
Hails: Protecting Data Privacy in Untrusted Web Applications

Daniel B. Giffin, Amit Levy, Deian Stefan Alejandro Russo

David Terei, David Mazières, John C. Mitchell Chalmers

Stanford

Abstract
Modern extensible web platforms like Facebook and

Yammer depend on third-party software to offer a rich

experience to their users. Unfortunately, users running a

third-party “app” have little control over what it does with

their private data. Today’s platforms offer only ad-hoc

constraints on app behavior, leaving users an unfortunate

trade-off between convenience and privacy. A principled

approach to code confinement could allow the integra-

tion of untrusted code while enforcing flexible, end-to-end

policies on data access. This paper presents a new web

framework, Hails, that adds mandatory access control and

a declarative policy language to the familiar MVC archi-

tecture. We demonstrate the flexibility of Hails through

GitStar.com, a code-hosting website that enforces ro-

bust privacy policies on user data even while allowing un-

trusted apps to deliver extended features to users.

1 Introduction
Extensible web platforms that run third-party apps in a

restricted manner represent a new way of developing and

deploying software. Facebook, for example, has popular-

ized this model for social networking and personal data,

while Yammer provides a similar platform geared toward

enterprises. The functionality available to users of such

sites is no longer the product of a single entity, but the

combination of a potentially trustworthy platform running

code provided by less-trusted third parties.

Many apps are only useful when they are able to ma-

nipulate sensitive user data—personal information such

as financial or medical details, or non-public social

relationships—but once access to this data has been

granted, there is no holistic mechanism to constrain what

the app may do with it. For example, the Wall Street

Journal reported that some of Facebook’s most popular

apps, including Zynga’s FarmVille game, had been trans-

mitting users’ account identifiers (sufficient for obtaining

personal information) to dozens of advertisers and online

tracking companies [38].

In this conventional model, a user sets privacy settings

regarding specific apps, or classes of apps. However, users

who wish to benefit from the functionality of an app are

forced to guess what risk is posed by granting an app ac-

cess to sensitive information: the platform cannot provide

any mechanistic guarantee that the app will not, for exam-

ple, mine private messages for ad keywords or credit card

numbers and export this information to a system run by

the app’s developer.

Even if they are aware of how an app behaves, users

are generally poorly equipped to understand the conse-

quences of data exfiltration. In fact, a wide range of

sophisticated third-party tracking mechanisms are avail-

able for collecting and correlating user information, many

based only on scant user data [27].

In order to protect the interests of its users, the operator

of a conventional web platform is burdened with imple-

menting a complicated security system. These systems

are usually ad-hoc, relying on access control lists, human

audits of app code, and optimistic trust in various software

authors. Moreover, each platform provides a solution dif-

ferent from the other.

To address these problems, we have developed an alter-

nate approach for confining untrusted apps. We demon-

strate the system by describing GitStar.com, a social

code hosting website inspired by GitHub. GitStar takes a

new approach to the app model: we host third-party apps

in an environment designed to protect data. Rather than

ask users whether to disclose their data to certain apps, we

support policies that restrict information flow into and out

of apps, allowing them to give up communication privi-

leges in exchange for access to user data.

GitStar is built on a new web framework called Hails.

While other frameworks are geared towards monolithic

web sites, Hails is explicitly designed for building web

platforms, where it is expected that a site will comprise

many mutually-distrustful components written by various

entities.

Hails is distinguished by two design principles. First,

access policies should be specified declaratively alongside

data schemas, rather than strewn throughout the codebase

as guards around each point of access. Second, access

1

policies should be mandatory even once code has obtained

access to data.

The first principle leads to an architecture we call

model–policy–view–controller (MPVC), an extension to

the popular model–view–controller (MVC) pattern. In

MVC, models represent a program’s persistent data struc-

tures. A view is a presentation layer for the end user. Fi-

nally, controllers decide how to handle and respond to par-

ticular requests. The MVC paradigm does not give access

policy a first-class role, making it easy for programmers

to overlook checks and allow vulnerabilities [34]. By con-

trast, MPVC explicitly associates every model with a pol-

icy governing how the associated data may be used.

