hSLD—straight-line distances to Bucharest.

21

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

Figure 3.17 Stages in a greedy best-first tree-like search for Bucharest with the straight-line
distance heuristic hSLD. Nodes are labeled with their h-values.

22 Chapter 3 Solving Problems by Searching

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

Sibiu

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

TimisoaraSibiu

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Arad

Timisoara

Sibiu Bucharest

Oradea

Sibiu

Fagaras

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Arad

Timisoara

Sibiu Bucharest

Oradea

Sibiu

Craiova Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Pitesti

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380

Figure 3.18 Stages in an A∗ search for Bucharest. Nodes are labeled with f = g+h. The h
values are the straight-line distances to Bucharest taken from Figure 3.16.

23

Gn�

n�

n

h(n�)

h(n)

c(n, a, n�)

Figure 3.19 Triangle inequality: If the heuristic h is consistent, then the single number h(n)
will be less than the sum of the cost c(n,a,a′) of the action from n to n′ plus the heuristic
estimate h(n′).

O

Z

A

T

L

M

D

C

R

F

P

G

B

U

H

E

V

I

N

380

400

420

S

Figure 3.20 Map of Romania showing contours at f = 380, f = 400, and f = 420, with
Arad as the start state. Nodes inside a given contour have f = g+h costs less than or equal
to the contour value.

24 Chapter 3 Solving Problems by Searching

(a) (b)

Figure 3.21 Two searches on the same grid: (a) an A∗ search and (b) a weighted A∗ search
with weight W = 2. The gray bars are obstacles, the purple line is the path from the green
start to red goal, and the small dots are states that were reached by each search. On this
particular problem, weighted A∗ explores 7 times fewer states and finds a path that is 5%
more costly.

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution or failure
solution, fvalue←RBFS(problem, NODE(problem.INITIAL), ∞)

return solution

function RBFS(problem, node, f limit) returns a solution or failure, and a new f -cost limit
if problem.IS-GOAL(node.STATE) then return node
successors←LIST(EXPAND(node))
if successors is empty then return failure, ∞

for each s in successors do // update f with value from previous search
s.f←max(s.PATH-COST + h(s), node.f))

while true do
best← the node in successors with lowest f -value
if best. f > f limit then return failure, best. f
alternative← the second-lowest f -value among successors
result, best. f←RBFS(problem, best, min(f limit,alternative))
if result 6= failure then return result, best. f

Figure 3.22 The algorithm for recursive best-first search.

25

Zerind

Arad

Arad Oradea

Craiova Sibiu

Bucharest Craiova Rimnicu Vilcea

Fagaras

Sibiu

Zerind

Arad

Arad

Sibiu Bucharest

Rimnicu VilceaOradea

Zerind

Arad

Arad

Timisoara

Timisoara

Timisoara

Fagaras Oradea Rimnicu Vilcea

Craiova Pitesti Sibiu

646 415 671

526 553

646 671

450591

646 671

526 553

418 615 607

447 449

447

447 449

449

366

393

366

393

413

413 417415

366

393

415 450
417

Sibiu

Sibiu

Rimnicu Vilcea

Fagaras

447

415

447

447

417

(a) After expanding Arad, Sibiu,

and Rimnicu Vilcea

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

(b) After unwinding back to Sibiu
and expanding Fagaras

447

447

∞

∞

∞

417

417

Pitesti

Figure 3.23 Stages in an RBFS search for the shortest route to Bucharest. The f -limit value
for each recursive call is shown on top of each current node, and every node is labeled with
its f -cost. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti)
has a value that is worse than the best alternative path (Fagaras). (b) The recursion unwinds
and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea; then
Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion unwinds and the
best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu Vilcea is
expanded. This time, because the best alternative path (through Timisoara) costs at least 447,
the expansion continues to Bucharest.

26 Chapter 3 Solving Problems by Searching

f2=10

f=9=4+5

f2=16

f=9=8+1

f2=14

f=9=7+2

f2=12

f=8=6+2

f2=14

f=8=7+1

f2=10

f=10=4+6

4

1 1 1

4

E

F

C

A 2

B D

GoalStart

66

Figure 3.24 Bidirectional search maintains two frontiers: on the left, nodes A and B are
successors of Start; on the right, node F is an inverse successor of Goal. Each node is labeled
with f =g+ h values and the f2 = max(2g,g+ h) value. (The g values are the sum of the
action costs as shown on each arrow; the h values are arbitrary and cannot be derived from
anything in the figure.) The optimal solution, Start-A-F-Goal, has cost C∗=4+ 2+ 4=10,
so that means that a meet-in-the-middle bidirectional algorithm should not expand any node
with g> C∗

2 =5; and indeed the next node to be expanded would be A or F (each with g=4),
leading us to an optimal solution. If we expanded the node with lowest f cost first, then B
and C would come next, and D and E would be tied with A, but they all have g> C∗

2 and thus
are never expanded when f2 is the evaluation function.

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Figure 3.25 A typical instance of the 8-puzzle. The shortest solution is 26 actions long.

27

Search Cost (nodes generated) Effective Branching Factor

d BFS A∗(h1) A∗(h2) BFS A∗(h1) A∗(h2)

6 128 24 19 2.01 1.42 1.34
8 368 48 31 1.91 1.40 1.30

10 1033 116 48 1.85 1.43 1.27
12 2672 279 84 1.80 1.45 1.28
14 6783 678 174 1.77 1.47 1.31
16 17270 1683 364 1.74 1.48 1.32
18 41558 4102 751 1.72 1.49 1.34
20 91493 9905 1318 1.69 1.50 1.34
22 175921 22955 2548 1.66 1.50 1.34
24 290082 53039 5733 1.62 1.50 1.36
26 395355 110372 10080 1.58 1.50 1.35
28 463234 202565 22055 1.53 1.49 1.36

Figure 3.26 Comparison of the search costs and effective branching factors for 8-puzzle
problems using breadth-first search, A∗ with h1 (misplaced tiles), and A∗ with h2 (Manhattan
distance). Data are averaged over 100 puzzles for each solution length d from 6 to 28.

Start State Goal State

1

2

3

4

6

8

5

21

3 6

7 8

54

Figure 3.27 A subproblem of the 8-puzzle instance given in Figure 3.25. The task is to
get tiles 1, 2, 3, 4, and the blank into their correct positions, without worrying about what
happens to the other tiles.

28 Chapter 3 Solving Problems by Searching

Figure 3.28 A Web service providing driving directions, computed by a search algorithm.

CHAPTER 4
SEARCH IN COMPLEX
ENVIRONMENTS

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the
objective function. The aim is to find the global maximum.

function HILL-CLIMBING(problem) returns a state that is a local maximum
current←problem.INITIAL
while true do

neighbor←a highest-valued successor state of current
if VALUE(neighbor) ≤ VALUE(current) then return current
current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor.

30 Chapter 4 Search in Complex Environments

Figure 4.3 (a) The 8-queens problem: place 8 queens on a chess board so that no queen
attacks another. (A queen attacks any piece in the same row, column, or diagonal.) This
position is almost a solution, except for the two queens in the fourth and seventh columns
that attack each other along the diagonal. (b) An 8-queens state with heuristic cost estimate
h=17. The board shows the value of h for each possible successor obtained by moving a
queen within its column. There are 8 moves that are tied for best, with h=12. The hill-
climbing algorithm will pick one of these.

Figure 4.4 Illustration of why ridges cause difficulties for hill climbing. The grid of states
(dark circles) is superimposed on a ridge rising from left to right, creating a sequence of
local maxima that are not directly connected to each other. From each local maximum, all
the available actions point downhill. Topologies like this are common in low-dimensional
state spaces, such as points in a two-dimensional plane. But in state spaces with hundreds or
thousands of dimensions, this intuitive picture does not hold, and there are usually at least a
few dimensions that make it possible to escape from ridges and plateaus.

31

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
current←problem.INITIAL
for t = 1 to ∞ do

T←schedule(t)
if T = 0 then return current
next←a randomly selected successor of current
∆E←VALUE(current) – VALUE(next)
if ∆E > 0 then current←next
else current←next only with probability e∆E/T

Figure 4.5 The simulated annealing algorithm, a version of stochastic hill climbing where
some downhill moves are allowed. The schedule input determines the value of the “tempera-
ture” T as a function of time.

(a)

Initial Population

(b)

Fitness Function

(c)

Selection

(d)

Crossover

(e)

Mutation

24

23

20

11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24748552

32752411

24415124

32543213

32252124

24752411

32748152

24415417

Figure 4.6 A genetic algorithm, illustrated for digit strings representing 8-queens states. The
initial population in (a) is ranked by a fitness function in (b) resulting in pairs for mating in
(c). They produce offspring in (d), which are subject to mutation in (e).

+ =

Figure 4.7 The 8-queens states corresponding to the first two parents in Figure 4.5(c) and
the first offspring in Figure 4.5(d). The green columns are lost in the crossover step and the
red columns are retained. (To interpret the numbers in Figure 4.5: row 1 is the bottom row,
and 8 is the top row.)

32 Chapter 4 Search in Complex Environments

function GENETIC-ALGORITHM(population, fitness) returns an individual
repeat

weights←WEIGHTED-BY(population, fitness)
population2←empty list
for i = 1 to SIZE(population) do

parent1, parent2←WEIGHTED-RANDOM-CHOICES(population, weights, 2)
child←REPRODUCE(parent1, parent2)
if (small random probability) then child←MUTATE(child)
add child to population2

population←population2
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to fitness

function REPRODUCE(parent1, parent2) returns an individual
n←LENGTH(parent1)
c← random number from 1 to n
return APPEND(SUBSTRING(parent1, 1, c), SUBSTRING(parent2, c+1, n))

Figure 4.8 A genetic algorithm. Within the function, population is an ordered list of indi-
viduals, weights is a list of corresponding fitness values for each individual, and fitness is a
function to compute these values.

1 2

87

5 6

3 4

Figure 4.9 The eight possible states of the vacuum world; states 7 and 8 are goal states.

33

LeftSuck

RightSuck

RightSuck

6

GOAL

8

GOAL

7

1

2 5

1

LOOP

5

LOOP

5

LOOP

Left Suck

1

LOOP GOAL

8 4

Figure 4.10 The first two levels of the search tree for the erratic vacuum world. State nodes
are OR nodes where some action must be chosen. At the AND nodes, shown as circles, every
outcome must be handled, as indicated by the arc linking the outgoing branches. The solution
found is shown in bold lines.

function AND-OR-SEARCH(problem) returns a conditional plan, or failure
return OR-SEARCH(problem, problem.INITIAL, [])

function OR-SEARCH(problem, state, path) returns a conditional plan, or failure
if problem.IS-GOAL(state) then return the empty plan
if IS-CYCLE(state, path) then return failure
for each action in problem.ACTIONS(state) do

plan←AND-SEARCH(problem, RESULTS(state, action), [state] + [path])
if plan 6= failure then return [action] + [plan]

return failure

function AND-SEARCH(problem, states, path) returns a conditional plan, or failure
for each si in states do

plani←OR-SEARCH(problem, si, path)
if plani = failure then return failure

return [if s1 then plan1 else if s2 then plan2 else . . . if sn−1 then plann−1 else plann]

Figure 4.11 An algorithm for searching AND–OR graphs generated by nondeterministic en-
vironments. A solution is a conditional plan that considers every nondeterministic outcome
and makes a plan for each one.

34 Chapter 4 Search in Complex Environments

Suck Right

6

1

2 5

Right

Figure 4.12 Part of the search graph for a slippery vacuum world, where we have shown
(some) cycles explicitly. All solutions for this problem are cyclic plans because there is no
way to move reliably.

2

4

1

3

2

4

1

3

1

3

(b)(a)

Figure 4.13 (a) Predicting the next belief state for the sensorless vacuum world with the
deterministic action, Right. (b) Prediction for the same belief state and action in the slippery
version of the sensorless vacuum world.

35

L

R

S

L

R

S

L R

S

LR

S

L

R

S

L R

S
L

R

S

11 3

5 7

2 4

6 8

2 3

4 5 6

7 8

4 5

7 8

5 3

7

6 4

8

4

8

5

7

6

8

8 7

3

7

Figure 4.14 The reachable portion of the belief-state space for the deterministic, sensorless
vacuum world. Each rectangular box corresponds to a single belief state. At any given point,
the agent has a belief state but does not know which physical state it is in. The initial belief
state (complete ignorance) is the top center box.

36 Chapter 4 Search in Complex Environments

2

4

4

1

2

4

1

3

2

1

3 3

(b)

(a)

4

2

1

3

Right

[L,Dirty]

[R,Dirty]

[R,Clean]

Right
[R,Dirty]

[R,Clean]

Figure 4.15 Two examples of transitions in local-sensing vacuum worlds. (a) In the deter-
ministic world, Right is applied in the initial belief state, resulting in a new predicted belief
state with two possible physical states; for those states, the possible percepts are [R,Dirty]
and [R,Clean], leading to two belief states, each of which is a singleton. (b) In the slippery
world, Right is applied in the initial belief state, giving a new belief state with four physical
states; for those states, the possible percepts are [L,Dirty], [R,Dirty], and [R,Clean], leading
to three belief states as shown.

RightSuck

[L,Clean] [R,Clean][R,Dirty]

Figure 4.16 The first level of the AND–OR search tree for a problem in the local-sensing
vacuum world; Suck is the first action in the solution.

37

7

5

6

2 1

3

6

4

8

2 [R,Dirty]Right[L,Clean]

7

5

Suck

Figure 4.17 Two prediction–update cycles of belief-state maintenance in the kindergarten
vacuum world with local sensing.

(a) Possible locations of robot after E1 = 1011

(b) Possible locations of robot after E1 = 1011, E2 = 1010

Figure 4.18 Possible positions of the robot, �, (a) after one observation, E1=1011, and
(b) after moving one square and making a second observation, E2=1010. When sensors are
noiseless and the transition model is accurate, there is only one possible location for the robot
consistent with this sequence of two observations.

38 Chapter 4 Search in Complex Environments

G

S1

2

3

1 2 3

Figure 4.19 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.

S

G

S

G

A

A

S G

(a) (b)

Figure 4.20 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.

39

function ONLINE-DFS-AGENT(problem, s′) returns an action
s, a, the previous state and action, initially null
result, a table mapping (s, a) to s′, initially empty
untried, a table mapping s to a list of untried actions
unbacktracked, a table mapping s to a list of states never backtracked to

if problem.IS-GOAL(s′) then return stop
if s′ is a new state (not in untried) then untried[s′]←problem.ACTIONS(s′)
if s is not null then

result[s, a]←s′

add s to the front of unbacktracked[s′]
if untried[s′] is empty then

if unbacktracked[s′] is empty then return stop
a←an action b such that result[s′, b] = POP(unbacktracked[s′])s′← null

else a←POP(untried[s′])
s←s′

return a

Figure 4.21 An online search agent that uses depth-first exploration. The agent can safely
explore only in state spaces in which every action can be “undone” by some other action.

S G

Figure 4.22 An environment in which a random walk will take exponentially many steps to
find the goal.

40 Chapter 4 Search in Complex Environments

1

2
1 11 1 11

1 1 11 1 11

1 1 11 1 11

2

2

3

4

4

4

3

3

3

1 1 11 1 11

3

1 1 11 1 11

5

3

5

5

4

(a)

(b)

(c)

(d)

(e)

8 9

8

9

8 9

8

9

8 9

44

34

Figure 4.23 Five iterations of LRTA∗ on a one-dimensional state space. Each state is labeled
with H(s), the current cost estimate to reach a goal, and every link has an action cost of 1.
The red state marks the location of the agent, and the updated cost estimates at each iteration
have a double circle.

function LRTA*-AGENT(problem, s′, h) returns an action
s, a, the previous state and action, initially null
result, a table mapping (s, a) to s′, initially empty
H, a table mapping s to a cost estimate, initially empty

if IS-GOAL(s′) then return stop
if s′ is a new state (not in H) then H[s′]←h(s′)
if s is not null then

result[s, a]←s′

H[s]← min
b∈ACTIONS(s)

LRTA*-COST(problem, s, b, result[s, b], H)

a← argmin
b∈ACTIONS(s)

LRTA*-COST(problem, s′, b, result[s′, b], H)

s←s′

return a

function LRTA*-COST(problem, s, a, s′, H) returns a cost estimate
if s′ is undefined then return h(s)
else return problem.ACTION-COST(s,a,s′) + H[s′]

Figure 4.24 LRTA∗-AGENT selects an action according to the values of neighboring states,
which are updated as the agent moves about the state space.

CHAPTER 5
CONSTRAINT SATISFACTION
PROBLEMS

Western
Australia

Northern
Territory

South
Australia

Queensland

New

South

Wales

Victoria

Tasmania

Q
NT

WA

SA

V

NSW

T

(a) (b)

Figure 5.1 (a) The principal states and territories of Australia. Coloring this map can be
viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each re-
gion so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

42 Chapter 5 Constraint Satisfaction Problems

T W O

F O U R

T W O

F T U W R O

C3 C2 C1

Figure 5.2 (a) A cryptarithmetic problem. Each letter stands for a distinct digit; the aim is
to find a substitution of digits for letters such that the resulting sum is arithmetically correct,
with the added restriction that no leading zeroes are allowed. (b) The constraint hypergraph
for the cryptarithmetic problem, showing the Alldiff constraint (square box at the top) as well
as the column addition constraints (four square boxes in the middle). The variables C1, C2,
and C3 represent the carry digits for the three columns from right to left.

function AC-3(csp) returns false if an inconsistency is found and true otherwise
queue←a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X j)←POP(queue)
if REVISE(csp, Xi, X j) then

if size of Di = 0 then return false
for each Xk in Xi.NEIGHBORS - {X j} do

add (Xk, Xi) to queue
return true

function REVISE(csp, Xi, X j) returns true iff we revise the domain of Xi
revised← false
for each x in Di do

if no value y in D j allows (x,y) to satisfy the constraint between Xi and X j then
delete x from Di
revised← true

return revised

Figure 5.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is
arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be
solved. The name “AC-3” was used by the algorithm’s inventor (Mackworth, 1977) because
it was the third version developed in the paper.

43

3 2 6

9 3 5 1

1 8 6 4

8 1 2 9

7 8

6 7 8 2

2 6 9 5

8 2 3 9

5 1 3

3 2 6

9 3 5 1

1 8 6 4

8 1 2 9

7 8

6 7 8 2

2 6 9 5

8 2 3 9

5 1 3

4 8 9 1 5 7

6 7 4 8 2

2 5 7 9 3

5 4 3 7 6

2 9 5 6 4 1 3

1 3 9 4 5

3 7 8 1 4

1 4 5 7 6

6 9 4 7 8 2

1 2 3 4 5 6 7 8 9

A

B

C

D

E

F

G

H

 I

A

B

C

D

E

F

G

H

 I

1 2 3 4 5 6 7 8 9

(a) (b)

Figure 5.4 (a) A Sudoku puzzle and (b) its solution.

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK(csp,{})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment
var←SELECT-UNASSIGNED-VARIABLE(csp, assignment)
for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do

if value is consistent with assignment then
add {var = value} to assignment
inferences← INFERENCE(csp, var, assignment)
if inferences 6= failure then

add inferences to csp
result←BACKTRACK(csp, assignment)
if result 6= failure then return result
remove inferences from csp

remove {var = value} from assignment
return failure

Figure 5.5 A simple backtracking algorithm for constraint satisfaction problems. The
algorithm is modeled on the recursive depth-first search of Chapter 3. The functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES implement the general-
purpose heuristics discussed in Section 5.3.1. The INFERENCE function can optionally im-
pose arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed
either by INFERENCE or by BACKTRACK), then value assignments (including those made by
INFERENCE) are retracted and a new value is tried.

44 Chapter 5 Constraint Satisfaction Problems

Figure 5.6 Part of the search tree for the map-coloring problem in Figure 5.1.

Initial domains

After WA=red

After Q=green

After V=blue

WA NT Q NSW V SA T

Figure 5.7 The progress of a map-coloring search with forward checking. WA=red is as-
signed first; then forward checking deletes red from the domains of the neighboring variables
NT and SA. After Q=green is assigned, green is deleted from the domains of NT , SA, and
NSW. After V =blue is assigned, blue is deleted from the domains of NSW and SA, leaving
SA with no legal values.

2

2

1

2

3

1

2

3

3

2

3

2

3

0

Figure 5.8 A two-step solution using min-conflicts for an 8-queens problem. At each stage,
a queen is chosen for reassignment in its column. The number of conflicts (in this case, the
number of attacking queens) is shown in each square. The algorithm moves the queen to the
min-conflicts square, breaking ties randomly.

45

function MIN-CONFLICTS(csp, max steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem

max steps, the number of steps allowed before giving up

current←an initial complete assignment for csp
for i = 1 to max steps do

if current is a solution for csp then return current
var←a randomly chosen conflicted variable from csp.VARIABLES
value← the value v for var that minimizes CONFLICTS(csp, var, v, current)
set var=value in current

return failure

Figure 5.9 The MIN-CONFLICTS local search algorithm for CSPs. The initial state may be
chosen randomly or by a greedy assignment process that chooses a minimal-conflict value
for each variable in turn. The CONFLICTS function counts the number of constraints violated
by a particular value, given the rest of the current assignment.

Figure 5.10 (a) The constraint graph of a tree-structured CSP. (b) A linear ordering of the
variables consistent with the tree with A as the root. This is known as a topological sort of
the variables.

function TREE-CSP-SOLVER(csp) returns a solution, or failure
inputs: csp, a CSP with components X , D, C

n←number of variables in X
assignment←an empty assignment
root←any variable in X
X←TOPOLOGICALSORT(X, root)
for j = n down to 2 do

MAKE-ARC-CONSISTENT(PARENT(X j), X j)
if it cannot be made consistent then return failure

for i = 1 to n do
assignment[Xi]←any consistent value from Di
if there is no consistent value then return failure

return assignment

Figure 5.11 The TREE-CSP-SOLVER algorithm for solving tree-structured CSPs. If the
CSP has a solution, we will find it in linear time; if not, we will detect a contradiction.

46 Chapter 5 Constraint Satisfaction Problems

Q
NT

WA

SA

V

NSW

T

Q
NT

WA

V

NSW

T

(a) (b)

Figure 5.12 (a) The original constraint graph from Figure 5.1. (b) After the removal of SA,
the constraint graph becomes a forest of two trees.

NT

WA

SA

Q
NT

SA

Q

SA NSW

SA

V

NSWT

Figure 5.13 A tree decomposition of the constraint graph in Figure 5.12(a).

CHAPTER 6
ADVERSARIAL SEARCH AND GAMES

XX

XX

X

X

X

XX

X X
O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

Figure 6.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial state,
and MAX moves first, placing an X in an empty square. We show part of the tree, giving
alternating moves by MIN (O) and MAX (X), until we eventually reach terminal states, which
can be assigned utilities according to the rules of the game.

48 Chapter 6 Adversarial Search and Games

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3

a1
a2

a3

b1

b2

b3 c1

c2

c3 d1

d2

d3

MIN

Figure 6.2 A two-ply game tree. The 4 nodes are “MAX nodes,” in which it is MAX’s turn
to move, and the 5 nodes are “MIN nodes.” The terminal nodes show the utility values for
MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root is
a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,
because it leads to the state with the lowest minimax value.

function MINIMAX-SEARCH(game, state) returns an action
player←game.TO-MOVE(state)
value, move←MAX-VALUE(game, state)
return move

function MAX-VALUE(game, state) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v, move←−∞

for each a in game.ACTIONS(state) do
v2, a2←MIN-VALUE(game, game.RESULT(state, a))
if v2 > v then

v, move←v2, a
return v, move

function MIN-VALUE(game, state) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v, move←+∞

for each a in game.ACTIONS(state) do
v2, a2←MAX-VALUE(game, game.RESULT(state, a))
if v2 < v then

v, move←v2, a
return v, move

Figure 6.3 An algorithm for calculating the optimal move using minimax—the move that
leads to a terminal state with maximum utility, under the assumption that the opponent plays
to minimize utility. The functions MAX-VALUE and MIN-VALUE go through the whole
game tree, all the way to the leaves, to determine the backed-up value of a state and the move
to get there.

49

to move
A

B

C

A

X

(1, 2, 6)

(1, 2, 6)

(1, 2, 6) (6, 1, 2) (0, 5, 2)

(0, 5, 2)

(5, 4, 5)

(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4, 1) (5, 1, 1) (0, 5, 2) (7, 7, 1) (5, 4, 5)

Figure 6.4 The first three ply of a game tree with three players (A, B, C). Each node is
labeled with values from the viewpoint of each player. The best move is marked at the root.

50 Chapter 6 Adversarial Search and Games

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[– �, +�]

[– �, 3]

[3, +�]

[3, 3] [– �, 2]

[3, 3]

[3, 14]

[–�, 2] [– �, 14]

[3, 3]

[3, 3] [2, 2]

[3, + �]

[3, 3]

[– �, 3]

[– �, + �]

[– �, 2]

Figure 6.5 Stages in the calculation of the optimal decision for the game tree in Figure 6.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the value
of B is exactly 3. Now we can infer that the value of the root is at least 3, because MAX has
a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence, C, which is
a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX would never
choose C. Therefore, there is no point in looking at the other successor states of C. This is an
example of alpha–beta pruning. (e) The first leaf below D has the value 14, so D is worth at
most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need to keep exploring
D’s successor states. Notice also that we now have bounds on all of the successors of the root,
so the root’s value is also at most 14. (f) The second successor of D is worth 5, so again we
need to keep exploring. The third successor is worth 2, so now D is worth exactly 2. MAX’s
decision at the root is to move to B, giving a value of 3.

