
CS 261, Fall 2015 Scribe notes

September 1 : Memory safety, Buffer Overflows

attacks

Scribe: Katia Patkin

1 Requirments

• System software written in an unsafe language (C), exposes raw pointers to the developer.

• Architectural layout of data.

void l o g i n ()
{

char buf [1 6] ;
int authent i ca ted = 0 ;
[other l o c a l var]
g e t s (buf) ;
. . .

}

Stack

previous frame

return address
saved box of frame p

other locals

authenticated
buf[15]

...
buf[0]

current
frame

overflow

Attacker can:

– Set data (e.g. authentication bit).

– Get control of program flow, run with process privilege.

2 Types of Buffer Overflow

1. Stack Smashing: Attacker overwrites return address and points to attacker supplied code.

2. Arc injection: Attacker overwrite return address to points to existing code.

Example: return to libc

void system (char ∗ arg)
{

c h e c k v a l i d i t y (arg) ;

CS 261, Fall 2015 Scribe notes

R = arg ;
t a r g e t :

e x e c l (R , . . .)
}

Steps:

(a) Set return address to target.

(b) Ensure R (system register) points to attacker code (based on vulnerable program logics
registers are reused)

3. Pointer subterfuge: Attack exploiting pointer overwrite.

4. Heap Smashing:

int main (int argc , char∗ argv)
{

p = malloc (1 0 2 4) ;
q = mal loc (1 0 2 4) ;
s t r cpy (p , argv [1]) ;
. . .

}

Simplified heap model:

α βsize=0

p q

contentargv[1]

Stack

return addrα attacker
code

β

[*] Upon block free (size=0) heap manager sets previous pointer to the next pointer.

Steps:

(a) Overwrite heap block such that previous pointer (α) points to return address, next
pointer (β) points to attacker’s code and size=0.

(b) Heap manager frees block set location at α to point to β.

⇒ return address points to attacker code.

This attack is not very common, because the memory layout is less predictable and it is a
more complicated attack.

CS 261, Fall 2015 Scribe notes

3 Fixes

1. Avoid bugs in C code: Pros: solves in the sources. Cons: hard to write bug-free code.

2. Build tools that help programmers find bugs:

Example:

void f oo (int∗ p)
{

int o f f s e t ;
int∗ z = p + o f f s e t ;

. . .
}

Static checker: Checks that offset is not intialized. offset hence can get any value, which
means pointer could point to anything. Cons: hard to find all bugs.

3. Use a memory-safe language:

Cons:

• Not good for performance.

• There is legacy code.

• Not suitable for writing low-level code.

4. Bounds checking:

• Canaries: Modifies source code

Compiler places canary (random value)
before local variables upon entry in
function and checks before return.

return address
saved bp
canary
buf[15]

...
buf[0]

• Electric fences:

Object is followed by a guard page. Any
access to guard page triggers page fault.

Guard page

object

Cons: takes a lot of memory space, can be used for DoS attacks.

• Baggy bounds:

Goal: to check that the pointers are in range.

Example:

CS 261, Fall 2015 Scribe notes

char x [1 0 2 4] ;
char∗ y = &x [1 0 7] ;
y+2124 . . .

Check for pointer arithmetic that it is in bound.
How: For a pointer p’ that is derived from p. p’ should only be dereferenced to access
memory that belongs to p.

4 Fat pointers

Each pointer holds bound information:

base end current address

Cons:

• Performance overhead: for every pointer dereference, check bounds.

• Memory overhead: every 32-bit pointer is now 96-bit pointer.

• Incompatible with existing binaries.

5 Baggy bounds

Use data structures to keep bounds of each pointer.

Interpose on two operations:

1. pointer arithmetic:

char∗ q = p + 256

Needed to check pointer provenance (which pointer it was derived from)

2. pointer dereference:

char p [2 5 6] ;

Needed because in arithmetic intermediate value might be out of bound.

Implementation:

1. Align and allocate in the power of 2. Ex.: malloc(44)→ 64.

2. Express size of pointer as log2(alloc size).

3. Store pointer to size in a linear array.

4. Allocate memory at slot granularity (16 bytes for Baggy).

CS 261, Fall 2015 Scribe notes

Example:
p = malloc(16) → alloc size = 16, size = 4, slot = 1→ table[p\slot size]=4.
p = malloc(44) → alloc size = 64, size = 6, slot = 4→ table[p\slot size0]=6,

..., table[p\slot size3]=6

Check p’ is in the bound of p:

C code:
p’ = p + i

Bounds check:
size = 1 � table[p � log(slot size)]

base = p & (size -1)

base ≤ p’ < base + size