The second principle, that data access policies should

be mandatory, means that policies must follow data

throughout the system. Hails uses a form of mandatory

access control (MAC) to enforce end-to-end policies on

data as it passes through software components with dif-

ferent privileges. While MAC has traditionally been used

for high-security and military operating systems, it can be

applied effectively to the untrusted-app model when com-

bined with a notion of decentralized privileges such as that

introduced by the decentralized label model [32].

The MAC regime allows a complex system to be imple-

mented by a reconfigurable assemblage of software com-

ponents that do not necessarily trust each other. For exam-

ple, when a user browses a software repository on GitStar,

a code-viewing component formats files of source code

for convenient viewing. Even if this component is flawed

or malicious, the access policy attached to the data and

enforced by MAC will prevent it from displaying a file to

users without permission to see it, or transmitting a private

file to the component’s author. Thus, the central GitStar

component can make repository contents available to any

other component, and users can safely choose third-party

viewers based solely on the features they deliver rather

than on the trustworthiness of their authors.

A criticism of past MAC systems has been the per-

ceived difficulty for application programmers to under-

stand the security model. Hails offers a new design point

in this space by introducing MAC to the popular MVC

pattern and binding access control policy to the model

component in MPVC. Because GitStar is a public site in

production use by more than just its developers, we are

able to report on the experiences of third-party app au-

thors. While our sample is yet small, our experience sug-

gests MAC security does not impede application develop-

ment within an MPVC framework.

The remainder of this paper describes Hails, GitStar,

and several add-on components built for GitStar. We dis-

cuss design patterns used in building Hails applications.

We then evaluate our system, provide a discussion, survey

related work, and conclude.

2 Design
The Hails MPVC architecture differs from traditional

MVC frameworks such as Rails and Django by making

security concerns explicit. An MVC framework has no

inherent notion of security policy. The effective policy re-

sults from an ad-hoc collection of checks strewn through-

out the application. By contrast, MPVC gives security

policies a first-class role. Developers specify policies

in a domain-specific language (DSL) alongside the data

model. Relying primarily on language-level security, the

framework then enforces these policies system-wide, re-

gardless of the correctness or intentions of untrusted code.

MPVC applications are built from mutually distrustful

components. These components fall into two categories:

MPs, comprising model and policy logic, and VCs, com-

prising view and controller logic. An MP provides an API

through which other components can access a particular

database, subject to its associated policies.

MPs and VCs are explicitly segregated. An MP can-

not interact directly with a user, while a VC cannot

access a database without invoking the corresponding

MP. Our language-level confinement mechanism en-

forces MAC, guaranteeing that a data-model’s policy is

respected throughout the system. For example, if an MP

specifies that “only a user’s friends may see his email ad-

dress,” then a VC (or other MP) reading a user’s email

address loses the ability to communicate over the network

except to the user’s friends (who are allowed to see that

email address).

Figure 1 illustrates the interaction between different ap-

plication components in the context of GitStar. Two MPs

are depicted: GitStar, which manages projects and git

data; and Follower, which manages a directional relation-

ship between users. Three VCs are shown invoking these

modules: a source-code viewer, a git-based wiki, and

a bookmarking tool. Each VC provides a distinct inter-

face to the same data. The Code Viewer presents syntax-

highlighted source code and the results of static analysis

tools such as splint [19]. Using the same MP, the wiki VC

interprets text files using markdown to transform articles

into HTML. Finally, the bookmarking VC leverages both

MPs to give users quick access to projects owned by other

users whom they follow.

Because an application’s components are mutually dis-

trustful, MPVC also leads to greater extensibility. Any

of the VCs depicted in Figure 1 could be developed af-

ter the fact by someone other than the author of the MPs.