51

Player

Opponent

Player

Opponent

m

n

•

•

•

m′

Figure 6.6 The general case for alpha–beta pruning. If m or m′ is better than n for Player,
we will never get to n in play.

function ALPHA-BETA-SEARCH(game, state) returns an action
player←game.TO-MOVE(state)
value, move←MAX-VALUE(game, state,−∞,+∞)
return move

function MAX-VALUE(game, state,α,β) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v←−∞

for each a in game.ACTIONS(state) do
v2, a2←MIN-VALUE(game, game.RESULT(state, a),α,β)
if v2 > v then

v, move←v2, a
α←MAX(α, v)

if v ≥ β then return v, move
return v, move

function MIN-VALUE(game, state,α,β) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v←+∞

for each a in game.ACTIONS(state) do
v2, a2←MAX-VALUE(game, game.RESULT(state, a),α,β)
if v2 < v then

v, move←v2, a
β←MIN(β, v)

if v ≤ α then return v, move
return v, move

Figure 6.7 The alpha–beta search algorithm. Notice that these functions are the same as the
MINIMAX-SEARCH functions in Figure 6.3, except that we maintain bounds in the variables
α and β, and use them to cut off search when a value is outside the bounds.

52 Chapter 6 Adversarial Search and Games

(b) White to move(a) White to move

Figure 6.8 Two chess positions that differ only in the position of the rook at lower right.
In (a), Black has an advantage of a knight and two pawns, which should be enough to win
the game. In (b), White will capture the queen, giving it an advantage that should be strong
enough to win.

a b c d e f g h

8

7

6

5

4

3

2

1

Figure 6.9 The horizon effect. With Black to move, the black bishop is surely doomed. But
Black can forestall that event by checking the white king with its pawns, encouraging the
king to capture the pawns. This pushes the inevitable loss of the bishop over the horizon, and
thus the pawn sacrifices are seen by the search algorithm as good moves rather than bad ones.

53

0/1

28/36 10/18 0/3 0/3

3/46/616/543/26

61/80 1/10

37/101

2/11

10/18

3/26 16/53

60/79

37/100

1/10 2/11

6/6 3/4

0/30/327/35

37/100

60/79 1/10 2/11

3/46/616/533/26

27/35 10/18 0/3 0/3

0/0

(a) Selection (b) Expansion
and simulation

(c) Backpropagation

black wins

Figure 6.10 One iteration of the process of choosing a move with Monte Carlo tree search
(MCTS) using the upper confidence bounds applied to trees (UCT) selection metric, shown
after 100 iterations have already been done. In (a) we select moves, all the way down the
tree, ending at the leaf node marked 27/35 (for 27 wins for black out of 35 playouts). In (b)
we expand the selected node and do a simulation (playout), which ends in a win for black. In
(c), the results of the simulation are back-propagated up the tree.

function MONTE-CARLO-TREE-SEARCH(state) returns an action
tree←NODE(state)
while IS-TIME-REMAINING() do

leaf←SELECT(tree)
child←EXPAND(leaf)
result←SIMULATE(child)
BACK-PROPAGATE(result, child)

return the move in ACTIONS(state) whose node has highest number of playouts

Figure 6.11 The Monte Carlo tree search algorithm. A game tree, tree, is initialized, and
then we repeat a cycle of SELECT / EXPAND / SIMULATE / BACK-PROPAGATE until we run
out of time, and return the move that led to the node with the highest number of playouts.

54 Chapter 6 Adversarial Search and Games

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Figure 6.12 A typical backgammon position. The goal of the game is to move all one’s
pieces off the board. Black moves clockwise toward 25, and White moves counterclockwise
toward 0. A piece can move to any position unless multiple opponent pieces are there; if there
is one opponent, it is captured and must start over. In the position shown, Black has rolled
6–5 and must choose among four legal moves: (5–11,5–10), (5–11,19–24), (5–10,10–16),
and (5–11,11–16), where the notation (5–11,11–16) means move one piece from position 5
to 11, and then move a piece from 11 to 16.

55

CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .

1-1
1/36

1-2
1/18

TERMINAL

1-2
1/18

......

.........

......

1-1
1/36

...

......

...

C

. . .

1/18
6-5 6-6

1/36

1/18
6-5 6-6

1/36

2 –11–1

Figure 6.13 Schematic game tree for a backgammon position.

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

Figure 6.14 An order-preserving transformation on leaf values changes the best move.

56 Chapter 6 Adversarial Search and Games

a

1

2

3

4

db c

Kc3 ?

“Illegal”“OK”

Rc3 ?

“OK” “Check”

Figure 6.15 Part of a guaranteed checkmate in the KRK endgame, shown on a reduced
board. In the initial belief state, Black’s king is in one of three possible locations. By a
combination of probing moves, the strategy narrows this down to one. Completion of the
checkmate is left as an exercise.

MAX

99 100

99 1000 1000 1000 100 101 102 100

MIN

Figure 6.16 A two-ply game tree for which heuristic minimax may make an error.

CHAPTER 7
LOGICAL AGENTS

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action←ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t← t + 1
return action

Figure 7.1 A generic knowledge-based agent. Given a percept, the agent adds the percept
to its knowledge base, asks the knowledge base for the best action, and tells the knowledge
base that it has in fact taken that action.

PIT

1 2 3 4

1

2

3

4

START

Stench

Stench

Breeze

Gold

PIT

PIT

Breeze

Breeze

Breeze

Breeze

Breeze

Stench

Figure 7.2 A typical wumpus world. The agent is in the bottom left corner, facing east
(rightward).

58 Chapter 7 Logical Agents

A

B

G

P

S

W

 = Agent

 = Breeze

 = Glitter, Gold

 = Pit

 = Stench

 = Wumpus

OK = Safe square

V = Visited

A

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

OKOK

B

P?

P?A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

(a) (b)

Figure 7.3 The first step taken by the agent in the wumpus world. (a) The initial situa-
tion, after percept [None,None,None,None,None]. (b) After moving to [2,1] and perceiving
[None,Breeze,None,None,None].

B P!

A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

OK

W!

V

P!

A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

S

OK

W!

V

V V

B

S G

P?

P?

(b)(a)

S

A

B

G

P

S

W

 = Agent

 = Breeze

 = Glitter, Gold

 = Pit

 = Stench

 = Wumpus

OK = Safe square

V = Visited

B

Figure 7.4 Two later stages in the progress of the agent. (a) After moving to [1,1] and then
[1,2], and perceiving [Stench,None,None,None,None]. (b) After moving to [2,2] and then
[2,3], and perceiving [Stench,Breeze,Glitter,None,None].

59

1 2 3

1

2 PIT

1 2 3

1

2 PIT

1 2 3

1

2 PIT PIT

PIT

1 2 3

1

2 PIT

PIT

1 2 3

1

2

PIT

1 2 3

1

2 PIT

PIT

1 2 3

1

2 PIT PIT

1 2 3

1

2

1 2 3

1

2 PIT

1 2 3

1

2 PIT

PIT

1 2 3

1

2

PIT

KB a1

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

(a)

1 2 3

1

2 PIT

1 2 3

1

2 PIT PIT

PIT

1 2 3

PIT

1 2 3

1

2 PIT

PIT

1 2 3

1

2 PIT PIT

1 2 3

1

2

KB

Breeze

a2

Breeze

Breeze

Breeze

Breeze

1 2 3

1

2 PIT

1 2 3

1

2 PIT

PIT

Breeze

Breeze

1

2

Breeze

1 2 3

1

2 PIT

1 2 3

1 2 3

1

2 PIT

PIT

1 2 3

1

2

α2

BBrerr eze

BBrerr eze

BBrerr eze

1

2

BBrerr eze

(b)

Figure 7.5 Possible models for the presence of pits in squares [1,2], [2,2], and [3,1]. The
KB corresponding to the observations of nothing in [1,1] and a breeze in [2,1] is shown by
the solid line. (a) Dotted line shows models of α1 (no pit in [1,2]). (b) Dotted line shows
models of α2 (no pit in [2,2]).

Follows

Sentences Sentence
Entails S

e
m

a
n

tic
s

S
e

m
a

n
tic

s

Representation

World

Aspects of the
 real world

Aspect of the
 real world

Figure 7.6 Sentences are physical configurations of the agent, and reasoning is a process of
constructing new physical configurations from old ones. Logical reasoning should ensure that
the new configurations represent aspects of the world that actually follow from the aspects
that the old configurations represent.

60 Chapter 7 Logical Agents

Sentence → AtomicSentence | ComplexSentence

AtomicSentence → True | False | P | Q | R | . . .

ComplexSentence → (Sentence)
| ¬ Sentence

| Sentence ∧ Sentence

| Sentence ∨ Sentence

| Sentence ⇒ Sentence

| Sentence ⇔ Sentence

OPERATOR PRECEDENCE : ¬,∧,∨,⇒,⇔

Figure 7.7 A BNF (Backus–Naur Form) grammar of sentences in propositional logic, along
with operator precedences, from highest to lowest.

P Q ¬P P∧Q P∨Q P ⇒ Q P ⇔ Q

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for
example, the value of P∨Q when P is true and Q is false, first look on the left for the row
where P is true and Q is false (the third row). Then look in that row under the P∨Q column
to see the result: true.

61

B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB

false false false false false false false true true true true false false
false false false false false false true true true false true false false

...
...

...
...

...
...

...
...

...
...

...
...

...
false true false false false false false true true false true true false

false true false false false false true true true true true true true
false true false false false true false true true true true true true
false true false false false true true true true true true true true

false true false false true false false true false false true true false
...

...
...

...
...

...
...

...
...

...
...

...
...

true true true true true true true false true true false true false

Figure 7.9 A truth table constructed for the knowledge base given in the text. KB is true if
R1 through R5 are true, which occurs in just 3 of the 128 rows (the ones underlined in the
right-hand column). In all 3 rows, P1,2 is false, so there is no pit in [1,2]. On the other hand,
there might (or might not) be a pit in [2,2].

function TT-ENTAILS?(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

symbols←a list of the proposition symbols in KB and α
return TT-CHECK-ALL(KB,α, symbols,{})

function TT-CHECK-ALL(KB,α, symbols, model) returns true or false
if EMPTY?(symbols) then

if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
else return true // when KB is false, always return true

else
P←FIRST(symbols)
rest←REST(symbols)
return (TT-CHECK-ALL(KB,α, rest, model ∪ {P = true})

and
TT-CHECK-ALL(KB,α, rest, model ∪ {P = false })

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment. (TT
stands for truth table.) PL-TRUE? returns true if a sentence holds within a model. The
variable model represents a partial model—an assignment to some of the symbols. The key-
word and here is an infix function symbol in the pseudocode programming language, not an
operator in propositional logic; it takes two arguments and returns true or false.

62 Chapter 7 Logical Agents

(α∧β) ≡ (β∧α) commutativity of ∧
(α∨β) ≡ (β∨α) commutativity of ∨

((α∧β)∧γ) ≡ (α∧ (β∧γ)) associativity of ∧
((α∨β)∨γ) ≡ (α∨ (β∨γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition
(α ⇒ β) ≡ (¬α∨β) implication elimination
(α ⇔ β) ≡ ((α ⇒ β)∧ (β ⇒ α)) biconditional elimination
¬(α∧β) ≡ (¬α∨¬β) De Morgan
¬(α∨β) ≡ (¬α∧¬β) De Morgan

(α∧ (β∨γ)) ≡ ((α∧β)∨ (α∧γ)) distributivity of ∧ over ∨
(α∨ (β∧γ)) ≡ ((α∨β)∧ (α∨γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

CNFSentence → Clause1 ∧·· ·∧ Clausen

Clause → Literal1 ∨·· ·∨ Literalm
Fact → Symbol

Literal → Symbol | ¬Symbol

Symbol → P | Q | R | . . .
HornClauseForm → DefiniteClauseForm | GoalClauseForm

DefiniteClauseForm → Fact | (Symbol1 ∧·· ·∧ Symboll) ⇒ Symbol

GoalClauseForm → (Symbol1 ∧·· ·∧ Symboll) ⇒ False

Figure 7.12 A grammar for conjunctive normal form, Horn clauses, and definite clauses. A
CNF clause such as ¬A∨¬B∨C can be written in definite clause form as A∧B ⇒ C.

63

function PL-RESOLUTION(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB∧¬α
new←{}
while true do

for each pair of clauses Ci, C j in clauses do
resolvents←PL-RESOLVE(Ci,C j)
if resolvents contains the empty clause then return true
new←new∪ resolvents

if new⊆ clauses then return false
clauses←clauses∪new

Figure 7.13 A simple resolution algorithm for propositional logic. PL-RESOLVE returns the
set of all possible clauses obtained by resolving its two inputs.

¬P2,1 B1,1 ¬B1,1 P1,2 P2,1 ¬P1,2 B1,1 ¬B1,1 P1,2

¬P2,1 ¬P1,2P1,2 P2,1 ¬P2,1 ¬B1,1 P2,1 B1,1 P1,2 P2,1 ¬P1,2¬B1,1 P1,2 B1,1

^ ^ ^

^^ ^ ^ ^ ^ ^ ^

^

Figure 7.14 Partial application of PL-RESOLUTION to a simple inference in the wumpus
world to prove the query ¬P1,2. Each of the leftmost four clauses in the top row is paired with
each of the other three, and the resolution rule is applied to yield the clauses on the bottom
row. We see that the third and fourth clauses on the top row combine to yield the clause ¬P1,2,
which is then resolved with P1,2 to yield the empty clause, meaning that the query is proven.

64 Chapter 7 Logical Agents

function PL-FC-ENTAILS?(KB, q) returns true or false
inputs: KB, the knowledge base, a set of propositional definite clauses

q, the query, a proposition symbol
count←a table, where count[c] is initially the number of symbols in clause c’s premise
inferred←a table, where inferred[s] is initially false for all symbols
queue←a queue of symbols, initially symbols known to be true in KB

while queue is not empty do
p←POP(queue)
if p = q then return true
if inferred[p] = false then

inferred[p]← true
for each clause c in KB where p is in c.PREMISE do

decrement count[c]
if count[c] = 0 then add c.CONCLUSION to queue

return false

Figure 7.15 The forward-chaining algorithm for propositional logic. The queue keeps track
of symbols known to be true but not yet “processed.” The count table keeps track of how
many premises of each implication are not yet proven. Whenever a new symbol p from the
agenda is processed, the count is reduced by one for each implication in whose premise p
appears (easily identified in constant time with appropriate indexing.) If a count reaches
zero, all the premises of the implication are known, so its conclusion can be added to the
agenda. Finally, we need to keep track of which symbols have been processed; a symbol that
is already in the set of inferred symbols need not be added to the agenda again. This avoids
redundant work and prevents loops caused by implications such as P⇒ Q and Q⇒ P.

P ⇒ Q

L∧M ⇒ P

B∧L ⇒ M

A∧P ⇒ L

A∧B ⇒ L

A

B

Q

P

M

L

BA

(a) (b)

Figure 7.16 (a) A set of Horn clauses. (b) The corresponding AND–OR graph.

65

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of s
symbols←a list of the proposition symbols in s
return DPLL(clauses, symbols,{})

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value←FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols – P, model ∪ {P=value})
P, value←FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols – P, model ∪ {P=value})
P←FIRST(symbols); rest←REST(symbols)
return DPLL(clauses, rest, model ∪ {P=true}) or

DPLL(clauses, rest, model ∪ {P=false})

Figure 7.17 The DPLL algorithm for checking satisfiability of a sentence in propositional
logic. The ideas behind FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in
the text; each returns a symbol (or null) and the truth value to assign to that symbol. Like
TT-ENTAILS?, DPLL operates over partial models.

function WALKSAT(clauses, p, max flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically around 0.5
max flips, number of value flips allowed before giving up

model←a random assignment of true/false to the symbols in clauses
for each i= 1 to max flips do

if model satisfies clauses then return model
clause←a randomly selected clause from clauses that is false in model
if RANDOM(0, 1) ≤ p then

flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Figure 7.18 The WALKSAT algorithm for checking satisfiability by randomly flipping the
values of variables. Many versions of the algorithm exist.

66 Chapter 7 Logical Agents

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

P
(s

at
is

fi
ab

le
)

Clause/symbol ratio m/n

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 1 2 3 4 5 6 7 8

R
un

tim
e

Clause/symbol ratio m/n

DPLL
WalkSAT

(a) (b)

Figure 7.19 (a) Graph showing the probability that a random 3-CNF sentence with n=50
symbols is satisfiable, as a function of the clause/symbol ratio m/n. (b) Graph of the median
run time (measured in number of iterations) for both DPLL and WALKSAT on random 3-
CNF sentences. The most difficult problems have a clause/symbol ratio of about 4.3.

67

function HYBRID-WUMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze,glitter,bump,scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”

t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
TELL the KB the temporal “physics” sentences for time t
safe←{[x,y] : ASK(KB,OKt

x,y) = true}
if ASK(KB,Glittert) = true then

plan← [Grab] + PLAN-ROUTE(current,{[1,1]}, safe) + [Climb]
if plan is empty then

unvisited←{[x,y] : ASK(KB,Lt ′
x,y) = false for all t ′ ≤ t}

plan←PLAN-ROUTE(current, unvisited∩safe, safe)
if plan is empty and ASK(KB,HaveArrowt) = true then

possible wumpus←{[x,y] : ASK(KB,¬Wx,y) = false}
plan←PLAN-SHOT(current, possible wumpus, safe)

if plan is empty then // no choice but to take a risk
not unsafe←{[x,y] : ASK(KB,¬ OKt

x,y) = false}
plan←PLAN-ROUTE(current, unvisited∩not unsafe, safe)

if plan is empty then
plan←PLAN-ROUTE(current,{[1,1]}, safe) + [Climb]

action←POP(plan)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t← t + 1
return action

function PLAN-ROUTE(current,goals,allowed) returns an action sequence
inputs: current, the agent’s current position

goals, a set of squares; try to plan a route to one of them
allowed, a set of squares that can form part of the route

problem←ROUTE-PROBLEM(current, goals,allowed)
return SEARCH(problem) // Any search algorithm from Chapter 3

Figure 7.20 A hybrid agent program for the wumpus world. It uses a propositional knowl-
edge base to infer the state of the world, and a combination of problem-solving search and
domain-specific code to choose actions. Each time HYBRID-WUMPUS-AGENT is called, it
adds the percept to the knowledge base, and then either relies on a previously-defined plan or
creates a new plan, and pops off the first step of the plan as the action to do next.

68 Chapter 7 Logical Agents

Figure 7.21 Depiction of a 1-CNF belief state (bold outline) as a simply representable, con-
servative approximation to the exact (wiggly) belief state (shaded region with dashed outline).
Each possible world is shown as a circle; the shaded ones are consistent with all the percepts.

function SATPLAN(init, transition, goal, T max) returns solution or failure
inputs: init, transition, goal, constitute a description of the problem

T max, an upper limit for plan length

for t = 0 to T max do
cnf←TRANSLATE-TO-SAT(init, transition, goal, t)
model←SAT-SOLVER(cnf)
if model is not null then

return EXTRACT-SOLUTION(model)
return failure

Figure 7.22 The SATPLAN algorithm. The planning problem is translated into a CNF sen-
tence in which the goal is asserted to hold at a fixed time step t and axioms are included for
each time step up to t. If the satisfiability algorithm finds a model, then a plan is extracted by
looking at those proposition symbols that refer to actions and are assigned true in the model.
If no model exists, then the process is repeated with the goal moved one step later.

CHAPTER 8
FIRST-ORDER LOGIC

Language Ontological Commitment Epistemological Commitment
(What exists in the world) (What an agent believes about facts)

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief ∈ [0,1]
Fuzzy logic facts with degree of truth ∈ [0,1] known interval value

Figure 8.1 Formal languages and their ontological and epistemological commitments.

R J
$

left leg

on head
brother

brother

person person
king

crown

left leg

Figure 8.2 A model containing five objects, two binary relations (brother and on-head), three
unary relations (person, king, and crown), and one unary function (left-leg).

70 Chapter 8 First-Order Logic

Sentence → AtomicSentence | ComplexSentence

AtomicSentence → Predicate | Predicate(Term, . . .) | Term = Term

ComplexSentence → (Sentence)
| ¬ Sentence

| Sentence ∧ Sentence

| Sentence ∨ Sentence

| Sentence ⇒ Sentence

| Sentence ⇔ Sentence

| Quantifier Variable, . . . Sentence

Term → Function(Term, . . .)

| Constant

| Variable

Quantifier → ∀ | ∃
Constant → A | X1 | John | · · ·
Variable → a | x | s | · · ·

Predicate → True | False | After | Loves | Raining | · · ·
Function → Mother | LeftLeg | · · ·

OPERATOR PRECEDENCE : ¬,=,∧,∨,⇒,⇔

Figure 8.3 The syntax of first-order logic with equality, specified in Backus–Naur form (see
page 1081 if you are not familiar with this notation). Operator precedences are specified,
from highest to lowest. The precedence of quantifiers is such that a quantifier holds over
everything to the right of it.

.

R J R R R R RJ J J J J

Figure 8.4 Some members of the set of all models for a language with two constant symbols,
R and J, and one binary relation symbol. The interpretation of each constant symbol is shown
by a gray arrow. Within each model, the related objects are connected by arrows.

71

. . .

R J

J

R

R J

R

J

R J

R

J

R J

R

J

R J

R

J

Figure 8.5 Some members of the set of all models for a language with two constant symbols,
R and J, and one binary relation symbol, under database semantics. The interpretation of the
constant symbols is fixed, and there is a distinct object for each constant symbol.

1

2

3

1

2

X1 X2

A1

A2

O1

C1

Figure 8.6 A digital circuit C1, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.

CHAPTER 9
INFERENCE IN FIRST-ORDER LOGIC

function UNIFY(x, y, θ=empty) returns a substitution to make x and y identical, or failure
if θ = failure then return failure
else if x = y then return θ
else if VARIABLE?(x) then return UNIFY-VAR(x, y, θ)
else if VARIABLE?(y) then return UNIFY-VAR(y, x, θ)
else if COMPOUND?(x) and COMPOUND?(y) then

return UNIFY(ARGS(x), ARGS(y), UNIFY(OP(x), OP(y), θ))
else if LIST?(x) and LIST?(y) then

return UNIFY(REST(x), REST(y), UNIFY(FIRST(x), FIRST(y), θ))
else return failure

function UNIFY-VAR(var, x, θ) returns a substitution
if {var/val} ∈ θ for some val then return UNIFY(val, x, θ)
else if {x/val} ∈ θ for some val then return UNIFY(var, val, θ)
else if OCCUR-CHECK?(var, x) then return failure
else return add {var/x} to θ

Figure 9.1 The unification algorithm. The arguments x and y can be any expression: a
constant or variable, or a compound expression such as a complex sentence or term, or a
list of expressions. The argument θ is a substitution, initially the empty substitution, but
with {var/val} pairs added to it as we recurse through the inputs, comparing the expressions
element by element. In a compound expression such as F(A,B), OP(x) field picks out the
function symbol F and ARGS(x) field picks out the argument list (A,B).

Employs(x,y)

Employs(x,Richard) Employs(IBM,y)

Employs(IBM,Richard)

Employs(x,y)

Employs(John,John)

Employs(x,x)Employs(x,John) Employs(John,y)

(a) (b)

Figure 9.2 (a) The subsumption lattice whose lowest node is Employs(IBM,Richard). (b)
The subsumption lattice for the sentence Employs(John,John).

73

function FOL-FC-ASK(KB,α) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses

α, the query, an atomic sentence

while true do
new←{} // The set of new sentences inferred on each iteration
for each rule in KB do

(p1∧ . . .∧ pn ⇒ q)←STANDARDIZE-VARIABLES(rule)
for each θ such that SUBST(θ, p1 ∧ . . . ∧ pn) = SUBST(θ, p′1 ∧ . . . ∧ p′n)

for some p′1, . . . ,p
′
n in KB

q′←SUBST(θ, q)
if q′ does not unify with some sentence already in KB or new then

add q′ to new
φ←UNIFY(q′,α)
if φ is not failure then return φ

if new = {} then return false
add new to KB

Figure 9.3 A conceptually straightforward, but inefficient, forward-chaining algorithm. On
each iteration, it adds to KB all the atomic sentences that can be inferred in one step
from the implication sentences and the atomic sentences already in KB. The function
STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have
not been used before.

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Figure 9.4 The proof tree generated by forward chaining on the crime example. The initial
facts appear at the bottom level, facts inferred on the first iteration in the middle level, and
facts inferred on the second iteration at the top level.

74 Chapter 9 Inference in First-Order Logic

Q
NT

WA

SA

V

NSW

T

Diff (wa,nt)∧Diff (wa,sa)∧
Diff (nt,q)∧Diff (nt,sa)∧
Diff (q,nsw)∧Diff (q,sa)∧
Diff (nsw,v)∧Diff (nsw,sa)∧
Diff (v,sa) ⇒ Colorable()

Diff (Red,Blue) Diff (Red,Green)

Diff (Green,Red) Diff (Green,Blue)

Diff (Blue,Red) Diff (Blue,Green)

(a) (b)

Figure 9.5 (a) Constraint graph for coloring the map of Australia. (b) The map-coloring
CSP expressed as a single definite clause. Each map region is represented as a variable
whose value can be one of the constants Red, Green, or Blue (which are declared Diff).

function FOL-BC-ASK(KB, query) returns a generator of substitutions
return FOL-BC-OR(KB, query,{})

function FOL-BC-OR(KB, goal, θ) returns a substitution
for each rule in FETCH-RULES-FOR-GOAL(KB, goal) do
(lhs ⇒ rhs)←STANDARDIZE-VARIABLES(rule)
for each θ′ in FOL-BC-AND(KB, lhs, UNIFY(rhs, goal, θ)) do

yield θ′

function FOL-BC-AND(KB, goals, θ) returns a substitution
if θ = failure then return
else if LENGTH(goals) = 0 then yield θ
else

first,rest←FIRST(goals), REST(goals)
for each θ′ in FOL-BC-OR(KB, SUBST(θ, first), θ) do

for each θ′′ in FOL-BC-AND(KB, rest, θ′) do
yield θ′′

Figure 9.6 A simple backward-chaining algorithm for first-order knowledge bases.

75

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{y/M1} { }{ }{ }

{z/Nono}{ }

Figure 9.7 Proof tree constructed by backward chaining to prove that West is a criminal.
The tree should be read depth first, left to right. To prove Criminal(West), we have to prove
the four conjuncts below it. Some of these are in the knowledge base, and others require
further backward chaining. Bindings for each successful unification are shown next to the
corresponding subgoal. Note that once one subgoal in a conjunction succeeds, its substitution
is applied to subsequent subgoals. Thus, by the time FOL-BC-ASK gets to the last conjunct,
originally Hostile(z), z is already bound to Nono.

(a) (b)

A B C

A1

J4

Figure 9.8 (a) Finding a path from A to C can lead Prolog into an infinite loop. (b) A graph
in which each node is connected to two random successors in the next layer. Finding a path
from A1 to J4 requires 877 inferences.

76 Chapter 9 Inference in First-Order Logic

path(a,c)

fail

{ }/Y b

{ }

link(a,c) path(a,Y)

link(a,Y)

link(b,c)

path(a,c)

path(a,Y) link(Y,c)

path(a,Y’) link(Y’,Y)

(a) (b)

Figure 9.9 (a) Proof that a path exists from A to C. (b) Infinite proof tree generated when
the clauses are in the “wrong” order.

¬American(x) ¬Weapon(y) ¬Sells(x,y,z) ¬Hostile(z) Criminal(x) ¬Criminal(West)

¬Enemy(Nono, America)Enemy(Nono,America)

¬Missile(x) Weapon(x) ¬Weapon(y) ¬Sells(West,y,z) ¬Hostile(z)

Missile(M1) ¬Missile(y) ¬Sells(West,y,z) ¬Hostile(z)

¬Missile(x) ¬Owns(Nono,x) Sells(West,x,Nono) ¬Sells(West,M1,z) ¬Hostile(z)

¬American(West) ¬Weapon(y) ¬Sells(West,y,z) ¬Hostile(z)American(West)

¬Missile(M1) ¬Owns(Nono,M1) ¬Hostile(Nono)Missile(M1)

¬Owns(Nono,M1) ¬Hostile(Nono)Owns(Nono,M1)

¬Enemy(x,America) Hostile(x) ¬Hostile(Nono)

^^^ ^

^ ^ ^

^ ^ ^

^ ^

^ ^ ^

^ ^

^

^

Figure 9.10 A resolution proof that West is a criminal. At each resolution step, the literals
that unify are in bold and the clause with the positive literal is shaded blue.

77

¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna) Kills(Curiosity, Tuna)¬Cat(x) Animal(x)Cat(Tuna)

¬Animal(F(Jack)) Loves(G(Jack), Jack) Animal(F(x)) Loves(G(x), x)¬Loves(y, x) ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x) ¬Animal(z) ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x)) Loves(G(x), x) ¬Animal(x) Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.11 A resolution proof that Curiosity killed the cat. Notice the use of factoring in
the derivation of the clause Loves(G(Jack),Jack). Notice also in the upper right, the unifi-
cation of Loves(x,F(x)) and Loves(Jack,x) can only succeed after the variables have been
standardized apart.

Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Some set S′ of ground instances is unsatisfiable

Resolution can find a contradiction in S′

There is a resolution proof for the contradiction in S′

Lifting lemma

Ground resolution
theorem

Herbrand’s theorem

Figure 9.12 Structure of a completeness proof for resolution.

CHAPTER 10
KNOWLEDGE REPRESENTATION

Anything

AbstractObjects

Sets Numbers RepresentationalObjects Intervals Places ProcessesPhysicalObjects

Humans

Categories Sentences Measurements Moments Things Stuff

Times Weights Animals Agents Solid Liquid Gas

GeneralizedEvents

Figure 10.1 The upper ontology of the world, showing the topics to be covered later in
the chapter. Each link indicates that the lower concept is a specialization of the upper one.
Specializations are not necessarily disjoint—a human is both an animal and an agent. We
will see in Section 10.3.2 why physical objects come under generalized events.

Meet(i, j)

Starts(i, j)

Finishes(i, j)

Equals(i, j)

Before(i, j)

After(j,i)

During(i, j)

Overlap(i, j) j

j

j

j

j

j

j

i

i

i

i

i

i

i

Figure 10.2 Predicates on time intervals.

79

time

1801
1797

1789

Figure 10.3 A schematic view of the object President(USA) for the early years.

Mammals

JohnMary

Persons

Male
Persons

Female
Persons

1

2

SubsetOf

SubsetOfSubsetOf

MemberOf MemberOf

SisterOf Legs

LegsHasMother

Figure 10.4 A semantic network with four objects (John, Mary, 1, and 2) and four categories.
Relations are denoted by labeled links.

MemberOf

FlyEvents

Fly
17

Shankar NewYork NewDelhi Yesterday

Agent

Origin Destination

During

Figure 10.5 A fragment of a semantic network showing the representation of the logical
assertion Fly(Shankar,NewYork,NewDelhi,Yesterday).

80 Chapter 10 Knowledge Representation

Concept → Thing | ConceptName

| And(Concept, . . .)

| All(RoleName,Concept)

| AtLeast(Integer,RoleName)

| AtMost(Integer,RoleName)

| Fills(RoleName, IndividualName, . . .)

| SameAs(Path,Path)

| OneOf(IndividualName, . . .)

Path → [RoleName, . . .]

ConceptName → Adult | Female | Male | . . .
RoleName → Spouse | Daughter | Son | . . .

Figure 10.6 The syntax of descriptions in a subset of the CLASSIC language.

CHAPTER 11
AUTOMATED PLANNING

Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK)
∧ Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK) ∧ Airport(SFO))

Goal(At(C1, JFK) ∧ At(C2, SFO))
Action(Load(c, p, a),

PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: ¬ At(c, a) ∧ In(c, p))

Action(Unload(c, p, a),
PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: At(c, a) ∧ ¬ In(c, p))

Action(Fly(p, from, to),
PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬ At(p, from) ∧ At(p, to))

Figure 11.1 A PDDL description of an air cargo transportation planning problem.

Init(Tire(Flat) ∧ Tire(Spare) ∧ At(Flat,Axle) ∧ At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(Remove(obj, loc),

PRECOND: At(obj, loc)
EFFECT: ¬ At(obj, loc) ∧ At(obj,Ground))

Action(PutOn(t, Axle),
PRECOND: Tire(t) ∧ At(t,Ground) ∧ ¬ At(Flat,Axle) ∧ ¬ At(Spare,Axle)
EFFECT: ¬ At(t,Ground) ∧ At(t,Axle))

Action(LeaveOvernight,
PRECOND:
EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,Trunk)

∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle) ∧ ¬ At(Flat, Trunk))

Figure 11.2 The simple spare tire problem.

82 Chapter 11 Automated Planning

Start State Goal State

B A

C

A

B

C

Figure 11.3 Diagram of the blocks-world problem in Figure 11.4.

Init(On(A,Table) ∧ On(B,Table) ∧ On(C,A)
∧ Block(A) ∧ Block(B) ∧ Block(C) ∧ Clear(B) ∧ Clear(C) ∧ Clear(Table))

Goal(On(A,B) ∧ On(B,C))
Action(Move(b,x,y),

PRECOND: On(b,x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧ Block(y) ∧
(b6=x) ∧ (b6=y) ∧ (x 6=y),

EFFECT: On(b,y) ∧ Clear(x) ∧ ¬On(b,x) ∧ ¬Clear(y))
Action(MoveToTable(b,x),

PRECOND: On(b,x) ∧ Clear(b) ∧ Block(b) ∧ Block(x),
EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬On(b,x))

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [MoveToTable(C,A),Move(B,Table,C),Move(A,Table,B)].

83

(a)

(b)

At(P1, A)
Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

At(P1, B)

At(P2, B)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

Figure 11.5 Two approaches to searching for a plan. (a) Forward (progression) search
through the space of ground states, starting in the initial state and using the problem’s ac-
tions to search forward for a member of the set of goal states. (b) Backward (regression)
search through state descriptions, starting at the goal and using the inverse of the actions to
search backward for the initial state.

Figure 11.6 Two state spaces from planning problems with the ignore-delete-lists heuristic.
The height above the bottom plane is the heuristic score of a state; states on the bottom
plane are goals. There are no local minima, so search for the goal is straightforward. From
Hoffmann (2005).

84 Chapter 11 Automated Planning

Refinement(Go(Home,SFO),
STEPS: [Drive(Home,SFOLongTermParking),

Shuttle(SFOLongTermParking,SFO)])
Refinement(Go(Home,SFO),

STEPS: [Taxi(Home,SFO)])

Refinement(Navigate([a,b], [x,y]),
PRECOND: a=x ∧ b=y
STEPS: [])

Refinement(Navigate([a,b], [x,y]),
PRECOND:Connected([a,b], [a−1,b])
STEPS: [Left,Navigate([a−1,b], [x,y])])

Refinement(Navigate([a,b], [x,y]),
PRECOND:Connected([a,b], [a+1,b])
STEPS: [Right,Navigate([a+1,b], [x,y])])

. . .

Figure 11.7 Definitions of possible refinements for two high-level actions: going to San
Francisco airport and navigating in the vacuum world. In the latter case, note the recursive
nature of the refinements and the use of preconditions.

function HIERARCHICAL-SEARCH(problem, hierarchy) returns a solution or failure

frontier←a FIFO queue with [Act] as the only element
while true do

if IS-EMPTY(frontier) then return failure
plan←POP(frontier) // chooses the shallowest plan in frontier
hla← the first HLA in plan, or null if none
prefix,suffix← the action subsequences before and after hla in plan
outcome←RESULT(problem.INITIAL, prefix)
if hla is null then // so plan is primitive and outcome is its result

if problem.IS-GOAL(outcome) then return plan
else for each sequence in REFINEMENTS(hla, outcome, hierarchy) do

add APPEND(prefix, sequence, suffix) to frontier

Figure 11.8 A breadth-first implementation of hierarchical forward planning search. The
initial plan supplied to the algorithm is [Act]. The REFINEMENTS function returns a set of
action sequences, one for each refinement of the HLA whose preconditions are satisfied by
the specified state, outcome.

85

(a) (b)

Figure 11.9 Schematic examples of reachable sets. The set of goal states is shaded in purple.
Black and red arrows indicate possible implementations of h1 and h2, respectively. (a) The
reachable set of an HLA h1 in a state s. (b) The reachable set for the sequence [h1,h2].
Because this intersects the goal set, the sequence achieves the goal.

(a) (b)

Figure 11.10 Goal achievement for high-level plans with approximate descriptions. The set
of goal states is shaded in purple. For each plan, the pessimistic (solid lines, light blue) and
optimistic (dashed lines, light green) reachable sets are shown. (a) The plan indicated by the
black arrow definitely achieves the goal, while the plan indicated by the red arrow definitely
doesn’t. (b) A plan that possibly achieves the goal (the optimistic reachable set intersects
the goal) but does not necessarily achieve the goal (the pessimistic reachable set does not
intersect the goal). The plan would need to be refined further to determine if it really does
achieve the goal.

86 Chapter 11 Automated Planning

function ANGELIC-SEARCH(problem, hierarchy, initialPlan) returns a solution or fail

frontier←a FIFO queue with initialPlan as the only element
while true do

if IS-EMPTY?(frontier) then return fail
plan←POP(frontier) // chooses the shallowest node in frontier
if REACH+(problem.INITIAL,plan) intersects problem.GOAL then

if plan is primitive then return plan // REACH+ is exact for primitive plans
guaranteed←REACH−(problem.INITIAL,plan) ∩ problem.GOAL
if guaranteed 6={} and MAKING-PROGRESS(plan, initialPlan) then

finalState←any element of guaranteed
return DECOMPOSE(hierarchy, problem.INITIAL, plan, finalState)

hla←some HLA in plan
prefix,suffix← the action subsequences before and after hla in plan
outcome←RESULT(problem.INITIAL, prefix)
for each sequence in REFINEMENTS(hla, outcome, hierarchy) do

add APPEND(prefix, sequence, suffix) to frontier

function DECOMPOSE(hierarchy, s0, plan, sf) returns a solution

solution←an empty plan
while plan is not empty do

action←REMOVE-LAST(plan)
si←a state in REACH−(s0,plan) such that sf∈REACH−(si,action)
problem←a problem with INITIAL = si and GOAL = sf
solution←APPEND(ANGELIC-SEARCH(problem, hierarchy, action), solution)
sf←si

return solution

Figure 11.11 A hierarchical planning algorithm that uses angelic semantics to identify and
commit to high-level plans that work while avoiding high-level plans that don’t. The predi-
cate MAKING-PROGRESS checks to make sure that we aren’t stuck in an infinite regression
of refinements. At top level, call ANGELIC-SEARCH with [Act] as the initialPlan.

whole plan

plan

repair

S P

O

E G

continuation

Figure 11.12 At first, the sequence “whole plan” is expected to get the agent from S to G.
The agent executes steps of the plan until it expects to be in state E, but observes that it is
actually in O. The agent then replans for the minimal repair plus continuation to reach G.

87

Jobs({AddEngine1≺AddWheels1≺ Inspect1},
{AddEngine2≺AddWheels2≺ Inspect2})

Resources(EngineHoists(1), WheelStations(1), Inspectors(2), LugNuts(500))

Action(AddEngine1, DURATION:30,
USE:EngineHoists(1))

Action(AddEngine2, DURATION:60,
USE:EngineHoists(1))

Action(AddWheels1, DURATION:30,
CONSUME:LugNuts(20), USE:WheelStations(1))

Action(AddWheels2, DURATION:15,
CONSUME:LugNuts(20), USE:WheelStations(1))

Action(Inspecti, DURATION:10,
USE:Inspectors(1))

Figure 11.13 A job-shop scheduling problem for assembling two cars, with resource con-
straints. The notation A≺B means that action A must precede action B.

Start

[0,0]

AddEngine1

30

 [0,15]

AddWheels1

30

 [30,45]

10

Inspect1

[60,75]

Finish

[85,85]

10

Inspect2

[75,75]

15

AddWheels2

[60,60]

60

AddEngine2

[0,0]

AddEngine1

AddWheels1

Inspect1

AddWheels2

Inspect2AddEngine2

9080706050403020100

Figure 11.14 Top: a representation of the temporal constraints for the job-shop scheduling
problem of Figure 11.13. The duration of each action is given at the bottom of each rectangle.
In solving the problem, we compute the earliest and latest start times as the pair [ES,LS],
displayed in the upper left. The difference between these two numbers is the slack of an
action; actions with zero slack are on the critical path, shown with bold arrows. Bottom: the
same solution shown as a timeline. Blue rectangles represent time intervals during which an
action may be executed, provided that the ordering constraints are respected. The unoccupied
portion of a blue rectangle indicates the slack.

88 Chapter 11 Automated Planning

AddEngine1

AddWheels1

Inspect1

AddWheels2

Inspect2

AddEngine2

100 110 120

EngineHoists(1)

WheelStations(1)

Inspectors(2)

9080706050403020100

Figure 11.15 A solution to the job-shop scheduling problem from Figure 11.13, taking into
account resource constraints. The left-hand margin lists the three reusable resources, and
actions are shown aligned horizontally with the resources they use. There are two possi-
ble schedules, depending on which assembly uses the engine hoist first; we’ve shown the
shortest-duration solution, which takes 115 minutes.

CHAPTER 12
QUANTIFYING UNCERTAINTY

function DT-AGENT(percept) returns an action
persistent: belief state, probabilistic beliefs about the current state of the world

action, the agent’s action

update belief state based on action and percept
calculate outcome probabilities for actions,

given action descriptions and current belief state
select action with highest expected utility

given probabilities of outcomes and utility information
return action

Figure 12.1 A decision-theoretic agent that selects rational actions.

Proposition Agent 1’s Agent 2 Agent 1 Agent 1 payoffs for each outcome
belief bets bets a,b a,¬b ¬a,b ¬a,¬b

a 0.4 $4 on a $6 on ¬a –$6 –$6 $4 $4
b 0.3 $3 on b $7 on ¬b –$7 $3 –$7 $3

a∨b 0.8 $2 on ¬(a∨b) $8 on a∨b $2 $2 $2 –$8

–$11 –$1 –$1 –$1

Figure 12.2 Because Agent 1 has inconsistent beliefs, Agent 2 is able to devise a set of
three bets that guarantees a loss for Agent 1, no matter what the outcome of a and b.

toothache ¬toothache

catch ¬catch catch ¬catch

cavity 0.108 0.012 0.072 0.008
¬cavity 0.016 0.064 0.144 0.576

Figure 12.3 A full joint distribution for the Toothache, Cavity, Catch world.

90 Chapter 12 Quantifying Uncertainty

Weather

Toothache Catch

Cavity

decomposes

 into

WeatherToothache Catch

Cavity

decomposes

 into

Coin1 Coinn

Coin1 Coinn

(a) (b)

Figure 12.4 Two examples of factoring a large joint distribution into smaller distributions,
using absolute independence. (a) Weather and dental problems are independent. (b) Coin
flips are independent.

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4

OKOK

 3,4 4,4

B

B

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

 2,3 3,3 4,3

 2,4 3,4 4,4

KNOWN

FRONTIER

1,3

1,4

QUERY

OTHER

(a) (b)

Figure 12.5 (a) After finding a breeze in both [1,2] and [2,1], the agent is stuck—there is
no safe place to explore. (b) Division of the squares into Known, Frontier, and Other, for a
query about [1,3].

91

OK

 1,1 2,1

 1,2

OKOK

B

B

OK

 1,1 2,1

 1,2 2,2

OKOK

B

B

OK

 1,1 2,1 3,1

 1,2

OKOK

B

B

0.2 3 0.2 5 0.04 0.2 3 0.8 5 0.16 0.8 3 0.2 5 0.16

OK

 1,1 2,1

 1,2

 1,3

OKOK

B

B

OK

 1,1 2,1 3,1

 1,2

 1,3

OKOK

B

B

0.2 3 0.2 5 0.04 0.2 3 0.8 5 0.16

(a) (b)

 2,2

 1,3 1,3

 2,2

 1,3

 3,1

 2,2 2,2

 3,1 3,1

Figure 12.6 Consistent models for the frontier variables, P2,2 and P3,1, showing P(frontier)
for each model: (a) three models with P1,3= true showing two or three pits, and (b) two
models with P1,3= false showing one or two pits.

CHAPTER 13
PROBABILISTIC REASONING

Weather Cavity

Toothache Catch

Figure 13.1 A simple Bayesian network in which Weather is independent of the other three
variables and Toothache and Catch are conditionally independent, given Cavity.

.001 .002

.70

.95

.94

.29

.001

.01

A

t

f

E

t

f

t

f

B

t

t

f

f

Burglary
P(B=true) P(E=true)

P(M=true|A)

.90

.05

A

t

f

P(J=true|A)

P(A=true|B,E)

Alarm

JohnCalls MaryCalls

Earthquake

Figure 13.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary,
Earthquake, Alarm, JohnCalls, and MaryCalls, respectively.

93

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake

MaryCalls

Alarm

Earthquake

Burglary

JohnCalls

(a) (b)

1

2

4

2

4

1

2

4

8

16

Figure 13.3 Network structure and number of parameters depends on order of introduc-
tion. (a) The structure obtained with ordering M,J,A,B,E. (b) The structure obtained with
M,J,E,B,A. Each node is annotated with the number of parameters required; 13 in all for
(a) and 31 for (b). In Figure 13.2, only 10 parameters were required.

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

. . .

. . .U1 Um

Yn

Znj

Y1

Z1j
X

(a) (b)

Figure 13.4 (a) A node X is conditionally independent of its non-descendants (e.g., the Zi js)
given its parents (the Uis shown in the lavender area). (b) A node X is conditionally indepen-
dent of all other nodes in the network given its Markov blanket (the lavender area).

94 Chapter 13 Probabilistic Reasoning

Cold Flu Malaria P(fever | ·) P(¬fever | ·)

f f f 0.0 1.0
f f t 0.9 0.1
f t f 0.8 0.2
f t t 0.98 0.02 = 0.2×0.1
t f f 0.4 0.6
t f t 0.94 0.06 = 0.6×0.1
t t f 0.88 0.12 = 0.6×0.2
t t t 0.988 0.012 = 0.6×0.2×0.1

Figure 13.5 A complete conditional probability table for P(Fever |Cold,Flu,Malaria), as-
suming a noisy-OR model with the the three q-values shown in bold.

HarvestSubsidy

Buys

Cost

Figure 13.6 A simple network with discrete variables (Subsidy and Buys) and continuous
variables (Harvest and Cost).

 0 3 6 9 12Cost c 0
 3

 6
 9

 12

Harvest

 0
 0.1
 0.2
 0.3
 0.4

P(c | h, subsidy)

 0 3 6 9 12Cost c 0
 3

 6
 9

 12

Harvest

 0
 0.1
 0.2
 0.3
 0.4

 | h, ¬ subsidy)

 0 3 6 9 12Cost c 0
 3

 6
 9

 12

Harvest

 0
 0.1
 0.2
 0.3
 0.4

P(c | h)

(a) (b) (c)

Figure 13.7 The graphs in (a) and (b) show the probability distribution over Cost as a func-
tion of Harvest size, with Subsidy true and false, respectively. Graph (c) shows the distribu-
tion P(Cost |Harvest), obtained by summing over the two subsidy cases.

95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12

P
(c

)

Cost c

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

P
(b

uy
s

| c
)

Cost c

Logit
Probit

(a) (b)

Figure 13.8 (a) A normal (Gaussian) distribution for the cost threshold, centered on µ=6.0
with standard deviation σ=1.0. (b) Expit and probit models for the probability of buys given
cost, for the parameters µ=6.0 and σ=1.0.

Figure 13.9 A Bayesian network for evaluating car insurance applications.

96 Chapter 13 Probabilistic Reasoning

P(j|a)
.90

P(m|a)
.70 .01

P(m|¬a)

.05
P(j|¬a) P(j|a)

.90

P(m|a)
.70 .01

P(m|¬a)

.05
P(j |¬a)

P(b)
.001

P(e)
.002

P(¬e)
.998

P(a |b,e)
.95 .06

P(¬a|b,¬e)
.05
P(¬a|b,e)

.94
P(a|b,¬e)

Figure 13.10 The structure of the expression shown in Equation (13.5). The evaluation
proceeds top down, multiplying values along each path and summing at the “+” nodes. Notice
the repetition of the paths for j and m.

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayes net with variables vars

Q(X)←a distribution over X, initially empty
for each value xi of X do

Q(xi)←ENUMERATE-ALL(vars, exi)
where exi is e extended with X = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
V←FIRST(vars)
if V is an evidence variable with value v in e

then return P(v | parents(V)) × ENUMERATE-ALL(REST(vars), e)
else return ∑v P(v | parents(V)) × ENUMERATE-ALL(REST(vars), ev)

where ev is e extended with V = v

Figure 13.11 The enumeration algorithm for exact inference in Bayes nets.

97

X Y f(X ,Y) Y Z g(Y,Z) X Y Z h(X ,Y,Z)

t t .3 t t .2 t t t .3× .2= .06
t f .7 t f .8 t t f .3× .8= .24
f t .9 f t .6 t f t .7× .6= .42
f f .1 f f .4 t f f .7× .4= .28

f t t .9× .2= .18
f t f .9× .8= .72
f f t .1× .6= .06
f f f .1× .4= .04

Figure 13.12 Illustrating pointwise multiplication: f(X ,Y)×g(Y,Z) = h(X ,Y,Z).

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables vars

factors← []
for each V in ORDER(vars) do

factors← [MAKE-FACTOR(V, e)] + factors
if V is a hidden variable then factors←SUM-OUT(V , factors)

return NORMALIZE(POINTWISE-PRODUCT(factors))

Figure 13.13 The variable elimination algorithm for exact inference in Bayes nets.

¬

¬

W

X

Y

Z

C3

C1

SC2

Figure 13.14 Bayes net encoding of the 3-CNF sentence

(W ∨X ∨Y)∧ (¬W ∨Y ∨Z)∧ (X ∨Y ∨¬Z) .

98 Chapter 13 Probabilistic Reasoning

P(C=.5)

P(S|c)

.10

.50

C

t

f

P(W|s,r)

.99

.90

R

t

f

t

f

.90

.00

S

t

t

f

f

P(R|c)

.80

.20

C

t

f

Cloudy

WetGrass

RainSprinkler

P(C=.5)

P(W|s+r)

.99

.90

.90

.00

S+R

t t

t f

f t

f f

P(S+R|c)

.08

.10

C

t

f

.02 .72 .18

.40 .10 .40

t t t f f t f fSprinkler+Rain

Cloudy

WetGrass

(a) (b)

Figure 13.15 (a) A multiply connected network describing Mary’s daily lawn routine: each
morning, she checks the weather; if it’s cloudy, she usually doesn’t turn on the sprinkler;
if the sprinkler is on, or if it rains during the day, the grass will be wet. Thus, Cloudy
affects WetGrass via two different causal pathways. (b) A clustered equivalent of the multiply
connected network.

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn, a Bayesian network specifying joint distribution P(X1, . . . ,Xn)

x←an event with n elements
for each variable Xi in X1, . . . ,Xn do

x[i]←a random sample from P(Xi | parents(Xi))
return x

Figure 13.16 A sampling algorithm that generates events from a Bayesian network. Each
variable is sampled according to the conditional distribution given the values already sampled
for the variable’s parents.

99

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network
N, the total number of samples to be generated

local variables: C, a vector of counts for each value of X, initially zero

for j = 1 to N do
x←PRIOR-SAMPLE(bn)
if x is consistent with e then

C[j]←C[j]+1 where x j is the value of X in x
return NORMALIZE(C)

Figure 13.17 The rejection-sampling algorithm for answering queries given evidence in a
Bayesian network.

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network specifying joint distribution P(X1, . . . ,Xn)
N, the total number of samples to be generated

local variables: W, a vector of weighted counts for each value of X, initially zero

for j = 1 to N do
x, w←WEIGHTED-SAMPLE(bn, e)
W[j]←W[j]+w where x j is the value of X in x

return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

w←1; x←an event with n elements, with values fixed from e
for i = 1 to n do

if Xi is an evidence variable with value xi j in e
then w←w× P(Xi= xi j | parents(Xi))
else x[i]←a random sample from P(Xi | parents(Xi))

return x, w

Figure 13.18 The likelihood-weighting algorithm for inference in Bayesian networks. In
WEIGHTED-SAMPLE, each nonevidence variable is sampled according to the conditional
distribution given the values already sampled for the variable’s parents, while a weight is
accumulated based on the likelihood for each evidence variable.