Anyone who doesn’t like GitStar’s syntax highlighting is

2

Bookmark

S
e
rv

e
r

View

Controller

View

Controller

View

Controller

Git-Wiki

S
e
rv

e
r

View

Controller

View

Controller

View

Controller

Code Viewer

S
e
rv

e
r

View

Controller

View

Controller

View

Controller

GitStarFollower

ViewView

ControllerControllerPolicy

Model

Figure 1: Hails platform with three VCs and two MPs. Dashed lines denote HTTP communication; solid lines denote local function

calls; dashed-dotted lines denote communication with OS processes. MPs and VCs are confined at the programming language level;

OS processes are jailed and only communicate with invoking VCs; the Browser is restricted to communicating with the target VCs.

free to run a different code viewer. No special privileges

are required to access an MP’s API, because Hails’s MAC

security continues to restrict what code can do with data

even after gaining access to the data.

2.1 Principals and privileges

Hails specifies policy in terms of principals who are al-

lowed to read or write data. There are four types of prin-

cipal. Users are principals, identified by user-names (e.g.,

alice). Remote web sites that an app may communi-

cate with are principals, identified by URL (e.g., http:/

/maps.google.com:80/). Each VC has a unique princi-

pal, by convention starting with prefix “@”, and each MP

has a unique principal starting “ ” (e.g., @Bookmark and

GitStar for the components in Figure 1).

An example policy an MP may want to enforce is “user

alice’s mailing address can be read only by alice or by

http://maps.google.com:80/.” Such a policy would

allow a VC to present alice her own address (when she

views her profile) or to fetch a google map of her address

and present it to her, but not to disclose the address or map

to anyone else. For maximum flexibility, read and write

permissions can each be expressed using arbitrary con-

junctions and disjunctions of principals. Enforcing such

policies requires knowing what principals an app repre-

sents locally and what principals it is communicating with

remotely.

Remote principals are ascertained as one would expect.

Hails uses a standard cookie-based authentication facility;

a browser presenting a valid session cookie represents the

logged-in user’s principal. When VCs or MPs initiate out-

going requests to URLs, Hails considers the remote server

to act on behalf of the URL principal of the web site.

Within the confines of Hails, code itself can act on be-

half of principals. The trusted Hails runtime supports un-

forgeable objects called privileges with which code can

assert the authority of principals. Hails passes appropriate

privilege objects to MPs and VCs upon dynamically load-

ing their code. For example, the GitStar MP is granted the

GitStar privilege. When a user wishes to use GitStar to

manager her data, the policy on the data in question must

specify GitStar as a reader and writer so as to give Git-

Star permission to read the data and write it to its database

should it chose to exercise its GitStar privileges.

2.2 Labels and confinement

Hails associates a security policy with every piece of data

in the system, specifying which principals can read and

write the data. Such policies are known as labels. The par-

ticular labels used by Hails are called DC labels. We de-

scribed and formalized DC labels in a separate paper [39],

so limit our discussion to a brief overview of their format

and use in MAC. We refer readers to the full DC labels

paper for more details.

A DC label is a pair of positive boolean formulas over

principals: a secrecy formula, specifying who can read the

data, and an integrity formula, specifying who can write

it. For example, a file labeled 〈alice∨bob,alice〉 spec-

ifies that alice or bob can read from the file and only

alice can write to the file. Such a label could be used

by the Code Viewer of Figure 1 when fetching alice’s

source code. The label allows the VC to present the source

code to the project participants, alice and bob, but not

disseminate it to others.

The trusted runtime checks that remote principals sat-

isfy any relevant labels before permitting communication.

3

For instance, data labeled 〈alice∨ bob,alice〉 cannot

be sent to a browser whose only principal is charlie.

The actual checks performed involve verifying logical im-

plications. Data labeled 〈S, I〉 can be sent to a principal

(or combination of principals) p only when p =⇒ S. Con-

versely, remote principal p can write data labeled 〈S, I〉
only when p =⇒ I. Given these checks, 〈TRUE,TRUE〉 la-

bels data readable and writable by any remote principal,

i.e., the data is public, while p = TRUE means a remote

party is acting on behalf of no principals.