100 Chapter 13 Probabilistic Reasoning

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 200000 400000 600000 800000 1x106

E
rr

or

Number of samples

Rejection sampling
Likelihood weighting

Figure 13.19 Performance of rejection sampling and likelihood weighting on the insurance
network. The x-axis shows the number of samples generated and the y-axis shows the maxi-
mum absolute error in any of the probability values for a query on PropertyCost.

function GIBBS-ASK(X, e, bn, N) returns an estimate of P(X |e)
local variables: C, a vector of counts for each value of X, initially zero

Z, the nonevidence variables in bn
x, the current state of the network, initialized from e

initialize x with random values for the variables in Z
for k = 1 to N do

choose any variable Zi from Z according to any distribution ρ(i)
set the value of Zi in x by sampling from P(Zi |mb(Zi))
C[j]←C[j]+1 where x j is the value of X in x

return NORMALIZE(C)

Figure 13.20 The Gibbs sampling algorithm for approximate inference in Bayes nets; this
version chooses variables at random, but cycling through the variables but also works.

101

rc

r¬c ¬r¬c

¬rc

0.3856
0.1078

0.3922

0.8683

0.4074

0.11640.6296
0.0926

0.2778 0.02380.2222 0.4762

rc

r¬c ¬r¬c

¬rc

0.0000
0.0000

0.5000

1.0000

0.5000

0.00001.0000
0.0000

0.0000 0.00000.5000 0.5000

(a) (b)

Figure 13.21 (a) The states and transition probabilities of the Markov chain for the query
P(Rain |Sprinkler= true,WetGrass= true). Note the self-loops: the state stays the same
when either variable is chosen and then resamples the same value it already has. (b) The
transition probabilities when the CPT for Rain constrains it to have the same value as Cloudy.

 0

 0.005

 0.01

 0.015

 0.02

 0 200000 400000 600000 800000 1x106

E
rr

or

Number of samples

Likelihood weighting
Gibbs sampling

 0

 0.005

 0.01

 0.015

 0.02

 0 200000 400000 600000 800000 1x106

E
rr

or

Number of samples

Likelihood weighting
Gibbs sampling

(a) (b)

Figure 13.22 Performance of Gibbs sampling compared to likelihood weighting on the car
insurance network: (a) for the standard query on PropertyCost, and (b) for the case where
the output variables are observed and Age is the query variable.

102 Chapter 13 Probabilistic Reasoning

Rain

WetGrass

GreenerGrass

Cloudy

Sprinkler Rain

(a)

GreenerGrass

WetGrass

Cloudy

(b)

Sprinkler
= True

Figure 13.23 (a) A causal Bayesian network representing cause–effect relations among five
variables. (b) The network after performing the action “turn Sprinkler on.”

CHAPTER 14
PROBABILISTIC REASONING OVER
TIME

X
t–2 X

t–1 X
t

(a)

(b)

X
t+1 X

t+2

X
t–2 X

t–1 X
t

X
t+1 X

t+2

Figure 14.1 (a) Bayesian network structure corresponding to a first-order Markov process
with state defined by the variables Xt . (b) A second-order Markov process.

P(Rt|Rt-1)

0.7
0.3

P(Ut|Rt)

Figure 14.2 Bayesian network structure and conditional distributions describing the um-
brella world. The transition model is P(Raint |Raint−1) and the sensor model is
P(Umbrellat |Raint).

104 Chapter 14 Probabilistic Reasoning over Time

Figure 14.3 Smoothing computes P(Xk |e1:t), the posterior distribution of the state at some
past time k given a complete sequence of observations from 1 to t.

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions
inputs: ev, a vector of evidence values for steps 1, . . . , t

prior, the prior distribution on the initial state, P(X0)
local variables: fv, a vector of forward messages for steps 0, . . . , t

b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1, . . . , t

fv[0]←prior
for i= 1 to t do

fv[i]←FORWARD(fv[i−1],ev[i])
for i= t down to 1 do

sv[i]←NORMALIZE(fv[i]×b)
b←BACKWARD(b,ev[i])

return sv

Figure 14.4 The forward–backward algorithm for smoothing: computing posterior prob-
abilities of a sequence of states given a sequence of observations. The FORWARD and
BACKWARD operators are defined by Equations (14.5) and (14.9), respectively.

105

Figure 14.5 (a) Possible state sequences for Raint can be viewed as paths through a graph of
the possible states at each time step. (States are shown as rectangles to avoid confusion with
nodes in a Bayes net.) (b) Operation of the Viterbi algorithm for the umbrella observation
sequence [true, true, false, true, true], where the evidence starts at time 1. For each t, we
have shown the values of the message m1:t , which gives the probability of the best sequence
reaching each state at time t. Also, for each state, the bold arrow leading into it indicates
its best predecessor as measured by the product of the preceding sequence probability and
the transition probability. Following the bold arrows back from the most likely state in m1:5
gives the most likely sequence, shown by the bold outlines and darker shading.

106 Chapter 14 Probabilistic Reasoning over Time

function FIXED-LAG-SMOOTHING(et , hmm, d) returns a distribution over Xt−d
inputs: et , the current evidence for time step t

hmm, a hidden Markov model with S× S transition matrix T
d, the length of the lag for smoothing

persistent: t, the current time, initially 1
f, the forward message P(Xt |e1:t), initially hmm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
et−d:t , double-ended list of evidence from t−d to t, initially empty

local variables: Ot−d ,Ot , diagonal matrices containing the sensor model information

add et to the end of et−d:t
Ot←diagonal matrix containing P(et |Xt)
if t > d then

f←FORWARD(f,et−d)
remove et−d−1 from the beginning of et−d:t
Ot−d←diagonal matrix containing P(et−d |Xt−d)
B←O−1

t−dT−1BTOt
else B←BTOt
t← t+1
if t > d +1 then return NORMALIZE(f × B1) else return null

Figure 14.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as an
online algorithm that outputs the new smoothed estimate given the observation for a new time
step. Notice that the final output NORMALIZE(f×B1) is just α f×b, by Equation (14.14).

107

(a) Posterior distribution over robot location after E1 = 1011

(b) Posterior distribution over robot location after E1 = 1011, E2 = 1010

Figure 14.7 Posterior distribution over robot location: (a) after one observation E1=1011
(i.e., obstacles to the north, south, and west); (b) after a random move to an adjacent location
and a second observation E2=1010 (i.e., obstacles to the north and south). The darkness of
each square corresponds to the probability that the robot is at that location. The sensor error
rate for each bit is ε=0.2.

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35 40

L
oc

al
iz

at
io

n
er

ro
r

Number of observations

ε = 0.40
ε = 0.20
ε = 0.10
ε = 0.05
ε = 0.02
ε = 0.00

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 5 10 15 20 25 30 35 40

V
ite

rb
i p

at
h

er
ro

r

Number of observations

ε = 0.40
ε = 0.20
ε = 0.10
ε = 0.05
ε = 0.02
ε = 0.00

(a) (b)

Figure 14.8 Performance of HMM localization as a function of the length of the observation
sequence for various different values of the sensor error probability ε; data averaged over 400
runs. (a) The localization error, defined as the Manhattan distance from the true location. (b)
The Viterbi path error, defined as the average Manhattan distance of states on the Viterbi path
from corresponding states on the true path.

108 Chapter 14 Probabilistic Reasoning over Time

Figure 14.9 Bayesian network structure for a linear dynamical system with position Xt ,
velocity Ẋt , and position measurement Zt .

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-10 -5 0 5 10

P(x0)

P(x1)

P(x1 | z1 = 2.5)

*z1

P
(x

)

x position

Figure 14.10 Stages in the Kalman filter update cycle for a random walk with a prior given
by µ0=0.0 and σ0=1.5, transition noise given by σx=2.0, sensor noise given by σz=1.0,
and a first observation z1=2.5 (marked on the x-axis). Notice how the prediction P(x1) is
flattened out, relative to P(x0), by the transition noise. Notice also that the mean of the
posterior distribution P(x1 |z1) is slightly to the left of the observation z1 because the mean is
a weighted average of the prediction and the observation.

109

8 10 12 14 16 18 20 22 24 26

6

7

8

9

10

11

12

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

(a) (b)

2D filtering 2D smoothing

X

Y

true
observed
filtered

X

Y

true
observed
smoothed

Figure 14.11 (a) Results of Kalman filtering for an object moving on the X–Y plane, showing
the true trajectory (left to right), a series of noisy observations, and the trajectory estimated
by Kalman filtering. Variance in the position estimate is indicated by the ovals. (b) The
results of Kalman smoothing for the same observation sequence.

Figure 14.12 A bird flying toward a tree (top views). (a) A Kalman filter will predict the
location of the bird using a single Gaussian centered on the obstacle. (b) A more realistic
model allows for the bird’s evasive action, predicting that it will fly to one side or the other.

110 Chapter 14 Probabilistic Reasoning over Time

P(R1|R0)R0

R1 P(U1|R1)

Figure 14.13 Left: Specification of the prior, transition model, and sensor model for the
umbrella DBN. Subsequent slices are copies of slice 1. Right: A simple DBN for robot
motion in the X–Y plane.

-1

 0

 1

 2

 3

 4

 5

 15 20 25 30

E(Batteryt |...5555005555...)

E(Batteryt |...5555000000...)

E
(B

at
te

ry
t)

Time step t

-1

 0

 1

 2

 3

 4

 5

 15 20 25 30

E(Batteryt |...5555005555...)

E(Batteryt |...5555000000...)

E
(B

at
te

ry
t)

Time step

(a) (b)

Figure 14.14 (a) Upper curve: trajectory of the expected value of Batteryt for an observation
sequence consisting of all 5s except for 0s at t=21 and t=22, using a simple Gaussian error
model. Lower curve: trajectory when the observation remains at 0 from t=21 onwards. (b)
The same experiment run with the transient failure model. The transient failure is handled
well, but the persistent failure results in excessive pessimism about the battery charge.

111

1BatteryBattery0

1BMeter

0BMBroken 1BMBroken

f
t
0B 1P(B)

1.000
0.001

-1

 0

 1

 2

 3

 4

 5

 15 20 25 30

E(Batteryt |...5555005555...)

E(Batteryt |...5555000000...)

P(BMBrokent |...5555000000...)

P(BMBrokent |...5555005555...)

E
(B

at
te

ry
t)

Time step

(a) (b)

Figure 14.15 (a) A DBN fragment showing the sensor status variable required for modeling
persistent failure of the battery sensor. (b) Upper curves: trajectories of the expected value of
Batteryt for the “transient failure” and “permanent failure” observations sequences. Lower
curves: probability trajectories for BMBroken given the two observation sequences.

P(R1|R0)R0 P(R1|R0) P(R1|R0) P(R1|R0)P(R1|R0)R0 P(R2|R1)R1 P(R3|R2)R2 P(R4|R3)R3

R1 P(U1|R1) R1 P(U1|R1) R2 P(U2|R2) R3 P(U3|R3) R4 P(U4|R4)

Rain4Rain0 Rain1 Rain0 Rain1 Rain2 Rain3

Umbrella1 Umbrella1 Umbrella2 Umbrella3 Umbrella4

Figure 14.16 Unrolling a dynamic Bayesian network: slices are replicated to accommodate
the observation sequence Umbrella1:3. Further slices have no effect on inferences within the
observation period.

112 Chapter 14 Probabilistic Reasoning over Time

function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence

N, the number of samples to be maintained
dbn, a DBN defined by P(X0), P(X1 |X0), and P(E1 |X1)

persistent: S, a vector of samples of size N, initially generated from P(X0)
local variables: W, a vector of weights of size N

for i = 1 to N do
S[i]←sample from P(X1 |X0= S[i]) // step 1
W[i]←P(e |X1= S[i]) // step 2

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S, W) // step 3
return S

Figure 14.17 The particle filtering algorithm implemented as a recursive update oper-
ation with state (the set of samples). Each of the sampling operations involves sam-
pling the relevant slice variables in topological order, much as in PRIOR-SAMPLE. The
WEIGHTED-SAMPLE-WITH-REPLACEMENT operation can be implemented to run in O(N)
expected time. The step numbers refer to the description in the text.

Figure 14.18 The particle filtering update cycle for the umbrella DBN with N=10, showing
the sample populations of each state. (a) At time t, 8 samples indicate rain and 2 indicate
¬rain. Each is propagated forward by sampling the next state through the transition model.
At time t + 1, 6 samples indicate rain and 4 indicate ¬rain. (b) ¬umbrella is observed at
t +1. Each sample is weighted by its likelihood for the observation, as indicated by the size
of the circles. (c) A new set of 10 samples is generated by weighted random selection from
the current set, resulting in 2 samples that indicate rain and 8 that indicate ¬rain.

113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

M
ax

 n
or

m
 e

rr
or

Number of observations

SIS
PF

Figure 14.19 Max norm error in the grid-world location estimate (compared to exact infer-
ence) for likelihood weighting (sequential importance sampling) with 100,000 samples and
particle filtering with 1,000 samples; data averaged over 50 runs.

Location0 Location1

Dirt1,0

Dirt2,0

Dirt42,0

Dirt1,1

Dirt2,1

Dirt42,1

WallSensor1

DirtSensor1

Figure 14.20 A dynamic Bayes net for simultaneous localization and mapping in the
stochastic-dirt vacuum world. Dirty squares persist with probability p, and clean squares
become dirty with probability 1− p. The local dirt sensor is 90% accurate, for the square in
which the robot is currently located.

114 Chapter 14 Probabilistic Reasoning over Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100

R
M

S
er

ro
r

in
 d

ir
t p

ro
ba

bi
lit

ie
s

Number of observations

p = 1.00
p = 0.95
p = 0.90
p = 0.80
p = 0.70

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100 200 300 400 500

R
M

S
di

rt
 e

rr
or

Number of observations

Exact, p = 1.00
Noisy, p = 1.00

(a) (b)

Figure 14.21 (a) Performance of the standard particle filtering algorithm with 1,000 par-
ticles, showing RMS error in marginal dirt probabilities compared to exact inference for
different values of the dirt persistence p. (b) Performance of Rao-Blackwellized particle fil-
tering (100 particles) compared to ground truth, for both exact location sensing and noisy
wall sensing and with deterministic dirt. Data averaged over 20 runs.

CHAPTER 15
MAKING SIMPLE DECISIONS

1¢

1¢

1¢

A

B C

p

q

A

B

C

p

(1–p)

(1–p)(1–q)

(1–q)

A

B

C

is equivalent to

(a) (b)

(1–p)q

Figure 15.1 (a) Nontransitive preferences A� B�C� A can result in irrational behavior: a
cycle of exchanges each costing one cent. (b) The decomposability axiom.

U

$ $
2150,000 800,000

(a) (b)

U

Figure 15.2 The utility of money. (a) Empirical data for Mr. Beard over a limited range. (b)
A typical curve for the full range.

116 Chapter 15 Making Simple Decisions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-5 -4 -3 -2 -1 0 1 2 3 4 5

k=3

k=10

k=30

Error in utility estimate

Figure 15.3 Unjustified optimism caused by choosing the best of k options: we assume that
each option has a true utility of 0 but a utility estimate that is distributed according to a
unit normal (brown curve). The other curves show the distributions of the maximum of k
estimates for k=3, 10, and 30.

(a)

A

BC

D

A

B

C

(b)

This region
dominates A

X2 X2

X1 X1

Figure 15.4 Strict dominance. (a) Deterministic: Option A is strictly dominated by B but
not by C or D. (b) Uncertain: A is strictly dominated by B but not by C.

117

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

S1S2

Pr
ob

ab
ili

ty

Negative cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

S1

S2

Pr
ob

ab
ili

ty
Negative cost

(a) (b)

Figure 15.5 Stochastic dominance. (a) S1 stochastically dominates S2 on frugality (negative
cost). (b) Cumulative distributions for the frugality of S1 and S2.

U

Airport Site

Quietness

Frugality

Litigation

Construction

Air Traffic Safety

Figure 15.6 A decision network for the airport-siting problem.

118 Chapter 15 Making Simple Decisions

U

Airport Site

Litigation

Construction

Air Traffic

Figure 15.7 A simplified representation of the airport-siting problem. Chance nodes corre-
sponding to outcome states have been factored out.

(c)

P(U | Ej)

U1U2

U

(b)

P(U | Ej)

U1U2

U

(a)

P(U | Ej)

U1U2

U

Figure 15.8 Three generic cases for the value of information. In (a), a1 will almost certainly
remain superior to a2, so the information is not needed. In (b), the choice is unclear and the
information is crucial. In (c), the choice is unclear, but because it makes little difference, the
information is less valuable. (Note: The fact that U2 has a high peak in (c) means that its
expected value is known with higher certainty than U1.)

119

function INFORMATION-GATHERING-AGENT(percept) returns an action
persistent: D, a decision network

integrate percept into D
j← the value that maximizes VPI(E j) / C(E j)
if VPI(E j) > C(E j)

then return Request(E j)
else return the best action from D

Figure 15.9 Design of a simple, myopic information-gathering agent. The agent works by
repeatedly selecting the observation with the highest information value, until the cost of the
next observation is greater than its expected benefit.

U

+$8

+$1

D/V

durian

vanilla

U

+$98

–$82

LikesDurian

true

false

true

false

+$1

+$1

D/V

durian

durian

vanilla

vanilla

+$98

0.5

0.0

D/V

durian

vanilla

…

…

…

…

…

…

…

…

…

…

…

…

+$1+$0–$82

0.00.00.5

1.00.00.0

(a) (b) (c)

U

Durian/Vanilla

U

Durian/Vanilla

U

Durian/Vanilla

LikesDurian

Figure 15.10 (a) A decision network for the ice cream choice with an uncertain utility func-
tion. (b) The network with the expected utility of each action. (c) Moving the uncertainty
from the utility function into a new random variable.

+60–40

U = ? U = 0

act switch self off

U = 0

U = 0U = ?

wait

switch robot off

switch self offact wait

go ahead

+60–40

R

H

R

Figure 15.11 The off-switch game. R, the robot, can choose to act now, with a highly un-
certain payoff; to switch itself off; or to defer to H, the human. H can switch R off or let it
go ahead. R now has the same choice again. Acting still has an uncertain payoff, but now R
knows the payoff is nonnegative.

CHAPTER 16
MAKING COMPLEX DECISIONS

Figure 16.1 (a) A simple, stochastic 4×3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

121

Figure 16.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 16.3 The utilities of the states in the 4×3 world with γ=1 and r= −0.04 for tran-
sitions to nonterminal states.

122 Chapter 16 Making Complex Decisions

Plug/Unplugt

LeftWheelt

RightWheelt

Chargingt

Batteryt

Chargingt+1

Batteryt+1

Chargingt+2

Batteryt+2

Rt

Xt Xt+1

Ut+2

Xt+2

 Ẋt+2 Ẋt+1 Ẋt

Rt+1

RightWheelt+1

LeftWheelt+1

Plug/Unplugt+1

Figure 16.4 A dynamic decision network for a mobile robot with state variables for battery
level, charging status, location, and velocity, and action variables for the left and right wheel
motors and for charging.

123

At

NextPiecet

CurrentPiecet

Rt

Filledt

At+1

NextPiecet+1

CurrentPiecet+1

Rt+1

Filledt+1

(a) (b)

Next

Figure 16.5 (a) The game of Tetris. The T-shaped piece at the top center can be dropped
in any orientation and in any horizontal position. If a row is completed, that row disappears
and the rows above it move down, and the agent receives one point. The next piece (here, the
L-shaped piece at top right) becomes the current piece, and a new next piece appears, chosen
at random from the seven piece types. The game ends if the board fills up to the top. (b) The
DDN for the Tetris MDP.

function VALUE-ITERATION(mdp, ε) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s′ |s,a),

rewards R(s,a,s′), discount γ
ε, the maximum error allowed in the utility of any state

local variables: U, U′, vectors of utilities for states in S, initially zero
δ, the maximum relative change in the utility of any state

repeat
U←U′; δ←0
for each state s in S do

U′[s]←maxa∈A(s) Q-VALUE(mdp, s,a,U)
if |U′[s] − U[s]| > δ then δ←|U′[s] − U[s]|

until δ ≤ ε(1−γ)/γ
return U

Figure 16.6 The value iteration algorithm for calculating utilities of states. The termination
condition is from Equation (16.12).

124 Chapter 16 Making Complex Decisions

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

(1,1)
(1,3)

(3,1)

(3,3)

(4,1)

U
til

ity
 e

st
im

at
es

Number of iterations

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

0.5 0.6 0.7 0.8 0.9 1

It
er

at
io

ns
 r

eq
ui

re
d

Discount factor γ

c = 0.0001
c = 0.001
c = 0.01
c = 0.1

(a) (b)

Figure 16.7 (a) Graph showing the evolution of the utilities of selected states using value
iteration. (b) The number of value iterations required to guarantee an error of at most ε=c ·
Rmax, for different values of c, as a function of the discount factor γ.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

M
ax

 e
rr

or
/P

ol
ic

y
lo

ss

Number of iterations

Max error
Policy loss

Figure 16.8 The maximum error ‖Ui−U‖ of the utility estimates and the policy loss ‖U πi −
U‖, as a function of the number of iterations of value iteration on the 4×3 world.

125

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, actions A(s), transition model P(s′ |s,a)
local variables: U, a vector of utilities for states in S, initially zero

π, a policy vector indexed by state, initially random

repeat
U←POLICY-EVALUATION(π, U, mdp)
unchanged?← true
for each state s in S do

a∗← argmax
a∈A(s)

Q-VALUE(mdp, s,a,U)

if Q-VALUE(mdp, s,a∗,U) > Q-VALUE(mdp, s, π[s],U) then
π[s]←a∗; unchanged?← false

until unchanged?
return π

Figure 16.9 The policy iteration algorithm for calculating an optimal policy.

–1–1 –1

0.1 0.10.8 0.1 0.10.8 0.1 0.10.8

3,2

0.1 0.10.8

Up Right Down Left

3,2 3,3 4,2 3,3 4,2 3,1 4,2 3,1 3,2 3,1 3,2 3,3

Figure 16.10 Part of an expectimax tree for the 4×3 MDP rooted at (3,2). The triangular
nodes are max modes and the circular nodes are chance nodes.

126 Chapter 16 Making Complex Decisions

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 to
ta

l r
ew

ar
d

Number of playouts

Figure 16.11 Performance of UCT as a function of the number of playouts per move for the
4×3 world using a random playout policy, averaged over 1000 runs per data point.

0, 2, 0, 7.2, 0, 0, 0, …

1, 1, 1, 1, 1, 1, 1, …

M

M1

R0, R1, R2, R3, R4, …

λ, λ, λ, λ, λ, λ, λ, …

M

Mλ

(a) (b)

Figure 16.12 (a) A simple deterministic bandit problem with two arms. The arms can be
pulled in any order, and each yields the sequence of rewards shown. (b) A more general case
of the bandit in (a), where the first arm gives an arbitrary sequence of rewards and the second
arm gives a fixed reward λ.

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

0 2 0 7.2 0
0

0 2 0 7.2 0
0

0

0000

(a) (b)

Figure 16.13 (a) The reward sequence M=0,2,0,7.2,0,0,0, . . . augmented with a choice to
switch permanently to a constant arm Mλ at each point. (b) An MDP whose optimal value
is exactly equivalent to the optimal value for (a), at the point where the optimal policy is
indifferent between M and Mλ.

127

(1,1)

(2,1)

(3,1)

(4,1) (3,2)

(1,2)

(2,2) (1,3)

(2,3) (1,4)

R=1
p=1/2

R=0
p=1/2

R=1
p=2/3

R=1
p=3/4

R=0
p=2/3

R=0
p=3/4

0
1/3

1
1/3

0
1/4

1
1/4

1
2/4

0
2/4

 0
 2

 4
 6

 8
 10

s 0
 2

 4
 6

 8
 10

f

 0
 0.2
 0.4
 0.6
 0.8

 1

Gittins index

(a) (b)

Figure 16.14 (a) States, rewards, and transition probabilities for the Bernoulli bandit. (b)
Gittins indices for the states of the Bernoulli bandit process.

0

 0.5

1

 1.5

2

[Stay][Go]

U
ti

li
ty

0

 0.5

1

 1.5

2

0 0.2 0.4 0.6 0.8 1

U
ti

li
ty

Probability of state B

(b)

0 0.2 0.4 0.6 0.8 1

Probability of state B

(a)

0 0.2 0.4 0.6 0.8

Probability of state B

(d)

0 0.2 0.4 0.6 0.8 1

Probability of state B

(c)

0

 0.5

1

 1.5

2

U
ti

li
ty

4

 4.5

5

 5.5

6

U
ti

li
ty

Figure 16.15 (a) Utility of two one-step plans as a function of the initial belief state b(B) for
the two-state world, with the corresponding utility function shown in bold. (b) Utilities for 8
distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility function
for optimal eight-step plans.

128 Chapter 16 Making Complex Decisions

function POMDP-VALUE-ITERATION(pomdp, ε) returns a utility function
inputs: pomdp, a POMDP with states S, actions A(s), transition model P(s′ |s,a),

sensor model P(e |s), rewards R(s,a,s′), discount γ
ε, the maximum error allowed in the utility of any state

local variables: U, U′, sets of plans p with associated utility vectors αp

U′←a set containing all one-step plans [a], with α[a](s)= ∑s′ P(s′ |s,a) R(s,a,s′)
repeat

U←U′

U′← the set of all plans consisting of an action and, for each possible next percept,
a plan in U with utility vectors computed according to Equation (16.18)

U′←REMOVE-DOMINATED-PLANS(U′)
until MAX-DIFFERENCE(U,U′) ≤ ε(1−γ)/γ
return U

Figure 16.16 A high-level sketch of the value iteration algorithm for POMDPs. The
REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are typically implemented
as linear programs.

Up Right Down Left

01101100 0110 1100 1010

Figure 16.17 Part of an expectimax tree for the 4×3 POMDP with a uniform initial belief
state. The belief states are depicted with shading proportional to the probability of being in
each location.

129

Left Left Up Right Right Right

0011 0001 1111 1000 1010 1001

Figure 16.18 A sequence of percepts, belief states, and actions in the 4×3 POMDP with
a wall-sensing error of ε=0.2. Notice how the early Left moves are safe—they are very
unlikely to fall into (4,2)—and coerce the agent’s location into a small number of possible
locations. After moving Up, the agent thinks it is probably in (3,3), but possibly in (1,3).
Fortunately, moving Right is a good idea in both cases, so it moves Right, finds out that it had
been in (1,3) and is now in (2,3), and then continues moving Right and reaches the goal.

CHAPTER 17
MULTIAGENT DECISION MAKING

Actors(A,B)
Init(At(A,LeftBaseline) ∧ At(B,RightNet) ∧

Approaching(Ball,RightBaseline) ∧ Partner(A,B) ∧ Partner(B,A)
Goal(Returned(Ball) ∧ (At(x,RightNet) ∨ At(x,LeftNet))
Action(Hit(actor,Ball),

PRECOND:Approaching(Ball, loc) ∧ At(actor, loc)
EFFECT:Returned(Ball))

Action(Go(actor, to),
PRECOND:At(actor, loc) ∧ to 6= loc,
EFFECT:At(actor, to) ∧ ¬ At(actor, loc))

Figure 17.1 The doubles tennis problem. Two actors, A and B, are playing together and can
be in one of four locations: LeftBaseline, RightBaseline, LeftNet, and RightNet. The ball can
be returned only if a player is in the right place. The NoOp action is a dummy, which has no
effect. Note that each action must include the actor as an argument.

131

one

oneone

two

twotwo

E

O

one

oneone

two

twotwo

O

E

one two

E

O

one two

O

E

+4

+3

+2

+1

 0

–1

–2

–3

1

two

one

U

p

+4

+3

+2

+1

 0

–1

–2

–3

1

two

one

U

q

(a) (b)

(c) (d)

(e) (f)

[p: one; (1 – p): two] [q: one; (1 – q): two]

2p – 3(1 – p 2) q – 3(1 – q)3p + 4(1 – p 3) q + 4(1 – q)

2 -3

-3

-3

-3

-3

4 2

2

2

-3 -3 4

4

Figure 17.2 (a) and (b): Minimax game trees for two-finger Morra if the players take turns
playing pure strategies. (c) and (d): Parameterized game trees where the first player plays
a mixed strategy. The payoffs depend on the probability parameter (p or q) in the mixed
strategy. (e) and (f): For any particular value of the probability parameter, the second player
will choose the “better” of the two actions, so the value of the first player’s mixed strategy is
given by the heavy lines. The first player will choose the probability parameter for the mixed
strategy at the intersection point.

132 Chapter 17 Multiagent Decision Making

testify

testify

testify

testify

testify

testify

testify

testify

testify

testify

testify

testify

refuseHAWK

GRIM

TAT-FOR-TIT

TIT-FOR-TAT

DOVE refuse

refuse

refuse

refuse

refuse

refuse

refuse

refuse refuse

refuse

refuse

Figure 17.3 Some common, colorfully named finite-state machine strategies for the in-
finitely repeated prisoner’s dilemma.

1,1

up

above down

below

0,0

0,0

1

2

Figure 17.4 An extensive-form game with a counterintuitive Nash equilibrium.

133

0

0,0!

+1,-1!

0,0!

-1,+1!

1/6: AA

r

k

r

k

r

k

r

k

+1,-1!

+1,-1!

+1,-1!

+1,-1!

0,0!

+2,-2!

0,0!

-2,+2!

c

f

c

f

c

f

c

f

1/3: KA

1/3: AK

1/6: KK

I1,1

I1,2 I2,1

I2,2

I2,1

1

1

1

1

2

2

2

2

Figure 17.5 Extensive form of a simplified version of poker with two players and only four
cards. The moves are r (raise), f (fold), c (call), and k (check).

H

R R R

[2,0] [1,1] [0,2]

[90,0]

[50,50]

[0,90]

$0.90 $1.00 $1.10

Figure 17.6 The paperclip game. Each branch is labeled [p,s] denoting the number of pa-
perclips and staples manufactured on that branch. Harriet the human can choose to make two
paperclips, two staples, or one of each. (The values in green italics are the values for Harriet
if the game ended there, assuming θ=0.45.) Robbie the robot then has a choice to make 90
paperclips, 90 staples, or 50 of each.

{1}, {2}, {3}, {4}

{1}, {2}, {3, 4}

{1}, {2, 3, 4} {1, 2}, {3, 4} {2}, {1, 3, 4} {1, 3}, {2, 4}

{1, 2, 3, 4}

{3},{1, 2, 4} {1, 4},{ 2, 3} {4},{1, 2, 3}

{1, 2}, {3}, {4} {1}, {3}, {2, 4} {2}, {4}, {1, 3} {2}, {3}, {1, 4}

level 1

level 2

level 3

level 4

{1}, {4}, {2, 3}

Figure 17.7 The coalition structure graph for N = {1,2,3,4}. Level 1 has coalition struc-
tures containing a single coalition; level 2 has coalition structures containing two coalitions,
and so on.

134 Chapter 17 Multiagent Decision Making

I have a
problem...

problem recognition
task
announcement

biddingawarding

Figure 17.8 The contract net task allocation protocol.

CHAPTER 18
PROBABILISTIC PROGRAMMING

.

R J R R R R RJ J J J J

. . .

R J

J

R

R J

R

J

R J

R

J

R J

R

J

R J

R

J

Figure 18.1 Top: Some members of the set of all possible worlds for a language with two
constant symbols, R and J, and one binary relation symbol, under the standard semantics for
first-order logic. Bottom: the possible worlds under database semantics. The interpretation
of the constant symbols is fixed, and there is a distinct object for each constant symbol.

Recommendation(C1, B1)

Honest(C1) Kindness(C1)

Quality(B1)

Recommendation(C1, B1)

Honest(C1) Kindness(C1)

Quality(B1)

Recommendation(C2, B1)

Honest(C2) Kindness(C2)

Quality(B2)

Recommendation(C1, B2) Recommendation(C2, B2)

(a) (b)

Figure 18.2 (a) Bayes net for a single customer C1 recommending a single book B1.
Honest(C1) is Boolean, while the other variables have integer values from 1 to 5. (b) Bayes
net with two customers and two books.

136 Chapter 18 Probabilistic Programming

Recommendation(C1, B1)

Honest(C1) Kindness(C1)Quality(B1)

Recommendation(C1, B2)

Quality(B2)

Fan(C1, A1) Fan(C1, A2) Author(B2)

Figure 18.3 Fragment of the equivalent Bayes net for the book recommendation RPM when
Author(B2) is unknown.

Variable Value Probability
#Customer 2 0.3333
#Book 3 0.3333
Honest〈Customer, ,1〉 true 0.99
Honest〈Customer, ,2〉 false 0.01
Kindness〈Customer, ,1〉 4 0.3
Kindness〈Customer, ,2〉 1 0.1
Quality〈Book, ,1〉 1 0.05
Quality〈Book, ,2〉 3 0.4
Quality〈Book, ,3〉 5 0.15
#LoginID〈Owner,〈Customer, ,1〉〉 1 1.0
#LoginID〈Owner,〈Customer, ,2〉〉 2 0.25
Recommendation〈LoginID,〈Owner,〈Customer, ,1〉〉,1〉,〈Book, ,1〉 2 0.5
Recommendation〈LoginID,〈Owner,〈Customer, ,1〉〉,1〉,〈Book, ,2〉 4 0.5
Recommendation〈LoginID,〈Owner,〈Customer, ,1〉〉,1〉,〈Book, ,3〉 5 0.5
Recommendation〈LoginID,〈Owner,〈Customer, ,2〉〉,1〉,〈Book, ,1〉 5 0.4
Recommendation〈LoginID,〈Owner,〈Customer, ,2〉〉,1〉,〈Book, ,2〉 5 0.4
Recommendation〈LoginID,〈Owner,〈Customer, ,2〉〉,1〉,〈Book, ,3〉 1 0.4
Recommendation〈LoginID,〈Owner,〈Customer, ,2〉〉,2〉,〈Book, ,1〉 5 0.4
Recommendation〈LoginID,〈Owner,〈Customer, ,2〉〉,2〉,〈Book, ,2〉 5 0.4
Recommendation〈LoginID,〈Owner,〈Customer, ,2〉〉,2〉,〈Book, ,3〉 1 0.4

Figure 18.4 One particular world for the book recommendation OUPM. The number vari-
ables and basic random variables are shown in topological order, along with their chosen
values and the probabilities for those values.

137

type Researcher, Paper, Citation
random String Name(Researcher)
random String Title(Paper)
random Paper PubCited(Citation)
random String Text(Citation)
random Boolean Professor(Researcher)
origin Researcher Author(Paper)

#Researcher ∼ OM(3,1)
Name(r) ∼ NamePrior()
Professor(r) ∼ Boolean(0.2)
#Paper(Author= r) ∼ if Professor(r) then OM(1.5,0.5) else OM(1,0.5)
Title(p) ∼ PaperTitlePrior()
CitedPaper(c) ∼ UniformChoice({Paper p})
Text(c) ∼ HMMGrammar(Name(Author(CitedPaper(c))),Title(CitedPaper(c)))

Figure 18.5 An OUPM for citation information extraction. For simplicity the model assumes
one author per paper and omits details of the grammar and error models.

#SeismicEvents ∼ Poisson(T ∗λe)
Time(e) ∼ UniformReal(0,T)
EarthQuake(e) ∼ Boolean(0.999)
Location(e) ∼ if Earthquake(e) then SpatialPrior() else UniformEarth()
Depth(e) ∼ if Earthquake(e) then UniformReal(0,700) else Exactly(0)
Magnitude(e) ∼ Exponential(log(10))
Detected(e, p,s) ∼ Logistic(weights(s, p),Magnitude(e), Depth(e), Dist(e,s))
#Detections(site = s) ∼ Poisson(T ∗λ f (s))
#Detections(event=e, phase=p, station=s) = if Detected(e, p,s) then 1 else 0
OnsetTime(a,s) if (event(a) = null) then ∼ UniformReal(0,T)

else = Time(event(a)) + GeoTT(Dist(event(a),s),Depth(event(a)),phase(a))
+ Laplace(µt(s),σt(s))

Amplitude(a,s) if (event(a) = null) then ∼ NoiseAmpModel(s)
else = AmpModel(Magnitude(event(a)),Dist(event(a),s),Depth(event(a)),phase(a))

Azimuth(a,s) if (event(a) = null) then ∼ UniformReal(0, 360)
else = GeoAzimuth(Location(event(a)),Depth(event(a)),phase(a),Site(s))

+ Laplace(0,σa(s))
Slowness(a,s) if (event(a) = null) then ∼ UniformReal(0,20)

else = GeoSlowness(Location(event(a)),Depth(event(a)),phase(a),Site(s))
+ Laplace(0,σs(s))

ObservedPhase(a,s) ∼ CategoricalPhaseModel(phase(a))

Figure 18.6 A simplified version of the NET-VISA model (see text).

138 Chapter 18 Probabilistic Programming

0 100 200 300 400 500 600

+ 1.1040359× 109

− 30

− 20

− 10

0

10

20

30

1
.0

-
2
.0

H
z

0 100 200 300 400 500 600

Time (s) + 1.1040359× 109

− 1

0

1

2

3

4

5

S
T
A

(1
.5

s
)

/
LT

A
(6

0
s
)

ASAR – se

(a) (b)

Figure 18.7 (a) Top: Example of seismic waveform recorded at Alice Springs, Australia.
Bottom: the waveform after processing to detect the arrival times of seismic waves. Blue lines
are the automatically detected arrivals; red lines are the true arrivals. (b) Location estimates
for the DPRK nuclear test of February 12, 2013: UN CTBTO Late Event Bulletin (green
triangle at top left); NET-VISA (blue square in center). The entrance to the underground
test facility (small “x”) is 0.75km from NET-VISA’s estimate. Contours show NET-VISA’s
posterior location distribution. Courtesy of CTBTO Preparatory Commission.

2

1 3

5

4

2

1

3

5

4

3

(d)(c)

(b)(a)

track termination

false alarm

detection

failure

track

initiation

3

2

1

5

4
2

1

5

4

5

4

2

1 3

4

5

1

2

3

4

5 1

2

3

4

5

3

2

1

Figure 18.8 (a) Observations made of object locations in 2D space over five time steps. Each
observation blip is labeled with the time step but does not identify the object that produced it.
(b–c) Possible hypotheses about the underlying object tracks. (d) A hypothesis for the case
in which false alarms, detection failures, and track initiation/termination are possible.

139

#Aircraft(EntryTime =t) ∼ Poisson(λa)
Exits(a, t) ∼ if InFlight(a, t) then Boolean(αe)
InFlight(a, t) = (t=EntryTime(a)) ∨ (InFlight(a, t−1) ∧ ¬ Exits(a, t−1))
X(a, t) ∼ if t = EntryTime(a) then InitX()

else if InFlight(a, t) then N (FX(a, t−1),Σx)
#Blip(Source=a, Time=t) ∼ if InFlight(a, t) then Bernoulli(DetectionProb(X(a, t)))
#Blip(Time=t) ∼ Poisson(λ f)
Z(b) ∼ if Source(b)=null then UniformZ(R) else N (HX(Source(b),Time(b)),Σz)

Figure 18.9 An OUPM for radar tracking of multiple targets with false alarms, detection
failure, and entry and exit of aircraft. The rate at which new aircraft enter the scene is λa,
while the probability per time step that an aircraft exits the scene is αe. False alarm blips (i.e.,
ones not produced by an aircraft) appear uniformly in space at a rate of λ f per time step. The
probability that an aircraft is detected (i.e., produces a blip) depends on its current position.

(a) (b)

Figure 18.10 Images from (a) upstream and (b) downstream surveillance cameras roughly
two miles apart on Highway 99 in Sacramento, California. The boxed vehicle has been
identified at both cameras.

140 Chapter 18 Probabilistic Programming

function GENERATE-IMAGE() returns an image with some letters
letters←GENERATE-LETTERS(10)
return RENDER-NOISY-IMAGE(letters, 32, 128)

function GENERATE-LETTERS(λ) returns a vector of letters
n ∼ Poisson(λ)
letters← []
for i = 1 to n do

letters[i] ∼ UniformChoice({a,b,c, · · ·})
return letters

function RENDER-NOISY-IMAGE(letters, width, height) returns a noisy image of the letters
clean image←RENDER(letters, width, height, text top = 10, text left = 10)
noisy image← []
noise variance ∼ UniformReal(0.1, 1)
for row = 1 to width do

for col = 1 to height do
noisy image[row,col] ∼ N (clean image[row,col],noise variance)

return noisy image

Figure 18.11 Generative program for an open-universe probability model for optical charac-
ter recognition. The generative program produces degraded images containing sequences of
letters by generating each sequence, rendering it into a 2D image, and incorporating additive
noise at each pixel.

Figure 18.12 The top panel shows twelve degraded images produced by executing the gen-
erative program from Figure 18.11. The number of letters, their identities, the amount of
additive noise, and the specific pixel-wise noise are all part of the domain of the probability
model. The bottom panel shows twelve degraded images produced by executing the genera-
tive program from Figure 18.15. The Markov model for letters typically yields sequences of
letters that are easier to pronounce.

141

Figure 18.13 Noisy input image (top) and inference results (bottom) produced by three runs,
each of 25 MCMC iterations, with the model from Figure 18.11. Note that the inference
process correctly identifies the sequence of letters.

Figure 18.14 Top: extremely noisy input image. Bottom left: with three inference results
from 25 MCMC iterations with the independent-letter model from Figure 18.11. Bottom
right: three inference results with the letter bigram model from Figure 18.15. Both mod-
els exhibit ambiguity in the results, but the latter model’s results reflect prior knowledge of
plausible letter sequences.

function GENERATE-MARKOV-LETTERS(λ) returns a vector of letters
n ∼ Poisson(λ)
letters← []
letter probs←MARKOV-INITIAL()
for i = 1 to n do

letters[i] ∼ Categorical(letter probs)
letter probs←MARKOV-TRANSITION(letters[i])

return letters

Figure 18.15 Generative program for an improved optical character recognition model that
generates letters according to a letter bigram model whose pairwise letter frequencies are
estimated from a list of English words.

CHAPTER 19
LEARNING FROM EXAMPLES

Da
ta
 se

t 1

Linear Sinusoidal Piecewise linear Degree-12 polynomial

Da
ta
 se

t 2

Figure 19.1 Finding hypotheses to fit data. Top row: four plots of best-fit functions from
four different hypothesis spaces trained on data set 1. Bottom row: the same four functions,
but trained on a slightly different data set (sampled from the same f (x) function).

143

Example Input Attributes Output

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

x1 Yes No No Yes Some $$$ No Yes French 0–10 y1 = Yes
x2 Yes No No Yes Full $ No No Thai 30–60 y2 = No
x3 No Yes No No Some $ No No Burger 0–10 y3 = Yes
x4 Yes No Yes Yes Full $ Yes No Thai 10–30 y4 = Yes
x5 Yes No Yes No Full $$$ No Yes French >60 y5 = No
x6 No Yes No Yes Some $$ Yes Yes Italian 0–10 y6 = Yes
x7 No Yes No No None $ Yes No Burger 0–10 y7 = No
x8 No No No Yes Some $$ Yes Yes Thai 0–10 y8 = Yes
x9 No Yes Yes No Full $ Yes No Burger >60 y9 = No
x10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 y10 = No
x11 No No No No None $ No No Thai 0–10 y11 = No
x12 Yes Yes Yes Yes Full $ No No Burger 30–60 y12 = Yes

Figure 19.2 Examples for the restaurant domain.

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30-60 10-30 0-10

No Yes

Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

No Yes

No Yes

Yes

Yes

No Yes

No Yes

YesNoYes

No Yes

YesNo

WaitEstimate?

Figure 19.3 A decision tree for deciding whether to wait for a table.

144 Chapter 19 Learning from Examples

(a)

None Some Full

Patrons?

YesNo Hungry?

(b)

No Yes

121 3 4 6 8

2 5 7 9 10 11

French Italian Thai Burger

Type?

121 3 4 6 8

2 5 7 9 10 11

1

5

6

10

4 8

2 11

123

7 9 7 11

1 3 6 8 124

2 5 9 10

124

2 105 9

Figure 19.4 Splitting the examples by testing on attributes. At each node we show the
positive (light boxes) and negative (dark boxes) examples remaining. (a) Splitting on Type
brings us no nearer to distinguishing between positive and negative examples. (b) Splitting
on Patrons does a good job of separating positive and negative examples. After splitting on
Patrons, Hungry is a fairly good second test.

function LEARN-DECISION-TREE(examples, attributes, parent examples) returns a tree

if examples is empty then return PLURALITY-VALUE(parent examples)
else if all examples have the same classification then return the classification
else if attributes is empty then return PLURALITY-VALUE(examples)
else

A←argmaxa∈attributes IMPORTANCE(a, examples)
tree←a new decision tree with root test A
for each value v of A do

exs←{e : e∈examples and e.A = v}
subtree←LEARN-DECISION-TREE(exs, attributes−A, examples)
add a branch to tree with label (A = v) and subtree subtree

return tree

Figure 19.5 The decision tree learning algorithm. The function IMPORTANCE is described
in Section 19.3.3. The function PLURALITY-VALUE selects the most common output value
among a set of examples, breaking ties randomly.

145

None Some Full

Patrons?

No Yes

No Yes

Hungry?

No

No Yes

Fri/Sat?

YesNo

Yes

Type?

French Italian Thai Burger

Yes No

Figure 19.6 The decision tree induced from the 12-example training set.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Figure 19.7 A learning curve for the decision tree learning algorithm on 100 randomly gen-
erated examples in the restaurant domain. Each data point is the average of 20 trials.

146 Chapter 19 Learning from Examples

function MODEL-SELECTION(Learner, examples, k) returns a (hypothesis, error rate) pair

err←an array, indexed by size, storing validation-set error rates
training set, test set←a partition of examples into two sets
for size = 1 to ∞ do

err[size]←CROSS-VALIDATION(Learner, size, training set, k)
if err is starting to increase significantly then

best size← the value of size with minimum err[size]
h←Learner(best size, training set)
return h, ERROR-RATE(h, test set)

function CROSS-VALIDATION(Learner, size, examples, k) returns error rate

N← the number of examples
errs←0
for i = 1 to k do

validation set←examples[(i − 1) × N/k:i × N/k]
training set←examples − validation set
h←Learner(size, training set)
errs←errs + ERROR-RATE(h, validation set)

return errs / k // average error rate on validation sets, across k-fold cross-validation

Figure 19.8 An algorithm to select the model that has the lowest validation error. It builds
models of increasing complexity, and choosing the one with best empirical error rate, err,
on the validation data set. Learner(size,examples) returns a hypothesis whose complexity
is set by the parameter size, and which is trained on examples. In CROSS-VALIDATION,
each iteration of the for loop selects a different slice of the examples as the validation set,
and keeps the other examples as the training set. It then returns the average validation set
error over all the folds. Once we have determined which value of the size parameter is best,
MODEL-SELECTION returns the model (i.e., learner/hypothesis) of that size, trained on all
the training examples, along with its error rate on the held-out test examples.

147

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

E
rr

or
 r

at
e

(%
)

Tree size in nodes

Validation Set Error
Training Set Error

 0

 10

 20

 30

 40

 50

 60

 10 100 1000

E
rr

or
 r

at
e

(%
)

Thousands of parameters

Validation Set Error
Training Set Error

(a) (b)

Figure 19.9 Error rates on training data (lower, green line) and validation data (upper, orange
line) for models of different complexity on two different problems. MODEL-SELECTION
picks the hyperparameter value with the lowest validation-set error. In (a) the model class is
decision trees and the hyperparameter is the number of nodes. The data is from a version of
the restaurant problem. The optimal size is 7. In (b) the model class is convolutional neural
networks (see Section 22.3) and the hyperparameter is the number of regular parameters in
the network. The data is the MNIST data set of images of digits; the task is to identify each
digit. The optimal number of parameters is 1,000,000 (note the log scale).

Patrons(x, Some)
No

Yes Yes

No
Patrons(x, Full) Fri/Sat(x)

Yes

No

Yes

^

Figure 19.10 A decision list for the restaurant problem.

function DECISION-LIST-LEARNING(examples) returns a decision list, or failure

if examples is empty then return the trivial decision list No
t←a test that matches a nonempty subset examplest of examples

such that the members of examplest are all positive or all negative
if there is no such t then return failure
if the examples in examplest are positive then o←Yes else o←No
return a decision list with initial test t and outcome o and remaining tests given by

DECISION-LIST-LEARNING(examples − examplest)

Figure 19.11 An algorithm for learning decision lists.

148 Chapter 19 Learning from Examples

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Decision tree
Decision list

Figure 19.12 Learning curve for DECISION-LIST-LEARNING algorithm on the restaurant
data. The curve for LEARN-DECISION-TREE is shown for comparison; decision trees do
slightly better on this particular problem.

 300

 400

 500

 600

 700

 800

 900

 1000

 500 1000 1500 2000 2500 3000 3500

H
ou

se
 p

ri
ce

 in
 $

10
00

House size in square feet

w0

w1

Loss

(a) (b)

Figure 19.13 (a) Data points of price versus floor space of houses for sale in Berkeley, CA,
in July 2009, along with the linear function hypothesis that minimizes squared-error loss:
y = 0.232x+ 246. (b) Plot of the loss function ∑ j(y j −w1x j +w0)

2 for various values of
w0,w1. Note that the loss function is convex, with a single global minimum.

149

w
1

w
2

w*

w
1

w
2

w*

Figure 19.14 Why L1 regularization tends to produce a sparse model. Left: With L1 regu-
larization (box), the minimal achievable loss (concentric contours) often occurs on an axis,
meaning a weight of zero. Right: With L2 regularization (circle), the minimal loss is likely
to occur anywhere on the circle, giving no preference to zero weights.

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

(a) (b)

Figure 19.15 (a) Plot of two seismic data parameters, body wave magnitude x1 and surface
wave magnitude x2, for earthquakes (open orange circles) and nuclear explosions (green cir-
cles) occurring between 1982 and 1990 in Asia and the Middle East (Kebeasy et al., 1998).
Also shown is a decision boundary between the classes. (b) The same domain with more data
points. The earthquakes and explosions are no longer linearly separable.

150 Chapter 19 Learning from Examples

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700

Pr
op

or
tio

n
co

rr
ec

t

Number of weight updates

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 25000 50000 75000

Pr
op

or
tio

n
co

rr
ec

t

Number of weight updates

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 25000 50000 75000

Pr
op

or
tio

n
co

rr
ec

t

Number of weight updates

(a) (b) (c)

Figure 19.16 (a) Plot of total training-set accuracy vs. number of iterations through the
training set for the perceptron learning rule, given the earthquake/explosion data in Fig-
ure 19.15(a). (b) The same plot for the noisy, nonseparable data in Figure 19.15(b); note
the change in scale of the x-axis. (c) The same plot as in (b), with a learning rate schedule
α(t)=1000/(1000+ t).

 0

 0.5

 1

-6 -4 -2 0 2 4 6
 0

 0.5

 1

-6 -4 -2 0 2 4 6

-2 0 2 4 6

-4-2 0 2 4 6 8 10

 0
 0.2
 0.4
 0.6
 0.8

 1

x1

x2

(a) (b) (c)

Figure 19.17 (a) The hard threshold function Threshold(z) with 0/1 output. Note
that the function is nondifferentiable at z=0. (b) The logistic function, Logistic(z) =

1
1+e−z , also known as the sigmoid function. (c) Plot of a logistic regression hypothesis
hw(x)=Logistic(w ·x) for the data shown in Figure 19.15(b).

151

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000 2000 3000 4000

Pr
op

or
tio

n
co

rr
ec

t

Number of weight updates

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 25000 50000 75000
Pr

op
or

tio
n

co
rr

ec
t

Number of weight updates

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 25000 50000 75000

Pr
op

or
tio

n
co

rr
ec

t

Number of weight updates

(a) (b) (c)

Figure 19.18 Repeat of the experiments in Figure 19.16 using logistic regression. The plot
in (a) covers 5000 iterations rather than 700, while the plots in (b) and (c) use the same scale
as before.