The same checks would be required for local data ac-

cess if code had unrestricted network access. Hails could

only allow code to access data it had explicit privileges

to read. For example, code without the alice privilege

should not be able to read data labeled 〈alice,TRUE〉 if

it could subsequently send the data anywhere over the net-

work. However, Hails offers a different possibility: code

without privileges can read data labeled 〈alice,TRUE〉
so long as it first gives up the ability to communicate with

remote principals other than alice. Such communication

restrictions are the essence of MAC.

To keep track of communication restrictions, the run-

time associates a current label with each thread. The util-

ity of the current label stems from the transitivity of a par-

tial order called “can flow to.” We say a label L1 = 〈S1, I1〉
can flow to another label L2 = 〈S2, I2〉 when S2 =⇒ S1

and I1 =⇒ I2—in other words, any principals p allowed

to read data labeled L2 can also read data labeled L1 (be-

cause p=⇒ S2 =⇒ S1) and any principals allowed to write

data labeled L1 can also write data labeled L2 (because

p =⇒ I1 =⇒ I2).

A thread can read a local data object only if the object’s

label can flow to the current label; it can write an object

only when the current label can flow to the object’s. Data

sent over the network is always protected by the current

label. (Data may originate in a labeled file or database

record but always enters the network via a thread with a

current label.) The transitivity of the can flow to relation

ensures no amount of shuffling data through objects can

result in sending the data to unauthorized principals.

A thread may adjust the current label to read otherwise

prohibited data, only if the old value can flow to the new

value. We refer to this as raising the current label. Allow-

ing the current label to change without affecting security

requires very carefully designed interfaces. Otherwise,

labels themselves could leak information. In addition,

threads could potentially leak information by not termi-

nating (so called “termination channels”) or by changing

the order of observable events (so called “internal timing

channels”). GitStar is the first production system to ad-

dress these threats at the language level. We refer inter-

ested readers to [41] for the details and security proof of

our solution.

A final point is that Hails prevents the current la-

bel from accumulating restrictions that would ultimately

prevent the VC from communicating back to the user’s

browser. In MAC parlance, a VC’s clearance is set ac-

cording to the user making the request, and serves as an

upper bound on the current label. Thus, an attempt to read

data that could never be sent back to the browser will fail,

confining observation to a “need-to-know” pattern.

2.3 Model-Policy (MP)

Hails applications rely on MPs to define the application’s

data model and security policies. An MP is a library with

access to a dedicated database. The MP specifies what

sort of data may be stored in the database and what access-

control policies should be applied to it. Though MPs may

contain arbitrary code, we provide and encourage the use

of a DSL, described in Section 2.3.1, for specifying data

policies in a concise manner.

The Hails database system is similar to and built atop

MongoDB [7]. A Hails database consists of a set of col-

lections, each storing a set of documents. In turn, each

document contains a set of fields, or named values. Some

fields are configured as keys, which are indexed and iden-

tify the document in its collection. All other fields are

non-indexed elements.

An MP restricts access to the different database lay-

ers using labels. A static label is associated with every

database, restricting who can access the collections in the

database and, at a coarse level, who can read from and

write to the database. Similarly, a static label is associ-

ated with a collection, restricting who can read and write

documents in the collection. The collection label addi-

tionally serves the role of protecting the keys that identify

documents—a computation that can read from a collec-

tion can also read all the key values.

2.3.1 Automatic, fine-grained labeling

In many web applications, dynamic fine-grained policies

on documents and fields are desired. Consider the user

model shown in Figure 2: each document contains fields

corresponding to a user-name, email address, and list of

friends. In this scenario, the Follower MP may config-

ure user-names as keys in order to allow VCs to search

for alice’s profile. Additionally, the MP may specify

database and collection labels that restrict access to doc-

uments at a coarse grained level. However, these static

labels are not sufficient to enforce fine grained dynamic

policies such as “only alice may modify her profile in-

formation” and “only her friends (bob, joe, etc.) may see

her email address.”

4

user: alice

friends: bob, joe,...

email: alice@...

Document:

DocumentCollectionLabeled by: Field

,

,

,

,

Figure 2: Hails user documents. Each document is indexed by

a key (user-name) and contains the user’s email address and

list of friends. Documents and email fields are dynamically

labeled using a data-dependent policy; the secrecy of the user

key and is protected by the static collection label, the document

label protects its integrity. The “unlabeled” friends fields are

protected by their corresponding document labels.

Hails introduces a novel approach to specifying doc-

ument and field policies by assigning labels to docu-

ments and fields as a function of the document contents

itself.1 This approach is based on the observation that,

in many web applications, the authoritative source for

who should access data resides in the data itself. For

example, in Figure 2, the user-name and friends field

values can be used to specify the document and field

policies mentioned above: alice’s document is labeled

〈TRUE,alice∨ Follower〉, while the email field value

is labeled 〈alice∨bob∨joe∨·· · ∨ Follower,TRUE〉.
The document label guarantees that only alice or the MP

can modify any of the constituent fields. The label on

the email-address field additionally guarantees that only

alice, the MP, or her friends can read her address.

Hails’s data-dependent “automatic labeling” simplifies

reasoning about security policies and localizes label logic

to a small amount of source code. Figure 3 shows

the implementation of the Follower users policy, as de-

scribed above, using our DSL. Specifying static labels

on the database and collections is simply done by set-

ting the respective readers and writers in the database

and collection sections. Similarly, setting a document

or field label is done using a function from the document

itself to a pair of readers and writers.

2.3.2 Database access and policy application

MP policies are applied on every database insert. When

a thread attempts to insert a document into an MP col-

lection, the Hails runtime first checks that that the thread

can read and write to the database and collection, by com-

paring the thread’s current label with that of the database

and collection. Subsequently, the field- and document-

labeling policy functions are applied to the document and

fields. If the policy application succeeds—it may fail if

1 These labeling functions are pure: they cannot perform side effects

and must always return the same value for the same input.

database $ do

-- Set database label:

access $ do

readers ==> anybody

writers ==> anybody

-- Set policy for new "users" collection:

collection "users" $ do

-- Set collection label:

access $ do

readers ==> anybody

writers ==> anybody

-- Declare user field as a key:

field "user" key

-- Set document label, given document doc:

document $ λdoc -> do

readers ==> anybody

writers ==> ("user" ‘from‘ doc) \/ _Follower

-- Set email field label, given document doc:

field "email" $ labeled $ λdoc -> do

readers ==> ("user" ‘from‘ doc)

\/ fromList ("friends" ‘from‘ doc)

\/ _Follower

writers ==> anybody

Figure 3: DSL-specification of the Follower users policy. Here,

anybody corresponds to the boolean formula TRUE; fromList

converts a list of principals to a disjunction of principals; and,

"x" ‘from‘ doc retrieves the value of field x from document

doc. The database and collection labels are static. Field

user is configured as a key. Finally, each document and email

field is labeled according to a function from the document itself

to a set of readers and writers.

the thread cannot label data as requested—the Hails run-

time removes all the labels on the document and performs

the write.

Hails also allows threads to insert already-labeled doc-

uments (e.g., documents retrieved from another MP or

directly from the user). As before, when inserting a la-

beled document, the MP database and collection must be

readable and writable at the current label. Different from

above, the thread does not need to apply the policy func-

tions; instead, the Hails runtime verifies that the labels

on fields and the document agree with those specified by

the MP. Finally, if the check succeeds, the Hails runtime

strips the labels and performs the write.

Application components, including VCs, can fetch el-

ements from an MP’s database collection by specifying

a query predicate. Predicates are restricted to solely in-

volve indexed keys (or be TRUE). Similar to insert, when

performing a fetch, the runtime first checks that that the

thread can read from the database and collection. Next,

the documents matching the predicate are retrieved from

5

the database. Finally, the field- and document-labeling

policy functions are applied to each document and field;

the resultant labeled documents are returned to the invok-

ing thread.

Hails supports additional database operations, includ-

ing update and delete. These operations are similar to

those of MongoDB [7], though Hails enforces the MP’s

policies whenever its database is accessed. Since the re-

strictions on most operations are similar to those of insert

and fetch, we do not describe them further.