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

4.5 5 5.5 6 6.5 7

x1

x
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

4.5 5 5.5 6 6.5 7

x1

x
2

(k=1) (k=5)

Figure 19.19 (a) A k-nearest-neighbors model showing the extent of the explosion class for
the data in Figure 19.15, with k=1. Overfitting is apparent. (b) With k=5, the overfitting
problem goes away for this data set.

152 Chapter 19 Learning from Examples

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14

(a) (b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14

(c) (d)

Figure 19.20 Nonparametric regression models: (a) connect the dots, (b) 3-nearest neigh-
bors average, (c) 3-nearest-neighbors linear regression, (d) locally weighted regression with
a quadratic kernel of width 10.

153

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a) (b)

Figure 19.21 Support vector machine classification: (a) Two classes of points (orange open
and green filled circles) and three candidate linear separators. (b) The maximum margin
separator (heavy line), is at the midpoint of the margin (area between dashed lines). The
support vectors (points with large black circles) are the examples closest to the separator;
here there are three.

154 Chapter 19 Learning from Examples

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1

 0
 0.5

 1
 1.5

 2
 2.5 0

 0.5

 1

 1.5

 2

 2.5

-3
-2
-1
 0
 1
 2
 3

x1
2

x2
2

√2x1x2

(a) (b)

Figure 19.22 (a) A two-dimensional training set with positive examples as green filled cir-
cles and negative examples as orange open circles. The true decision boundary, x2

1 + x2
2 ≤ 1,

is also shown. (b) The same data after mapping into a three-dimensional input space
(x2

1,x
2
2,
√

2x1x2). The circular decision boundary in (a) becomes a linear decision boundary
in three dimensions. Figure 19.21(b) gives a closeup of the separator in (b).

+

+
+
+

+
+++++

+
+

+

+

–––

–

–

–

–
–

–

–

–

–

–
–

–

–

–

– – –
–

–
–

–
–

– –

–
–

–

–

–

–
–

–

–

–
–

–

–

–

Figure 19.23 Illustration of the increased expressive power obtained by ensemble learning.
We take three linear threshold hypotheses, each of which classifies positively on the unshaded
side, and classify as positive any example classified positively by all three. The resulting
triangular region is a hypothesis not expressible in the original hypothesis space.

155

h

h1 = h2 = h3 = h4 =

Figure 19.24 How the boosting algorithm works. Each shaded rectangle corresponds to
an example; the height of the rectangle corresponds to the weight. The checks and crosses
indicate whether the example was classified correctly by the current hypothesis. The size of
the decision tree indicates the weight of that hypothesis in the final ensemble.

156 Chapter 19 Learning from Examples

function ADABOOST(examples, L, K) returns a hypothesis
inputs: examples, set of N labeled examples (x1,y1), . . . ,(xN ,yN)

L, a learning algorithm
K, the number of hypotheses in the ensemble

local variables: w, a vector of N example weights, initially all 1/N
h, a vector of K hypotheses
z, a vector of K hypothesis weights

ε←a small positive number, used to avoid division by zero
for k = 1 to K do

h[k]←L(examples, w)
error←0
for j = 1 to N do // Compute the total error for h[k]

if h[k](x j) 6= y j then error←error + w[j]
if error > 1/2 then break from loop
error←min(error, 1 − ε)
for j = 1 to N do // Give more weight to the examples h[k] got wrong

if h[k](x j) = y j then w[j]←w[j] · error/(1− error)
w←NORMALIZE(w)
z[k]← 1

2 log((1− error)/error) // Give more weight to accurate h[k]
return Function(x) : ∑ zi hi(x)

Figure 19.25 The ADABOOST variant of the boosting method for ensemble learning. The
algorithm generates hypotheses by successively reweighting the training examples. The func-
tion WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the
highest vote from the hypotheses in h, with votes weighted by z. For regression problems, or
for binary classification with two classes -1 and 1, this is ∑k h[k]z[k].

157

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Boosted decision stumps
Decision stump

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200

T
ra

in
in

g/
te

st
 a

cc
ur

ac
y

Number of hypotheses K

Training accuracy
Test accuracy

(a) (b)

Figure 19.26 (a) Graph showing the performance of boosted decision stumps with K=5
versus unboosted decision stumps on the restaurant data. (b) The proportion correct on the
training set and the test set as a function of K, the number of hypotheses in the ensemble.
Notice that the test set accuracy improves slightly even after the training accuracy reaches 1,
i.e., after the ensemble fits the data exactly.

158 Chapter 19 Learning from Examples

Figure 19.27 A two-dimensional t-SNE map of the MNIST data set, a collection of 60,000
images of handwritten digits, each 28×28 pixels and thus 784 dimensions. You can clearly
see clusters for the ten digits, with a few confusions in each cluster; for example the top
cluster is for the digit 0, but within the bounds of the cluster are a few data points representing
the digits 3 and 6. The t-SNE algorithm finds a representation that accentuates the differences
between clusters.

159

Tests for Features and Data
(1) Feature expectations are captured in a schema. (2) All features are beneficial. (3) No fea-
ture’s cost is too much. (4) Features adhere to meta-level requirements. (5) The data pipeline
has appropriate privacy controls. (6) New features can be added quickly. (7) All input feature
code is tested.

Tests for Model Development
(1) Every model specification undergoes a code review. (2) Every model is checked in to a
repository. (3) Offline proxy metrics correlate with actual metrics (4) All hyperparameters
have been tuned. (5) The impact of model staleness is known. (6) A simpler model is not
better. (7) Model quality is sufficient on all important data slices. The model has been tested
for considerations of inclusion.

Tests for Machine Learning Infrastructure
(1) Training is reproducible. (2) Model specification code is unit tested. (3) The full ML
pipeline is integration tested. (4) Model quality is validated before attempting to serve it.
(5) The model allows debugging by observing the step-by-step computation of training or
inference on a single example. (6) Models are tested via a canary process before they enter
production serving environments. (7) Models can be quickly and safely rolled back to a pre-
vious serving version.

Monitoring Tests for Machine Learning
(1) Dependency changes result in notification. (2) Data invariants hold in training and serv-
ing inputs. (3) Training and serving features compute the same values. (4) Models are not
too stale. (5) The model is numerically stable. (6) The model has not experienced regres-
sions in training speed, serving latency, throughput, or RAM usage. (7) The model has not
experienced a regression in prediction quality on served data.

Figure 19.28 A set of criteria to see how well you are doing at deploying your machine
learning model with sufficient tests. Abridged from Breck et al. (2016), who also provide a
scoring metric.

CHAPTER 20
KNOWLEDGE IN LEARNING

(a) (b) (c) (d) (e)

+
+

+

+
+

++

–
–

–

–

––

–

–
–

–

+
+

+

+
+

++

–
–

–

–

––

–

–
–

–

+

+
+

+

+
+

++

–
–

–

–

––

–

–
–

–

+

+
+

+

+
+

++

–
–

–

–

––

–

–

–

+–

+
+

+

+
+

++

–
–

–

–

––

–

–

–

+

–

–

Figure 20.1 (a) A consistent hypothesis. (b) A false negative. (c) The hypothesis is general-
ized. (d) A false positive. (e) The hypothesis is specialized.

function CURRENT-BEST-LEARNING(examples, h) returns a hypothesis or fail

if examples is empty then
return h

e←FIRST(examples)
if e is consistent with h then

return CURRENT-BEST-LEARNING(REST(examples), h)
else if e is a false positive for h then

for each h′ in specializations of h consistent with examples seen so far do
h′′←CURRENT-BEST-LEARNING(REST(examples), h′)
if h′′ 6= fail then return h′′

else if e is a false negative for h then
for each h′ in generalizations of h consistent with examples seen so far do

h′′←CURRENT-BEST-LEARNING(REST(examples), h′)
if h′′ 6= fail then return h′′

return fail

Figure 20.2 The current-best-hypothesis learning algorithm. It searches for a consis-
tent hypothesis that fits all the examples and backtracks when no consistent specializa-
tion/generalization can be found. To start the algorithm, any hypothesis can be passed in;
it will be specialized or gneralized as needed.

161

function VERSION-SPACE-LEARNING(examples) returns a version space
local variables: V , the version space: the set of all hypotheses

V← the set of all hypotheses
for each example e in examples do

if V is not empty then V←VERSION-SPACE-UPDATE(V , e)
return V

function VERSION-SPACE-UPDATE(V , e) returns an updated version space

V←{h∈V : h is consistent with e}

Figure 20.3 The version space learning algorithm. It finds a subset of V that is consistent
with all the examples.

This region all inconsistent

This region all inconsistent

More general

More specific

S1

G1

S2

G2 G3 . . . Gm

 . . . Sn

Figure 20.4 The version space contains all hypotheses consistent with the examples.

162 Chapter 20 Knowledge in Learning

+ +

+ +

+

+

+
+

+ +

–

–

–

–

–

–
–

–

– –
–

––

–

S1

G1

G2

Figure 20.5 The extensions of the members of G and S. No known examples lie in between
the two sets of boundaries.

Observations PredictionsHypotheses

Prior
knowledge

Knowledge-based

inductive learning

Figure 20.6 A cumulative learning process uses, and adds to, its stock of background
knowledge over time.

163

Primitive(X)

ArithmeticUnknown(X)

Primitive(z)

ArithmeticUnknown(z)

Simplify(X,w)

Yes, { }

Yes, {x / 1, v / y+z}

Simplify(y+z,w)

Rewrite(y+z,v')

Yes, {y / 0, v'/ z}

{w / X}

Yes, { }

Yes, {v / 0+X}

Yes, {v' / X}

Simplify(z,w)

{w / z}

Simplify(1 × (0+X),w)

Rewrite(x × (y+z),v)

Simplify(x × (y+z),w)

Rewrite(1 × (0+X),v) Simplify(0+X,w)

Rewrite(0+X,v')

Figure 20.7 Proof trees for the simplification problem. The first tree shows the proof for the
original problem instance, from which we can derive

ArithmeticUnknown(z) ⇒ Simplify(1× (0+ z),z) .

The second tree shows the proof for a problem instance with all constants replaced by vari-
ables, from which we can derive a variety of other rules.

164 Chapter 20 Knowledge in Learning

function MINIMAL-CONSISTENT-DET(E, A) returns a set of attributes
inputs: E, a set of examples

A, a set of attributes, of size n

for i = 0 to n do
for each subset Ai of A of size i do

if CONSISTENT-DET?(Ai, E) then return Ai

function CONSISTENT-DET?(A, E) returns a truth value
inputs: A, a set of attributes

E, a set of examples
local variables: H, a hash table

for each example e in E do
if some example in H has the same values as e for the attributes A

but a different classification then return false
store the class of e in H, indexed by the values for attributes A of the example e

return true

Figure 20.8 An algorithm for finding a minimal consistent determination.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

RBDTL
DTL

Figure 20.9 A performance comparison between DECISION-TREE-LEARNING and
RBDTL on randomly generated data for a target function that depends on only 5 of 16
attributes.

165

2mhr - Four-helical up-and-down bundle

H:1[19-37]

H:2[41-64]

H:3[71-84]

H:4[93-108]

H:5[111-113]

H:1[8-17]

H:2[26-33]

H:3[40-50]

H:4[61-64]

H:5[66-70]

H:6[79-88]

H:7[99-106]

E:1[57-59]

E:2[96-98]

1omd - EF-Hand

(a) (b)

Figure 20.10 (a) and (b) show positive and negative examples, respectively, of the
“four-helical up-and-down bundle” concept in the domain of protein folding. Each
example structure is coded into a logical expression of about 100 conjuncts such as
TotalLength(D2mhr,118)∧NumberHelices(D2mhr,6)∧ From these descriptions and
from classifications such as Fold(FOUR-HELICAL-UP-AND-DOWN-BUNDLE,D2mhr), the
ILP system PROGOL (Muggleton, 1995) learned the following rule:

Fold(FOUR-HELICAL-UP-AND-DOWN-BUNDLE, p)⇐
Helix(p,h1)∧Length(h1,HIGH)∧Position(p,h1,n)
∧ (1≤ n≤ 3)∧Adjacent(p,h1,h2)∧Helix(p,h2) .

This kind of rule could not be learned, or even represented, by an attribute-based mechanism
such as we saw in previous chapters. The rule can be translated into English as “ Protein p
has fold class “Four-helical up-and-down-bundle” if it contains a long helix h1 at a secondary
structure position between 1 and 3 and h1 is next to a second helix.”

166 Chapter 20 Knowledge in Learning

Beatrice

Andrew

EugenieWilliam Harry

CharlesDiana

MumGeorge

PhilipElizabeth MargaretKyddSpencer

Peter

Mark

Zara

Anne Sarah Edward Sophie

Louise James

Figure 20.11 A typical family tree.

function FOIL(examples, target) returns a set of Horn clauses
inputs: examples, set of examples

target, a literal for the goal predicate
local variables: clauses, set of clauses, initially empty

while examples contains positive examples do
clause←NEW-CLAUSE(examples, target)
remove positive examples covered by clause from examples
add clause to clauses

return clauses

function NEW-CLAUSE(examples, target) returns a Horn clause
local variables: clause, a clause with target as head and an empty body

l, a literal to be added to the clause
extended examples, a set of examples with values for new variables

extended examples←examples
while extended examples contains negative examples do

l←CHOOSE-LITERAL(NEW-LITERALS(clause), extended examples)
append l to the body of clause
extended examples←set of examples created by applying EXTEND-EXAMPLE

to each example in extended examples
return clause

function EXTEND-EXAMPLE(example, literal) returns a set of examples
if example satisfies literal

then return the set of examples created by extending example with
each possible constant value for each new variable in literal

else return the empty set

Figure 20.12 Sketch of the FOIL algorithm for learning sets of first-order Horn clauses from
examples. NEW-LITERALS and CHOOSE-LITERAL are explained in the text.

167

{y/Anne}

Parent(Elizabeth,Anne)

Grandparent(George,Anne)Grandparent(George,Anne)

Grandparent(George,y)Parent(Elizabeth,y)

>

{x/George, z/Elizabeth}

Parent(George,Elizabeth)

>

Parent(z,y) Grandparent(x,y)

>

Parent(x,z)¬ ¬

¬

¬

Figure 20.13 Early steps in an inverse resolution process. The shaded clauses are generated
by inverse resolution steps from the clause to the right and the clause below. The unshaded
clauses are from the Descriptions and Classifications (including negated Classifications).

{x/George}

Father(x,y) P(x,y)

>

Father(George,y) Ancestor(George,y)

>

P(George,y) Ancestor(George,y)

>

¬ ¬

Figure 20.14 An inverse resolution step that generates a new predicate P.

CHAPTER 21
LEARNING PROBABILISTIC MODELS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Po
st

er
io

r
pr

ob
ab

ili
ty

 o
f

hy
po

th
es

is

Number of observations in d

P(h1 | d)
P(h2 | d)
P(h3 | d)
P(h4 | d)
P(h5 | d)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10
Pr

ob
ab

ili
ty

 th
at

 n
ex

t c
an

dy
 is

 li
m

e

Number of observations in d

(a) (b)

Figure 21.1 (a) Posterior probabilities P(hi |d1, . . . ,dN) from Equation (21.1). The number
of observations N ranges from 1 to 10, and each observation is of a lime candy. (b) Bayesian
prediction P(DN+1= lime |d1, . . . ,dN) from Equation (21.2).

Flavor

P(F=cherry)

(a)

P(F=cherry)

Flavor

(b)

F

cherry

lime

P(W=red | F)

Wrapper

�

�

�1

�2

Figure 21.2 (a) Bayesian network model for the case of candies with an unknown proportion
of cherry and lime. (b) Model for the case where the wrapper color depends (probabilisti-
cally) on the candy flavor.

169

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Decision tree
Naive Bayes

Figure 21.3 The learning curve for naive Bayes learning applied to the restaurant problem
from Chapter 19; the learning curve for decision tree learning is shown for comparison.

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 1

 2

 3

 4

x

y

P(y|x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

x

(a) (b)

Figure 21.4 (a) A linear–Gaussian model described as y=θ1x+θ2 plus Gaussian noise with
fixed variance. (b) A set of 50 data points generated from this model and the best-fit line.

170 Chapter 21 Learning Probabilistic Models

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

[1,1]

[2,2]

[5,5]
P

(Θ
 =

 θ
)

Parameter θ

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

[3,1]

[6,2]

[30,10]

P
(Θ

 =
 θ

)

Parameter θ

(a) (b)

Figure 21.5 Examples of the Beta(a,b) distribution for different values of (a,b).

Θ

Θ1 Θ2

Flavor1 Flavor2 Flavor3

Wrapper1 Wrapper2 Wrapper3

Figure 21.6 A Bayesian network that corresponds to a Bayesian learning process. Poste-
rior distributions for the parameter variables Θ, Θ1, and Θ2 can be inferred from their prior
distributions and the evidence in Flavori and Wrapperi.

171

-6

-4

-2

 0

 2

 4

 6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

-6

-4

-2

 0

 2

 4

 6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

(a) (b)

Figure 21.7 Bayesian linear regression with a model constrained to pass through the origin
and fixed noise variance σ2=0.2. Contours at ±1, ±2, and ±3 standard deviations are
shown for the predictive density. (a) With three data points near the origin, the slope is quite
uncertain, with σ2

N ≈ 0.3861. Notice how the uncertainty increases with distance from the
observed data points. (b) With two additional data points further away, the slope θ is very
tightly constrained, with σ2

N ≈ 0.0286. The remaining variance in the predictive density is
almost entirely due to the fixed noise σ2.

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
Density

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1
(a) (b)

Figure 21.8 (a) A 3D plot of the mixture of Gaussians from Figure 21.12(a). (b) A 128-point
sample of points from the mixture, together with two query points (small orange squares) and
their 10-nearest-neighborhoods (large circle and smaller circle to the right).

172 Chapter 21 Learning Probabilistic Models

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

Density

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

Density

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

Density

(a) (b) (c)

Figure 21.9 Density estimation using k-nearest-neighbors, applied to the data in Fig-
ure 21.8(b), for k=3, 10, and 40 respectively. k = 3 is too spiky, 40 is too smooth, and
10 is just about right. The best value for k can be chosen by cross-validation.

Symptom1 Symptom2 Symptom3

(a) (b)

HeartDisease

Symptom1 Symptom2 Symptom3

54

6 6 6 54 162 486

Smoking Diet Exercise
2 2 2

Smoking Diet Exercise
2 2 2

Figure 21.11 (a) A simple diagnostic network for heart disease, which is assumed to be
a hidden variable. Each variable has three possible values and is labeled with the number
of independent parameters in its conditional distribution; the total number is 78. (b) The
equivalent network with HeartDisease removed. Note that the symptom variables are no
longer conditionally independent given their parents. This network requires 708 parameters.

Figure 21.10 Density estimation using kernels for the data in Figure 21.8(b), using Gaussian
kernels with w=0.02, 0.07, and 0.20 respectively. w=0.07 is about right.

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

Density

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

Density

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

Density

(a) (b) (c)

173

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a) (b) (c)

Figure 21.12 (a) A Gaussian mixture model with three components; the weights (left-to-
right) are 0.2, 0.3, and 0.5. (b) 500 data points sampled from the model in (a). (c) The model
reconstructed by EM from the data in (b).

-200
-100

 0
 100
 200
 300
 400
 500
 600
 700

 0 5 10 15 20

L
og

-l
ik

el
ih

oo
d

L

Iteration number

-2020

-2010

-2000

-1990

-1980

 0 20 40 60 80 100 120

L
og

-l
ik

el
ih

oo
d

L

Iteration number

(a) (b)

Figure 21.13 Graphs showing the log likelihood of the data, L, as a function of the EM
iteration. The horizontal line shows the log likelihood according to the true model. (a) Graph
for the Gaussian mixture model in Figure 21.12. (b) Graph for the Bayesian network in
Figure 21.14(a).

174 Chapter 21 Learning Probabilistic Models

(a) (b)

C

XHole

Bag

P(Bag=1)

WrapperFlavor

Bag

1

2

P(F=cherry | B)

θF1

θ

θF1

Figure 21.14 (a) A mixture model for candy. The proportions of different flavors, wrappers,
and presence of holes depend on the bag, which is not observed. (b) Bayesian network for
a Gaussian mixture. The mean and covariance of the observable variables X depend on the
component C.

P(R1|R0)R0 P(R1|R0) P(R1|R0) P(R1|R0)P(R1|R0)R0 P(R2|R1)R1 P(R3|R2)R2 P(R4|R3)R3

R1 P(U1|R1) R1 P(U1|R1) R2 P(U2|R2) R3 P(U3|R3) R4 P(U4|R4)

Rain4Rain0 Rain1 Rain0 Rain1 Rain2 Rain3

Umbrella1 Umbrella1 Umbrella2 Umbrella3 Umbrella4

Figure 21.15 An unrolled dynamic Bayesian network that represents a hidden Markov
model (repeat of Figure 14.16).

CHAPTER 22
DEEP LEARNING

(a) (b) (c)

Figure 22.1 (a) A shallow model, such as linear regression, has short computation paths
between inputs and output. (b) A decision list network (page 692) has some long paths for
some possible input values, but most paths are short. (c) A deep learning network has longer
computation paths, allowing each variable to interact with all the others.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-6 -4 -2 0 2 4 6
 0
 1
 2
 3
 4
 5
 6
 7
 8

-6 -4 -2 0 2 4 6

softplus
ReLU

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-6 -4 -2 0 2 4 6

(a) (b) (c)

Figure 22.2 Activation functions commonly used in deep learning systems: (a) the logistic
or sigmoid function; (b) the ReLU function and the softplus function; (c) the tanh function.

176 Chapter 22 Deep Learning

ŷ

x1
w1,3

w2,3

w3,5

w4,5
x2 w2,4

w1,4

3

4

5 +

�

�

�

�

+

�

�

�

�

+

�

w0,5

+1 g5 �

x1

w0,3

w1,3

w2,3

+1

g3

w3,5

w4,5

x2

w0,4

w2,4

+1

w1,4

g4

(a) (b)

Figure 22.3 (a) A neural network with two inputs, one hidden layer of two units, and one
output unit. Not shown are the dummy inputs and their associated weights. (b) The network
in (a) unpacked into its full computation graph.

5 6 6 2 5 6 5

5 9 4

+1
–1

+1 +1
–1

+1 +1
–1

+1

Figure 22.4 An example of a one-dimensional convolution operation with a kernel of size
l=3 and a stride s=2. The peak response is centered on the darker (lower intensity) input
pixel. The results would usually be fed through a nonlinear activation function (not shown)
before going to the next hidden layer.

177

Figure 22.5 The first two layers of a CNN for a 1D image with a kernel size l=3 and a
stride s=1. Padding is added at the left and right ends in order to keep the hidden layers the
same size as the input. Shown in red is the receptive field of a unit in the second hidden layer.
Generally speaking, the deeper the unit, the larger the receptive field.

f

g k

j

h

∂L/∂hj

∂L/∂hk

∂L/∂fh

∂L/∂gh

Figure 22.6 Illustration of the back-propagation of gradient information in an arbitrary com-
putation graph. The forward computation of the output of the network proceeds from left to
right, while the back-propagation of gradients proceeds from right to left.

178 Chapter 22 Deep Learning

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 1 2 3 4 5 6 7

T
es

t-
se

t e
rr

or

Number of weights (× 107)

3-layer
11-layer

Figure 22.7 Test-set error as a function of layer width (as measured by total number of
weights) for three-layer and eleven-layer convolutional networks. The data come from early
versions of Google’s system for transcribing addresses in photos taken by Street View cars
(Goodfellow et al., 2014).

Δ

Figure 22.8 (a) Schematic diagram of a basic RNN where the hidden layer z has recurrent
connections; the ∆ symbol indicates a delay. (b) The same network unrolled over three time
steps to create a feedforward network. Note that the weights are shared across all time steps.

179

Figure 22.9 A demonstration of how a generative model has learned to use different direc-
tions in z space to represent different aspects of faces. We can actually perform arithmetic in
z space. The images here are all generated from the learned model and show what happens
when we decode different points in z space. We start with the coordinates for the concept of
“man with glasses,” subtract off the coordinates for “man,” add the coordinates for “woman,”
and obtain the coordinates for “woman with glasses.” Images reproduced with permission
from (Radford et al., 2015).

CHAPTER 23
REINFORCEMENT LEARNING

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

(a) (b)

Figure 23.1 (a) The optimal policies for the stochastic environment with R(s,a,s′)= −0.04
for transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. We saw this before in Figure 16.2. (b) The utilities of the states in
the 4×3 world, given policy π.

181

function PASSIVE-ADP-LEARNER(percept) returns an action
inputs: percept, a percept indicating the current state s′ and reward signal r
persistent: π, a fixed policy

mdp, an MDP with model P, rewards R, actions A, discount γ
U, a table of utilities for states, initially empty
Ns′|s,a, a table of outcome count vectors indexed by state and action, initially zero
s, a, the previous state and action, initially null

if s′ is new then U[s′]←0
if s is not null then

increment Ns′|s,a[s, a][s’]
R[s, a, s′]←r
add a to A[s]
P(· | s,a)←NORMALIZE(Ns′|s,a[s, a])
U←POLICYEVALUATION(π, U, mdp)
s, a←s′,π[s′]
return a

Figure 23.2 A passive reinforcement learning agent based on adaptive dynamic program-
ming. The agent chooses a value for γ and then incrementally computes the P and R values
of the MDP. The POLICY-EVALUATION function solves the fixed-policy Bellman equations,
as described on page 567.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

(1,1)

(1,3)

(2,1)

(3,2)

(3,3)

U
til

ity
 e

st
im

at
es

Number of trials

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100

R
M

S
er

ro
r

in
 u

til
ity

Number of trials

(a) (b)

Figure 23.3 The passive ADP learning curves for the 4×3 world, given the optimal policy
shown in Figure 23.1. (a) The utility estimates for a selected subset of states, as a function
of the number of trials. Notice that it takes 14 and 23 trials respectively before the rarely
visited states (2,1) and (3,2) “discover” that they connect to the +1 exit state at (4,3). (b) The
root-mean-square error (see Appendix A) in the estimate for U(1,1), averaged over 50 runs
of 100 trials each.

182 Chapter 23 Reinforcement Learning

function PASSIVE-TD-LEARNER(percept) returns an action
inputs: percept, a percept indicating the current state s′ and reward signal r
persistent: π, a fixed policy

s, the previous state, initially null
U, a table of utilities for states, initially empty
Ns, a table of frequencies for states, initially zero

if s′ is new then U[s′]←0
if s is not null then

increment Ns[s]
U[s]←U[s] + α(Ns[s]) × (r + γU[s′] - U[s])

s←s′

return π[s′]

Figure 23.4 A passive reinforcement learning agent that learns utility estimates using tem-
poral differences. The step-size function α(n) is chosen to ensure convergence.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

(1,1)

(1,3)

(2,1)

(3,3)

(3,2)

U
til

ity
 e

st
im

at
es

Number of trials

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100

R
M

S
er

ro
r

in
 u

til
ity

Number of trials

(a) (b)

Figure 23.5 The TD learning curves for the 4× 3 world. (a) The utility estimates for a
selected subset of states, as a function of the number of trials, for a single run of 500 trials.
Compare with the run of 100 trials in Figure 23.3(a). (b) The root-mean-square error in the
estimate for U(1,1), averaged over 50 runs of 100 trials each.

183

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500

R
M

S
er

ro
r,

 p
ol

ic
y

lo
ss

Number of trials

RMS error
Policy loss

(a) (b)

Figure 23.6 Performance of a greedy ADP agent that executes the action recommended by
the optimal policy for the learned model. (a) The root mean square (RMS) error averaged
across all nine nonterminal squares and the policy loss in (1,1). We see that the policy con-
verges quickly, after just eight trials, to a suboptimal policy with a loss of 0.235. (b) The
suboptimal policy to which the greedy agent converges in this particular sequence of trials.
Notice the Down action in (1,2).

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 20 40 60 80 100

U
til

ity
 e

st
im

at
es

Number of trials

(1,1)
(1,3)
(2,1)
(3,2)
(3,3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100

R
M

S
er

ro
r,

 p
ol

ic
y

lo
ss

Number of trials

RMS error
Policy loss

(a) (b)

Figure 23.7 Performance of the exploratory ADP agent using R+ = 2 and Ne = 5. (a) Utility
estimates for selected states over time. (b) The RMS error in utility values and the associated
policy loss.

184 Chapter 23 Reinforcement Learning

function Q-LEARNING-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s′ and reward signal r
persistent: Q, a table of action values indexed by state and action, initially zero

Nsa, a table of frequencies for state–action pairs, initially zero
s, a, the previous state and action, initially null

if s is not null then
increment Nsa[s, a]
Q[s,a]←Q[s,a] + α(Nsa[s,a])(r + γ maxa′ Q[s′,a′] − Q[s,a])

s, a←s′, argmaxa′ f (Q[s′,a′],Nsa[s′,a′])
return a

Figure 23.8 An exploratory Q-learning agent. It is an active learner that learns the value
Q(s,a) of each action in each situation. It uses the same exploration function f as the ex-
ploratory ADP agent, but avoids having to learn the transition model.

x

θ

(a) (b)

Figure 23.9 (a) Setup for the problem of balancing a long pole on top of a moving cart.
The cart can be jerked left or right by a controller that observes the cart’s position x and
velocity ẋ, as well as the pole’s angle θ and rate of change of angle θ̇. (b) Six superimposed
time-lapse images of a single autonomous helicopter performing a very difficult “nose-in
circle” maneuver. The helicopter is under the control of a policy developed by the PEGASUS
policy-search algorithm (Ng et al., 2003). A simulator model was developed by observing
the effects of various control manipulations on the real helicopter; then the algorithm was
run on the simulator model overnight. A variety of controllers were developed for different
maneuvers. In all cases, performance far exceeded that of an expert human pilot using remote
control. (Image courtesy of Andrew Ng.)

CHAPTER 24
NATURAL LANGUAGE PROCESSING

Tag Word Description Tag Word Description

CC and Coordinating conjunction PRP$ your Possessive pronoun
CD three Cardinal number RB quickly Adverb
DT the Determiner RBR quicker Adverb, comparative
EX there Existential there RBS quickest Adverb, superlative
FW per se Foreign word RP off Particle
IN of Preposition SYM + Symbol
JJ purple Adjective TO to to
JJR better Adjective, comparative UH eureka Interjection
JJS best Adjective, superlative VB talk Verb, base form
LS 1 List item marker VBD talked Verb, past tense
MD should Modal VBG talking Verb, gerund
NN kitten Noun, singular or mass VBN talked Verb, past participle
NNS kittens Noun, plural VBP talk Verb, non-3rd-sing
NNP Ali Proper noun, singular VBZ talks Verb, 3rd-sing
NNPS Fords Proper noun, plural WDT which Wh-determiner
PDT all Predeterminer WP who Wh-pronoun
POS ’s Possessive ending WP$ whose Possessive wh-pronoun
PRP you Personal pronoun WRB where Wh-adverb
$ $ Dollar sign # # Pound sign
“ ‘ Left quote ” ’ Right quote
([Left parenthesis)] Right parenthesis
, , Comma . ! Sentence end
: ; Mid-sentence punctuation

Figure 24.1 Part-of-speech tags (with an example word for each tag) for the Penn Treebank
corpus (Marcus et al., 1993). Here “3rd-sing” is an abbreviation for “third person singular
present tense.”

186 Chapter 24 Natural Language Processing

S → NP VP [0.90] I + feel a breeze
| S Conj S [0.10] I feel a breeze + and + It stinks

NP → Pronoun [0.25] I
| Name [0.10] Ali
| Noun [0.10] pits
| Article Noun [0.25] the + wumpus
| Article Adjs Noun [0.05] the + smelly dead + wumpus
| Digit Digit [0.05] 3 4
| NP PP [0.10] the wumpus + in 1 3
| NP RelClause [0.05] the wumpus + that is smelly
| NP Conj NP [0.05] the wumpus + and + I

VP → Verb [0.40] stinks
| VP NP [0.35] feel + a breeze
| VP Adjective [0.05] smells + dead
| VP PP [0.10] is + in 1 3
| VP Adverb [0.10] go + ahead

Adjs → Adjective [0.80] smelly
| Adjective Adjs [0.20] smelly + dead

PP → Prep NP [1.00] to + the east
RelClause → RelPro VP [1.00] that + is smelly

Figure 24.2 The grammar for E0, with example phrases for each rule. The syntactic cate-
gories are sentence (S), noun phrase (NP), verb phrase (VP), list of adjectives (Adjs), prepo-
sitional phrase (PP), and relative clause (RelClause).

Noun → stench [0.05] | breeze [0.10] | wumpus [0.15] | pits [0.05] | . . .
Verb → is [0.10] | feel [0.10] | smells [0.10] | stinks [0.05] | . . .
Adjective → right [0.10] | dead [0.05] | smelly [0.02] | breezy [0.02] . . .
Adverb → here [0.05] | ahead [0.05] | nearby [0.02] | . . .
Pronoun → me [0.10] | you [0.03] | I [0.10] | it [0.10] | . . .
RelPro → that [0.40] | which [0.15] | who [0.20] | whom [0.02] | . . .
Name → Ali [0.01] | Bo [0.01] | Boston [0.01] | . . .
Article → the [0.40] | a [0.30] | an [0.10] | every [0.05] | . . .
Prep → to [0.20] | in [0.10] | on [0.05] | near [0.10] | . . .
Conj → and [0.50] | or [0.10] | but [0.20] | yet [0.02] | . . .
Digit → 0 [0.20] | 1 [0.20] | 2 [0.20] | 3 [0.20] | 4 [0.20] | . . .

Figure 24.3 The lexicon for E0. RelPro is short for relative pronoun, Prep for preposition,
and Conj for conjunction. The sum of the probabilities for each category is 1.

187

List of items Rule

S
NP VP
NP VP Adjective
NP Verb Adjective
NP Verb dead
NP is dead
Article Noun is dead
Article wumpus is dead
the wumpus is dead

S → NP VP
VP → VP Adjective
VP → Verb
Adjective → dead
Verb → is
NP → Article Noun
Noun → wumpus
Article → the

Figure 24.4 Parsing the string “The wumpus is dead” as a sentence, according to the gram-
mar E0. Viewed as a top-down parse, we start with S, and on each step match one nontermi-
nal X with a rule of the form (X → Y . . .) and replace X in the list of items with Y . . . ; for
example replacing S with the sequence NP VP. Viewed as a bottom-up parse, we start with
the words “the wumpus is dead”, and on each step match a string of tokens such as (Y . . .)
against a rule of the form (X → Y . . .) and replace the tokens with X; for example replacing
“the” with Article or Article Noun with NP.

188 Chapter 24 Natural Language Processing

function CYK-PARSE(words, grammar) returns a table of parse trees
inputs: words, a list of words

grammar, a structure with LEXICALRULES and GRAMMARRULES
T←a table // T[X, i, k] is most probable X tree spanning wordsi:k
P←a table, initially all 0 // P[X, i, k] is probability of tree T[X, i, k]
// Insert lexical categories for each word.
for i = 1 to LEN(words) do

for each (X, p) in grammar.LEXICALRULES(wordsi) do
P[X, i, i]←p
T[X, i, i]←TREE(X, wordsi)

// Construct Xi:k from Yi: j + Z j+1:k, shortest spans first.
for each (i, j, k) in SUBSPANS(LEN(words)) do

for each (X, Y, Z, p) in grammar.GRAMMARRULES do
PYZ←P[Y, i, j] × P[Z, j+1, k] × p
if PYZ > P[X, i, k] do

P[X, i, k]←PYZ
T[X, i, k]←TREE(X, T[Y , i, j], T[Z, j + 1, k])

return T

function SUBSPANS(N) yields (i, j, k) tuples
for length = 2 to N do

for i = 1 to N + 1 − length do
k← i + length − 1
for j = i to k − 1 do

yield (i, j, k)

Figure 24.5 The CYK algorithm for parsing. Given a sequence of words, it finds the most
probable parse tree for the sequence and its subsequences. The table P[X, i,k] gives the prob-
ability of the most probable tree of category X spanning wordsi:k. The output table T[X, i, k]
contains the most probable tree of category X spanning positions i to k inclusive. The func-
tion SUBSPANS returns all tuples (i, j,k) covering a span of wordsi:k, with i≤ j< k, listing the
tuples by increasing length of the i : k span, so that when we go to combine two shorter spans
into a longer one, the shorter spans are already in the table. LEXICALRULES(word) returns a
collection of (X, p) pairs, one for each rule of the form X →word [p], and GRAMMARRULES
gives (X,Y,Z,p) tuples, one for each grammar rule of the form X → Y Z [p].

Article Noun

wumpus

Verb

NP VP

S

Every smells

0.25

0.90

 0.05 0.15 0.10

 0.40

Figure 24.6 Parse tree for the sentence “Every wumpus smells” according to the grammar
E0. Each interior node of the tree is labeled with its probability. The probability of the tree as
a whole is 0.9×0.25×0.05×0.15×0.40×0.10=0.0000675. The tree can also be written
in linear form as [S [NP [Article every] [Noun wumpus]][VP [Verb smells]]].

189

I detect

the Adjective wumpus near Pronoun

I

detect

the smelly

wumpus

near

me

Pronoun

NP

S

VP

Verb

NP

Article PrepNoun

NP

PP

NPAdjs

mesmelly

Figure 24.7 A dependency-style parse (top) and the corresponding phrase structure parse
(bottom) for the sentence I detect the smelly wumpus near me.

190 Chapter 24 Natural Language Processing

[[S [NP-2 Her eyes]
[VP were

[VP glazed
[NP *-2]
[SBAR-ADV as if

[S [NP she]
[VP did n’t

[VP [VP hear [NP *-1]]
or
[VP [ADVP even] see [NP *-1]]
[NP-1 him]]]]]]]]

.]

Figure 24.8 Annotated tree for the sentence “Her eyes were glazed as if she didn’t hear
or even see him.” from the Penn Treebank. Note a grammatical phenomenon we have not
covered yet: the movement of a phrase from one part of the tree to another. This tree analyzes
the phrase “hear or even see him” as consisting of two constituent VPs, [VP hear [NP *-1]]
and [VP [ADVP even] see [NP *-1]], both of which have a missing object, denoted *-1, which
refers to the NP labeled elsewhere in the tree as [NP-1 him]. Similarly, the [NP *-2] refers to
the [NP-2 Her eyes].

S(v) → NP(Sbj,pn,n) VP(pn,v) | . . .
NP(c,pn,n) → Pronoun(c,pn,n) | Noun(c,pn,n) | . . .

VP(pn,v) → Verb(pn,v) NP(Obj,pn,n) | . . .
PP(head) → Prep(head) NP(Obj,pn,h)

Pronoun(Sbj,1S,I) → I
Pronoun(Sbj,1P,we) → we
Pronoun(Obj,1S,me) → me

Pronoun(Obj,3P, them) → them

Verb(3S,see) → see

Figure 24.9 Part of an augmented grammar that handles case agreement, subject–verb agree-
ment, and head words. Capitalized names are constants: Sbj, and Obj for subjective and ob-
jective case; 1S for first person singular; 1P and 3P for first and third person plural. As usual,
lowercase names are variables. For simplicity, the probabilities have been omitted.

191

Exp(op(x1,x2)) → Exp(x1) Operator(op) Exp(x2)
Exp(x) → (Exp(x))
Exp(x) → Number(x)
Number(x) → Digit(x)
Number(10× x1 + x2) → Number(x1) Digit(x2)
Operator(+) → +
Operator(−) → -
Operator(×) → ×
Operator(÷) → ÷
Digit(0) → 0
Digit(1) → 1
. . .

Figure 24.10 A grammar for arithmetic expressions, augmented with semantics. Each vari-
able xi represents the semantics of a constituent.

Operator(÷)

3 ()4 2+

Number(2)

Digit(2)

Number(4)

Digit(4)Operator(+)Digit(3)

Number(3)

Exp(5)

Exp(2)

Exp(2)

Exp(4) Exp(2)Exp(3)

÷

Figure 24.11 Parse tree with semantic interpretations for the string “3+(4÷2)”.

192 Chapter 24 Natural Language Processing

S(pred(n)) → NP(n) VP(pred)
VP(pred(n)) → Verb(pred) NP(n)
NP(n) → Name(n)

Name(Ali) → Ali
Name(Bo) → Bo
Verb(λy λx Loves(x,y)) → loves

Ali loves Bo

Name(Ali) Name(Bo)

NP(Bo)NP(Ali)

S(Loves(Ali, Bo))

Verb(λy λ x Loves(x, y))

VP(λx Loves(x, Bo))

(a) (b)

Figure 24.12 (a) A grammar that can derive a parse tree and semantic interpretation for “Ali
loves Bo” (and three other sentences). Each category is augmented with a single argument
representing the semantics. (b) A parse tree with semantic interpretations for the string “Ali
loves Bo.”

CHAPTER 25
DEEP LEARNING FOR NATURAL
LANGUAGE PROCESSING

france
greece

germany

nephew
niece

auntuncle

car
bicycle

truck
apple

banana pizza

Figure 25.1 Word embedding vectors computed by the GloVe algorithm trained on 6 billion
words of text. 100-dimensional word vectors are projected down onto two dimensions in this
visualization. Similar words appear near each other.

194 Chapter 25 Deep Learning for Natural Language Processing

A B C D=C+(B−A) Relationship
Athens Greece Oslo Norway Capital
Astana Kazakhstan Harare Zimbabwe Capital
Angola kwanza Iran rial Currency
copper Cu gold Au Atomic Symbol

Microsoft Windows Google Android Operating System
New York New York Times Baltimore Baltimore Sun Newspaper
Berlusconi Silvio Obama Barack First name
Switzerland Swiss Cambodia Cambodian Nationality

Einstein scientist Picasso painter Occupation
brother sister grandson granddaughter Family Relation
Chicago Illinois Stockton California State
possibly impossibly ethical unethical Negative
mouse mice dollar dollars Plural
easy easiest lucky luckiest Superlative

walking walked swimming swam Past tense

Figure 25.2 A word embedding model can sometimes answer the question “A is to B as C
is to [what]?” with vector arithmetic: given the word embedding vectors for the words A, B,
and C, compute the vector D=C+(B−A) and look up the word that is closest to D. (The
answers in column D were computed automatically by the model. The descriptions in the
“Relationship” column were added by hand.) Adapted from Mikolov et al. (2013, 2014).

195

Yesterday they cut the rope

Embedding
lookup

Embedding
lookup

Embedding
lookup

Embedding
lookup

Embedding
lookup

Hidden Layer 1

Class = PastTenseVerb

Hidden Layer 2

Output Layer

Figure 25.3 Feedforward part-of-speech tagging model. This model takes a 5-word window
as input and predicts the tag of the word in the middle—here, cut. The model is able to
account for word position because each of the 5 input embeddings is multiplied by a different
part of the first hidden layer. The parameter values for the word embeddings and for the three
layers are all learned simultaneously during training.

Δ

Figure 25.4 (a) Schematic diagram of an RNN where the hidden layer z has recurrent con-
nections; the ∆ symbol indicates a delay. Each input x is the word embedding vector of the
next word in the sentence. Each output y is the output for that time step. (b) The same net-
work unrolled over three timesteps to create a feedforward network. Note that the weights
are shared across all timesteps.

196 Chapter 25 Deep Learning for Natural Language Processing

Yesterday they cut the rope

Embedding
lookup

RNN

RNN

Feedforward

Embedding
lookup

RNN

RNN

Feedforward

Embedding
lookup

RNN

RNN

Feedforward

Embedding
lookup

RNN

RNN

Feedforward

Embedding
lookup

RNN

RNN

Feedforward

Class =
Adverb

Class =
Pronoun

Class =
PastTenseVerb

Class =
Determiner

Class =
Noun

Figure 25.5 A bidirectional RNN network for POS tagging.

Source
LSTM

Source
LSTM

Target
LSTM

Source
LSTM

Source
LSTM

Target
LSTM

Target
LSTM

Target
LSTM

Target
LSTM

The man is tall <start> El hombre es alto

El hombre es alto <end>

Figure 25.6 Basic sequence-to-sequence model. Each block represents one LSTM timestep.
(For simplicity, the embedding and output layers are not shown.) On successive steps we feed
the network the words of the source sentence “The man is tall,” followed by the <start> tag
to indicate that the network should start producing the target sentence. The final hidden state
at the end of the source sentence is used as the hidden state for the start of the target sentence.
After that, each target sentence word at time t is used as input at time t +1, until the network
produces the <end> tag to indicate that sentence generation is finished.

197

(a)

The front door is red

<start>

La

La

puerta

Source
LSTM

Source
LSTM

Source
LSTM

Source
LSTM

Source
LSTM

Target
Attentional
LSTM

Target
Attentional
LSTM

…

La puerta de entrada es roja

The

front

door

is

red

(b)

Figure 25.7 (a) Attentional sequence-to-sequence model for English-to-Spanish translation.
The dashed lines represent attention. (b) Example of attention probability matrix for a bilin-
gual sentence pair, with darker boxes representing higher values of ai j. The attention proba-
bilities sum to one over each column.

Timestep 2

Beam 1 Beam 1 Beam 1 Beam 1

Beam 2Beam 2Beam 2

Una

Una

20.3 20.8

20.922.1

Score Score

21.5

21.9

Score

20.5

20.7

Score

Word Word

entrada

puerta

20.3

22.1

ScoreWord Word

entrada

puerta

puerta

de

de

del

La La La entrada La puerta de

La puerta del

Word

Score: 0.0 Score: 20.3

Score: 22.1

Score: 21.1 Score: 21.7

Score: 21.9

[start]

Hypothesis Hypothesis

Hypothesis

Hypothesis Hypothesis

La puerta

Score: 21.2

Hypothesis Hypothesis

Timestep 4Timestep 3Timestep 1

Figure 25.8 Beam search with beam size of b=2. The score of each word is the log-
probability generated by the target RNN softmax, and the score of each hypothesis is the
sum of the word scores. At timestep 3, the highest scoring hypothesis La entrada can only
generate low-probability continuations, so it “falls off the beam.”

198 Chapter 25 Deep Learning for Natural Language Processing

Transformer
Layer

Input Vectors

Output Vectors

Feedforward

+

+

Self-Attention
Residual

Connection

Residual
Connection

Figure 25.9 A single-layer transformer consists of self-attention, a feedforward network,
and residual connections.

Yesterday they cut the rope

Embedding
lookup

Embedding
lookup

Embedding
lookup

Embedding
lookup

Embedding
lookup

Positional
Embedding 1

Positional
Embedding 2

Positional
Embedding 3

Positional
Embedding 4

Positional
Embedding 5

Feedforward Feedforward Feedforward Feedforward Feedforward

Class =
Adverb

Class =
Pronoun

Class =
PastTenseVerb

Class =
Determiner

Class =
Noun

Transformer Layer

Transformer Layer

Transformer Layer

+ + + + +

Figure 25.10 Using the transformer architecture for POS tagging.

199

Feedforward

red car is big <eos>

The red car is big

Feedforward Feedforward Feedforward Feedforward

Non-contextual
representations

(word embeddings)

Contextual
representations
(RNN output)

Embedding
lookup

Embedding
lookup

Embedding
lookup

Embedding
lookup

Embedding
lookup

RNN RNN RNN RNN RNN

Figure 25.11 Training contextual representations using a left-to-right language model.

The river

rose

five feet

Embedding
lookup

RNN

Embedding
lookup

Embedding
lookup

Embedding
lookup

RNN RNN RNN RNN

RNN RNN RNN RNN RNN

Feedforward

MLM
embedding

[masked]

Figure 25.12 Masked language modeling: pretrain a bidirectional model—for example, a
multilayer RNN—by masking input words and predicting only those masked words.

200 Chapter 25 Deep Learning for Natural Language Processing

1. What will best separate a mixture of iron filings and black pepper?
(a) magnet (b) filter paper (c) triple beam balance (d) voltmeter

2. Which form of energy is produced when a rubber band vibrates?
(a) chemical (b) light (c) electrical (d) sound

3. Because copper is a metal, it is
(a) liquid at room temperature (b) nonreactive with other substances
(c) a poor conductor of electricity (d) a good conductor of heat

4. Which process in an apple tree primarily results from cell division?
(a) growth (b) photosynthesis (c) gas exchange (d) waste removal

Figure 25.13 Questions from an 8th grade science exam that the ARISTO system can an-
swer correctly using an ensemble of methods, with the most influential being a ROBERTA
language model. Answering these questions requires knowledge about natural language, the
structure of multiple-choice tests, commonsense, and science.

201

It is a truth universally acknowledged that the earth is not the center of the uni-
verse. There are those who assert there is. I do not accept them, but others I
consider to be of the same opinion. The truth is, however, that if there are other
than the center, and if there are any other living things in the universe and if they
are not human, then we do not yet have our answers. We have to go on. This page
gives a simplified, simplified answer to the problem. We don’t have all the answers.
The truth is, however, that the truth is out there.

When Gregor Samsa woke up one morning, he did not notice anything strange.
“When my wife is looking at me, I feel like she is looking at a piece of art,” he said.
“I think she is admiring something I have created.” The idea is that by looking at
your own life, you learn something important and become a better person. It is a
theory that emerged from psychologist Daniel Goleman’s work, in which he asked
“How do you know you’re not a loser?”

Alice was beginning to get very tired of sitting with her sister on the bank. She
sat up, yawned, and said, with a loud little scream, “I hope you don’t mind if I keep
on doing what I should like to do, and if someone asks me which of us will do
more, don’t tell them that I won’t do much, my dear sister.”

All happy families are alike; each happy family is like a garden of paradise. The
only difference between happy families and unhappy families, is that the unhappy
family doesn’t have any flowers or trees.

Tell me a story. Tell me a story. Tell me a story. Tell me a story. Tell me a story.
Tell me a story. Tell me a story. Tell me a story. Tell me a story. Tell me a story.
Tell me a story. Tell me a story. Please fill out the following details. Thank you...
Thank you for your interest in this interview. Please wait...

Figure 25.14 Example completion texts generated by the GPT-2 language model, given the
prompts in bold. Most of the texts are quite fluent English, at least locally. The final example
demonstrates that sometimes the model just breaks down.

CHAPTER 26
ROBOTICS

(a) (b)

Figure 26.1 (a) An industrial robotic arm with a custom end-effector. Image credit: Ma-
cor/123RF. (b) A Kinova® JACO® Assistive Robot arm mounted on a wheelchair. Kinova
and JACO are trademarks of Kinova, Inc.

203

(a) (b)

Figure 26.2 (a) NASA’s Curiosity rover taking a selfie on Mars. Image courtesy of NASA.
(b) A Skydio drone accompanying a family on a bike ride. Image courtesy of Skydio.

(a) (b)

Figure 26.3 (a) Time-of-flight camera; image courtesy of Mesa Imaging GmbH. (b) 3D
range image obtained with this camera. The range image makes it possible to detect obstacles
and objects in a robot’s vicinity. Image courtesy of Willow Garage, LLC.

204 Chapter 26 Robotics

Figure 26.4 Robot perception can be viewed as temporal inference from sequences of ac-
tions and measurements, as illustrated by this dynamic decision network.

xi, yi

vt ¢t
xt11

h(xt)

xt

t11

t ¢t

ut

u

v

Z1 Z2 Z3 Z4

(a) (b)

Figure 26.5 (a) A simplified kinematic model of a mobile robot. The robot is shown as a
circle with an interior radius line marking the forward direction. The state xt consists of the
(xt ,yt) position (shown implicitly) and the orientation θt . The new state xt+1 is obtained by
an update in position of vt∆t and in orientation of ωt∆t . Also shown is a landmark at (xi,yi)
observed at time t. (b) The range-scan sensor model. Two possible robot poses are shown for
a given range scan (z1,z2,z3,z4). It is much more likely that the pose on the left generated
the range scan than the pose on the right.

205

function MONTE-CARLO-LOCALIZATIONa, z, N, P(X ′|X , v, ω), P(z|z∗), map
returns a set of samples, S, for the next time step
inputs: a, robot velocities v and ω

z, a vector of M range scan data points
P(X ′|X , v, ω), motion model
P(z|z∗), a range sensor noise model
map, a 2D map of the environment

persistent: S, a vector of N samples
local variables: W , a vector of N weights

S′, a temporary vector of N samples

if S is empty then
for i = 1 to N do // initialization phase

S[i]←sample from P(X0)
for i = 1 to N do // update cycle

S′[i]←sample from P(X ′|X = S[i],v,ω)
W [i]←1
for j = 1 to M do

z∗←RAYCAST(j, X = S′[i], map)
W [i]←W [i] · P(z j| z∗)

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S′, W)
return S

Figure 26.6 A Monte Carlo localization algorithm using a range-scan sensor model with
independent noise.

206 Chapter 26 Robotics

Robot position

(a)

Robot position

(b)

Robot position

(c)

Figure 26.7 Monte Carlo localization, a particle filtering algorithm for mobile robot localiza-
tion. (a) Initial, global uncertainty. (b) Approximately bimodal uncertainty after navigating
in the (symmetric) corridor. (c) Unimodal uncertainty after entering a room and finding it to
be distinctive.

207

X
t+1

X
t

μ
t

Σ
t

f(X
t
, a

t
)

f(μ
t
, a

t
)Σ

t+1

X
t+1

X
t

μ
t

Σ
t

f(X
t
, a

t
)

f(μ
t
, a

t
)Σ

t+1 Σ
t+1

~

f(X
t
, a

t
) = f(μ

t
, a

t
) + F

t
(X

t
 − μ

t
)

~

(a) (b)

Figure 26.8 One-dimensional illustration of a linearized motion model: (a) The function f ,
and the projection of a mean µt and a covariance interval (based on Σt) into time t + 1. (b)
The linearized version is the tangent of f at µt . The projection of the mean µt is correct.
However, the projected covariance Σ̃t+1 differs from Σt+1.

robot

landmark

Figure 26.9 Localization using the extended Kalman filter. The robot moves on a straight
line. As it progresses, its uncertainty in its location estimate increases, as illustrated by the
error ellipses. When it observes a landmark with known position, the uncertainty is reduced.

(a) (b) (c)

Figure 26.10 Sequence of “drivable surface” classifications using adaptive vision. (a) Only
the road is classified as drivable (pink area). The V-shaped blue line shows where the vehicle
is heading. (b) The vehicle is commanded to drive off the road, and the classifier is beginning
to classify some of the grass as drivable. (c) The vehicle has updated its model of drivable
surfaces to correspond to grass as well as road. Courtesy of Sebastian Thrun.

208 Chapter 26 Robotics

y

x

R

O

y

x

Cobs

O

Figure 26.11 A simple triangular robot that can translate, and needs to avoid a rectangular
obstacle. On the left is the workspace, on the right is the configuration space.

shou

elb

shoshoshoshoshoshoshoshoshoshoshoshosho

elbelbelbelbelbelbelbelbelbelbelbelbelbelb

e

table

table

left wall

vertical

obstacle

s
w

w

(a) (b)

Figure 26.12 (a) Workspace representation of a robot arm with two degrees of freedom. The
workspace is a box with a flat obstacle hanging from the ceiling. (b) Configuration space of
the same robot. Only white regions in the space are configurations that are free of collisions.
The dot in this diagram corresponds to the configuration of the robot shown on the left.

209

conf-3

conf-1
conf-2

conf-3

conf-2

conf-1

e

sw

w

table

table

vertical

obstacle

left wall

(a) (b)

Figure 26.13 Three robot configurations, shown in workspace and configuration space.

qg

qs

Figure 26.14 A visibility graph. Lines connect every pair of vertices that can “see” each
other—lines that don’t go through an obstacle. The shortest path must lie upon these lines.

210 Chapter 26 Robotics

Figure 26.15 A Voronoi diagram showing the set of points (black lines) equidistant to two
or more obstacles in configuration space.

start
goal

start

goal

(a) (b)

Figure 26.16 (a) Value function and path found for a discrete grid cell approximation of the
configuration space. (b) The same path visualized in workspace coordinates. Notice how the
robot bends its elbow to avoid a collision with the vertical obstacle.

211

qg

qgqg

qg

qs

qs qs

qs

Figure 26.17 The probabilistic roadmap (PRM) algorithm. Top left: the start and goal con-
figurations. Top right: sample M collision-free milestones (here M = 5). Bottom left: con-
nect each milestone to its k nearest neighbors (here k = 3). Bottom right: find the shortest
path from the start to the goal on the resulting graph.

qg

qs
qsample

Figure 26.18 The bidirectional RRT algorithm constructs two trees (one from the start, the
other from the goal) by incrementally connecting each sample to the closest node in each
tree, if the connection is possible. When a sample connects to both trees, that means we have
found a solution path.

212 Chapter 26 Robotics

(a) (b) (c)

Figure 26.19 Snapshots of a trajectory produced by an RRT and post-processed with short-
cutting. Courtesy of Anca Dragan.

Figure 26.20 Trajectory optimization for motion planning. Two point-obstacles with circu-
lar bands of decreasing cost around them. The optimizer starts with the straight line trajectory,
and lets the obstacles bend the line away from collisions, finding the minimum path through
the cost field.

Figure 26.21 The task of reaching to grasp a bottle solved with a trajectory optimizer. Left:
the initial trajectory, plotted for the end effector. Middle: the final trajectory after optimiza-
tion. Right: the goal configuration. Courtesy of Anca Dragan. See Ratliff et al. (2009).

213

(a) (b) (c)

Figure 26.22 Robot arm control using (a) proportional control with gain factor 1.0, (b) pro-
portional control with gain factor 0.1, and (c) PD (proportional derivative) control with gain
factors 0.3 for the proportional component and 0.8 for the differential component. In all cases
the robot arm tries to follow the smooth line path, but in (a) and (b) deviates substantially from
the path.

v

Cv

motion
envelope

initial
configuration

Figure 26.23 A two-dimensional environment, velocity uncertainty cone, and envelope of
possible robot motions. The intended velocity is v, but with uncertainty the actual velocity
could be anywhere in Cv, resulting in a final configuration somewhere in the motion envelope,
which means we wouldn’t know if we hit the hole or not.

v

Cv

motion
envelope

initial
configuration

Figure 26.24 The first motion command and the resulting envelope of possible robot mo-
tions. No matter what actual motion ensues, we know the final configuration will be to the
left of the hole.

214 Chapter 26 Robotics

v
Cv

motion
envelope

Figure 26.25 The second motion command and the envelope of possible motions. Even with
error, we will eventually get into the hole.

(a) (b) (c)

Figure 26.26 Training a robust policy. (a) Multiple simulations are run of a robot hand ma-
nipulating objects, with different randomized parameters for physics and lighting. Courtesy
of Wojciech Zaremba. (b) The real-world environment, with a single robot hand in the center
of a cage, surrounded by cameras and range finders. (c) Simulation and real-world train-
ing yields multiple different policies for grasping objects; here a pinch grasp and a quadpod
grasp. Courtesy of OpenAI. See Andrychowicz et al. (2018a).

215

(a) (b) (c)

Figure 26.27 Making predictions by assuming that people are noisily rational given their
goal: the robot uses the past actions to update a belief over what goal the person is heading
to, and then uses the belief to make predictions about future actions. (a) The map of a room.
(b) Predictions after seeing a small part of the person’s trajectory (white path); (c) Predictions
after seeing more human actions: the robot now knows that the person is not heading to the
hallway on the left, because the path taken so far would be a poor path if that were the
person’s goal. Images courtesy of Brian D. Ziebart. See Ziebart et al. (2009).

(a) (b)

Figure 26.28 (a) Left: An autonomous car (middle lane) predicts that the human driver (left
lane) wants to keep going forward, and plans a trajectory that slows down and merges behind.
Right: The car accounts for the influence its actions can have on human actions, and realizes
it can merge in front and rely on the human driver to slow down. (b) That same algorithm
produces an unusual strategy at an intersection: the car realizes that it can make it more
likely for the person (bottom) to proceed faster through the intersection by starting to inch
backwards. Images courtesy of Anca Dragan. See Sadigh et al. (2016).

216 Chapter 26 Robotics

Figure 26.29 Left: A mobile robot is shown a demonstration that stays on the dirt road.
Middle: The robot infers the desired cost function, and uses it in a new scene, knowing to
put lower cost on the road there. Right: The robot plans a path for the new scene that also
stays on the road, reproducing the preferences behind the demonstration. Images courtesy of
Nathan Ratliff and James A. Bagnell. See Ratliff et al. (2006).

Figure 26.30 A human teacher pushes the robot down to teach it to stay closer to the ta-
ble. The robot appropriately updates its understanding of the desired cost function and starts
optimizing it. Courtesy of Anca Dragan. See Bajcsy et al. (2017).

Figure 26.31 A programming interface that involves placing specially designed blocks in
the robot’s workspace to select objects and specify high-level actions. Images courtesy of
Maya Cakmak. See Sefidgar et al. (2017).

217

S1S2

S4S3

push backward

lift up set down

retract, lift higher

move
forward no

yes

stuck?

(a) (b)

Figure 26.32 (a) Genghis, a hexapod robot. (Image courtesy of Rodney A. Brooks.) (b) An
augmented finite state machine (AFSM) that controls one leg. The AFSM reacts to sensor
feedback: if a leg is stuck during the forward swinging phase, it will be lifted increasingly
higher.

(a) (b)

Figure 26.33 (a) A patient with a brain–machine interface controlling a robot arm to grab a
drink. Image courtesy of Brown University. (b) Roomba, the robot vacuum cleaner. Photo
by HANDOUT/KRT/Newscom.

218 Chapter 26 Robotics

(a) (b)

Figure 26.34 (a) Surgical robot in the operating room. Photo by Patrick Landmann/Science
Source. (b) Hospital delivery robot. Photo by Wired.

(a) (b)

Figure 26.35 (a) Autonomous car BOSS which won the DARPA Urban Challenge. Photo
by Tangi Quemener/AFP/Getty Images/Newscom. Courtesy of Sebastian Thrun. (b) Aerial
view showing the perception and predictions of the Waymo autonomous car (white vehicle
with green track). Other vehicles (blue boxes) and pedestrians (orange boxes) are shown with
anticipated trajectories. Road/sidewalk boundaries are in yellow. Photo courtesy of Waymo.

219

(a) (b)

Figure 26.36 (a) A robot mapping an abandoned coal mine. (b) A 3D map of the mine
acquired by the robot. Courtesy of Sebastian Thrun.

CHAPTER 27
COMPUTER VISION

Figure 27.1 Geometry in the scene appears distorted in images. Parallel lines appear to
meet, like the railway tracks in a desolate town. Buildings that have right angles in the real
world scene have distorted angles in the image.

f

image
plane

pinhole

P

P ’

Y X

Z

Q

Figure 27.2 Each light sensitive element at the back of a pinhole camera receives light that
passes through the pinhole from a small range of directions. If the pinhole is small enough,
the result is a focused image behind the pinhole. The process of projection means that large,
distant objects look the same as smaller, nearby objects—the point P′ in the image plane
could have come from a nearby toy tower at point P or from a distant real tower at point Q.

221

Iris
Cornea Fovea

Visual Axis

Optical AxisLens

Retina

Optic Nerve

Lens
System

Im
ag

e
pl

an
e

Fo
ca

l p
la

ne

Depth of field

Figure 27.3 Lenses collect the light leaving a point in the scene (here, the tip of the candle
flame) in a range of directions, and steer all the light to arrive at a single point on the image
plane. Points in the scene near the focal plane—within the depth of field—will be focused
properly. In cameras, elements of the lens system move to change the focal plane, whereas
in the eye, the shape of the lens is changed by specialized muscles.

Specularities

Cast shadow

Diffuse reflection, dark

Diffuse reflection, bright

Figure 27.4 This photograph illustrates a variety of illumination effects. There are specular-
ities on the stainless steel cruet. The onions and carrots are bright diffuse surfaces because
they face the light direction. The shadows appear at surface points that cannot see the light
source at all. Inside the pot are some dark diffuse surfaces where the light strikes at a tangen-
tial angle. (There are also some shadows inside the pot.) Photo by Ryman Cabannes/Image
Professionals GmbH/Alamy Stock Photo.

222 Chapter 27 Computer Vision

A B

u u

Figure 27.5 Two surface patches are illuminated by a distant point source, whose rays are
shown as light arrows. Patch A is tilted away from the source (θ is close to 90◦) and collects
less energy, because it cuts fewer light rays per unit surface area. Patch B, facing the source
(θ is close to 0◦), collects more energy.

1

2

4

2

1

1

3

Figure 27.6 Different kinds of edges: (1) depth discontinuities; (2) surface orientation dis-
continuities; (3) reflectance discontinuities; (4) illumination discontinuities (shadows).

223

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

Figure 27.7 Top: Intensity profile I(x) along a one-dimensional section across a step edge.
Middle: The derivative of intensity, I′(x). Large values of this function correspond to edges,
but the function is noisy. Bottom: The derivative of a smoothed version of the intensity. The
noisy candidate edge at x=75 has disappeared.

Figure 27.8 (a) Photograph of a stapler. (b) Edges computed from (a).

224 Chapter 27 Computer Vision

Figure 27.9 Two frames of a video sequence and the optical flow field corresponding to the
displacement from one frame to the other. Note how the movement of the tennis racket and
the front leg is captured by the directions of the arrows. (Images courtesy of Thomas Brox.)

(a) (b) (c) (d)

Figure 27.10 (a) Original image. (b) Boundary contours, where the higher the Pb value,
the darker the contour. (c) Segmentation into regions, corresponding to a fine partition of
the image. Regions are rendered in their mean colors. (d) Segmentation into regions, corre-
sponding to a coarser partition of the image, resulting in fewer regions. (Images courtesy of
Pablo Arbelaez, Michael Maire, Charless Fowlkes and Jitendra Malik.)

225

Foreshortening Aspect

Occlusion Deformation

Figure 27.11 Important sources of appearance variation that can make different images of
the same object look different. First, elements can foreshorten, like the circular patch on the
top left. This patch is viewed at a glancing angle, and so is elliptical in the image. Second,
objects viewed from different directions can change shape quite dramatically, a phenomenon
known as aspect. On the top right are three different aspects of a doughnut. Occlusion causes
the handle of the mug on the bottom left to disappear when the mug is rotated. In this case,
because the body and handle belong to the same mug, we have self-occlusion. Finally, on the
bottom right, some objects can deform dramatically.

226 Chapter 27 Computer Vision

Digits

Kernels

Convolution output Test against threshold

Figure 27.12 On the far left, some images from the MNIST data set. Three kernels appear
on the center left. They are shown at actual size (tiny blocks) and magnified to reveal their
content: mid-grey is zero, light is positive, and dark is negative. Center right shows the results
of applying these kernels to the images. Right shows pixels where the response is bigger than
a threshold (green) or smaller than a threshold (red). You should notice that this gives (from
top to bottom): a horizontal bar detector; a vertical bar detector; and (harder to note) a line
ending detector. These detectors pay attention to the contrast of the bar, so (for example) a
horizontal bar that is light on top and dark below produces a positive (green) response, and
one that is dark on top and light below gets a negative (red) response. These detectors are
moderately effective, but not perfect.

227

Box non-max

suppression

ROI pool
Neural net

feature

stack

Crop

ROIs

Image

Box proposal

network

Non-max

suppression
Bounding box

regression

Neural net

classifier

0.9

0.7

Figure 27.13 Faster RCNN uses two networks. A picture of a young Nelson Mandela is
fed into the object detector. One network computes “objectness” scores of candidate image
boxes, called “anchor boxes,” centered at a grid point. There are nine anchor boxes (three
scales, three aspect ratios) at each grid point. For the example image, an inner green box and
an outer blue box have passed the objectness test. The second network is a feature stack that
computes a representation of the image suitable for classification. The boxes with highest
objectness score are cut from the feature map, standardized in size with ROI pooling, and
passed to a classifier. The blue box has a higher score than the green box and overlaps it, so
the green box is rejected by non-maximum suppression. Finally, bounding box regression the
blue box so that it fits the face. This means that the relatively coarse sampling of locations,
scales, and aspect ratios does not weaken accuracy. Photo by Sipa/Shutterstock.

228 Chapter 27 Computer Vision

Perceived object

Right image

(a) (b)

Left image

Disparity

LeftRight

Figure 27.14 Translating a camera parallel to the image plane causes image features to move
in the camera plane. The disparity in positions that results is a cue to depth. If we superimpose
left and right images, as in (b), we see the disparity.

b

du/2

dZ

PP0

PR

PL

Left

eye

Z

Right

eye

u

Figure 27.15 The relation between disparity and depth in stereopsis. The centers of projec-
tion of the two eyes are distance b apart, and the optical axes intersect at the fixation point
P0. The point P in the scene projects to points PL and PR in the two eyes. In angular terms,
the disparity between these is δθ (the diagram shows two angles of δθ/2).

229

Figure 27.16 Reconstructing humans from a single image is now practical. Each row shows
a reconstruction of 3D body shape obtained using a single image. These reconstructions are
possible because methods can estimate the location of joints, the joint angles in 3D, the shape
of the body, and the pose of the body with respect to an image. Each row shows the follow-
ing: far left a picture; center left the picture with the reconstructed body superimposed;
center right another view of the reconstructed body; and far right yet another view of the
reconstructed body. The different views of the body make it much harder to conceal errors
in reconstruction. Figure courtesy of Angjoo Kanazawa, produced by a system described
in Kanazawa et al. (2018a).

230 Chapter 27 Computer Vision

Open fridge

Take something

out of fridge

Figure 27.17 The same action can look very different; and different actions can look similar.
These examples show actions taken from a data set of natural behaviors; the labels are chosen
by the curators of the data set, rather than predicted by an algorithm. Top: examples of the
label “opening fridge,” some shown in closeup and some from afar. Bottom: examples of
the label “take something out of fridge.” Notice how in both rows the subject’s hand is close
to the fridge door—telling the difference between the cases requires quite subtle judgment
about where the hand is and where the door is. Figure courtesy of David Fouhey, taken from
a data set described in Fouhey et al. (2018).

Timeline

Figure 27.18 What you call an action depends on the time scale. The single frame at the
top is best described as opening the fridge (you don’t gaze at the contents when you close a
fridge). But if you look at a short clip of video (indicated by the frames in the center row),
the action is best described as getting milk from the fridge. If you look at a long clip (the
frames in the bottom row), the action is best described as fixing a snack. Notice that this
illustrates one way in which behavior composes: getting milk from the fridge is sometimes
part of fixing a snack, and opening the fridge is usually part of getting milk from the fridge.
Figure courtesy of David Fouhey, taken from a data set described in Fouhey et al. (2018).

231

A baby eating a piece
of food in his mouth

A young boy eating
a piece of cake

A small bird is perched
on a branch

A small brown bear is
sitting in the grass

Figure 27.19 Automated image captioning systems produce some good results and some
failures. The two captions at left describe the respective images well, although “eating . . . in
his mouth” is a disfluency that is fairly typical of the recurrent neural network language mod-
els used by early captioning systems. For the two captions on the right, the captioning system
seems not to know about squirrels, and so guesses the animal from context; it also fails to
recognize that the two squirrels are eating. Image credits: geraine/Shutterstock; ESB Pro-
fessional/Shutterstock; BushAlex/Shutterstock; Maria.Tem/Shutterstock. The images shown
are similar but not identical to the original images from which the captions were generated.
For the original images see Aneja et al. (2018).

Q. What is the cat wearing?
A. Hat

Q. What is the weather like?
A. Rainy

Q. What surface is this?
A. Clay

Q. What toppings are on the pizza?
A. Mushrooms

Q. How many holes are in the pizza?
A. 8

Q. What letter is on the racket?
A. w

Q. What color is the right front leg?
A. Brown

Q. Why is the sign bent?
A. It’s not

Figure 27.20 Visual question-answering systems produce answers (typically chosen from a
multiple-choice set) to natural-language questions about images. Top: the system is produc-
ing quite sensible answers to rather difficult questions about the image. Bottom: less satis-
factory answers. For example, the system is guessing about the number of holes in a pizza,
because it doesn’t understand what counts as a hole, and it has real difficulty counting. Simi-
larly, the system selects brown for the cat’s leg because the background is brown and it can’t
localize the leg properly. Image credits: (Top) Tobyanna/Shutterstock; 679411/Shutterstock;
ESB Professional/Shutterstock; Africa Studio/Shutterstock; (Bottom) Stuart Russell; Max-
isport/Shutterstock; Chendongshan/Shutterstock; Scott Biales DitchTheMap/Shutterstock.
The images shown are similar but not identical to the original images to which the question-
answering system was applied. For the original images see Goyal et al. (2017).

232 Chapter 27 Computer Vision

Figure 27.21 3D models of construction sites are produced from images by structure-from-
motion and multiview stereo algorithms. They help construction companies to coordinate
work on large buildings by comparing a 3D model of the actual construction to date with
the building plans. Left: A visualization of a geometric model captured by drones. The
reconstructed 3D points are rendered in color, so the result looks like progress to date (note
the partially completed building with crane). The small pyramids show the pose of a drone
when it captured an image, to allow visualization of the flight path. Right: These systems
are actually used by construction teams; this team views the model of the as-built site, and
compares it with building plans as part of the coordination meeting. Figure courtesy of Derek
Hoiem, Mani Golparvar-Fard and Reconstruct, produced by a commercial system described
in a blog post at medium.com/reconstruct-inc.

233

Figure 27.22 If you have seen many pictures of some category—say, birds (top)—you can
use them to produce a 3D reconstruction from a single new view (bottom). You need to be
sure that all objects have a fairly similar geometry (so a picture of an ostrich won’t help if
you’re looking at a sparrow), but classification methods can sort this out. From the many
images you can estimate how texture values in the image are distributed across the object,
and thus complete the texture for parts of the bird you haven’t seen yet (bottom). Figure
courtesy of Angjoo Kanazawa, produced by a system described in Kanazawa et al. (2018b).
Top photo credit: Satori/123RF; Bottom left credit: Four Oaks/Shutterstock.

234 Chapter 27 Computer Vision

Figure 27.23 On the left, an image of a real scene. On the right, a computer graphics object
has been inserted into the scene. You can see that the light appears to be coming from the
right direction, and that the object seems to cast appropriate shadows. The generated image
is convincing even if there are small errors in the lighting and shadows, because people are
not expert at identifying these errors. Figure courtesy of Kevin Karsch, produced by a system
described in Karsch et al. (2011).

xi yi…

Training data Input

ixiX Y

regression error

xi yi

yi

Objective Result

Training Test

,

,

y^^

Figure 27.24 Paired image translation where the input consists of aerial images and the
corresponding map tiles, and the goal is to train a network to produce a map tile from an
aerial image. (The system can also learn to generate aerial images from map tiles.) The
network is trained by comparing ŷi (the output for example xi of type X) to the right output yi
of type Y . Then at test time, the network must make new images of type Y from new inputs
of type X . Figure courtesy of Phillip Isola, Jun-Yan Zhu and Alexei A. Efros, produced by a
system described in Isola et al. (2017). Map data © 2019 Google.

235

i

cycle-consistency error

X Y

yix̂i

xi

Objective Result
xi

…

Y
…

Training data Input
Training Test

,

ŷ

ˆ

X

Figure 27.25 Unpaired image translation: given two populations of images (here type X is
horses and type Y is zebras), but no corresponding pairs, learn to translate a horse into a
zebra. The method trains two predictors: one that maps type X to type Y, and another that
maps type Y to type X. If the first network maps a horse xi to a zebra ŷi, the second network
should map ŷi back to the original xi. The difference between xi and x̂i is what trains the two
networks. The cycle from Y to X and back must be closed. Such networks can successfully
impose rich transformations on images. Figure courtesy of Alexei A. Efros; see Zhu et al.
(2017). Running horse photo by Justyna Furmanczyk Gibaszek/Shutterstock.

Figure 27.26 Style transfer: The content of a photo of a cat is combined with the style of an
abstract painting to yield a new image of the cat rendered in the abstract style (right). The
painting is Wassily Kandinsky’s Lyrisches or The Lyrical (public domain); the cat is Cosmo.

236 Chapter 27 Computer Vision

Figure 27.27 GAN generated images of lung X-rays. On the left, a pair consisting of a real
X-ray and a GAN-generated X-ray. On the right, results of a test asking radiologists, given
a pair of X-rays as seen on the left, to tell which is the real X-ray. On average, they chose
correctly 61% of the time, somewhat better than chance. But they differed in their accuracy—
the chart on the right shows the error rate for 12 different radiologists; one of them had an
error rate near 0% and another had 80% errors. The size of each dot indicates the number
of images each radiologist viewed. Figure courtesy of Alex Schwing, produced by a system
described in Deshpande et al. (2019).

237

Figure 27.28 Mobileye’s camera-based sensing for autonomous vehicles. Top row: Two
images from a front-facing camera, taken a few seconds apart. The green area is the free
space—the area to which the vehicle could physically move in the immediate future. Objects
are displayed with 3D bounding boxes defining their sides (red for the rear, blue for the right
side, yellow for the left side, and green for the front). Objects include vehicles, pedestrians,
the inner edge of the self-lane marks (necessary for lateral control), other painted road and
crosswalk marks, traffic signs, and traffic lights. Not shown are animals, poles and cones,
sidewalks, railings, and general objects (e.g., a couch that fell from the back of a truck). Each
object is then marked with a 3D position and velocity. Bottom row: A full physical model of
the environment, rendered from the detected objects. (Images show Mobileye’s vision-only
system results). Images courtesy of Mobileye.

238 Chapter 27 Computer Vision

Action to
Execute

Goal (3m, 4m)

Mapper Planner
Action to
Execute

Ego-motion

Mapper Planner

Belief about the world

Figure 27.29 Navigation is tackled by decomposition into two problems: mapping and plan-
ning. With each successive time step, information from sensors is used to incrementally build
an uncertain model of the world. This model along with the goal specification is passed to
a planner that outputs the next action that the robot should take in order to achieve the goal.
Models of the world can be purely geometric (as in classical SLAM), or semantic (as ob-
tained via learning), or even topological (based on landmarks). The actual robot appears on
the right. Figures courtesy of Saurabh Gupta.

CHAPTER 28
PHILOSOPHY, ETHICS, AND SAFETY
OF AI

CHAPTER 29
THE FUTURE OF AI