2.4 View-Controller (VC)

VCs interact with users. Specifically, controllers handle

user requests, and views present interfaces to the user.

However, VCs do not define database-backed models. In-

stead, a controller invokes one or more MPs when it needs

to store or retrieve user data. This data can also be passed

on to views when rendering user interfaces.

Each VC is a standalone process, linked against the MP

libraries it depends on to provide a data model. The VC

author solely provides a definition for a main controller,

which is a function from an HTTP request to an HTTP

response. This function may perform side-effects: it may

access a database-backed model by invoking an MP, read

files from the labeled filesystem, etc. Hails uses language-

level confinement to prevent the VC and MPs it invokes

from modifying or leaking data in violation of access per-

missions. Additionally, since each VC is a process, OS-

level isolation and resource management mechanisms can

be leveraged to enforce additional platform-specific poli-

cies.

At the heart of every VC is the Hails HTTP server.

The server, a privileged part of the trusted computing base

(TCB), receives HTTP requests and invokes the main VC

controller to process them. When a request is from an au-

thenticated user, the server sets the X-Hails-Userheader

to the user-name and attests to the request’s contents for

the benefit of MPs that care about request provenance

and integrity. In turn, the main controller processes the

supplied request, by potentially calling into MPs to in-

teract with persistent state, and finally returns an HTTP

response. The server returns the provided response to the

browser on the condition that it depend only on data the

user is permitted to observe.

In carrying out their duties, many VCs rely on com-

munication with external web sites. Hence, Hails appli-

cations have access to an HTTP client. Before establish-

ing a connection, and on each read or write, the HTTP

client checks that the current label of the invoking thread

is compatible with the remote server principal. In prac-

tice, this means VCs can only communicate with exter-

nal hosts when they have not read any sensitive data or

they have only read data explicitly labeled for the external

server.

Additionally, VCs may need to run arbitrary programs.

For example, as highlighted in Figure 1, GitStar’s Code

Viewer relies on splint, a standalone C program, to flag

possible coding errors. Addressing this need, Hails pro-

vides a mechanism for spawning confined Linux pro-

cesses with no network access, no visibility of other pro-

cesses, and no writable file system shared by other pro-

cesses. Each such processes is governed by a fixed label,

namely the VC’s current label at the time the program was

spawned. In turn, labeled file handles can be used to com-

municate with the process, subject to the restrictions im-

posed by the current thread’s label.

2.5 Life-cycle of an application

In this section, we use GitStar’s deployment model to il-

lustrate the life-cycle of a Hails application from develop-

ment, through deployment, to a user-request.

2.5.1 Application development and deployment

A third-party application developer may introduce a new

data model to the GitStar platform by writing an MP. For

example, the Follower MP shown earlier specifies a data-

model for storing a relation between users, as well as a

policy specifying who is able to read, create and modify

those relationships. Once written, the developer uploads

the library code to the GitStar servers where it is com-

piled and installed. The platform administrator generates

a unique privilege for the new MP and associates it with

a specific database in a globally-accessible configuration

file. Subsequently, any Hails code may import the MP,

which when invoked, will be loaded with its privilege and

database-access.

The third-party developer may build a user interface to

the newly-created model by writing a VC controller. As

with MPs, developers upload their VC code to the GitStar

servers where it is compiled and linked against any MPs

it depends on. Thereafter, a program called hails, which

contains the Hails runtime and HTTP server, is used to

dynamically load the main VC controller and service user

requests on a dedicated TCP port.

While in this example both the VC and MP were im-

plemented by a single developer, third-party developers

can implement applications consisting solely of a VC that

interacts with MPs created by others. In fact, in GitStar,

most applications are simply VCs that use the GitStar MP

to manage projects and retrieve git objects. For example,

the git-based wiki application, as shown in Figure 1, is

simply a VC that displays formatted text from a particular

branch of a git repository.

6

2.5.2 An example user request

When an end-user request is sent to the GitStar platform,

an HTTP proxy routes the request to the appropriate VC

HTTP server based on the hostname in the request.

The Hails server receiving the forwarded request in-

vokes the main controller of the corresponding VC in a

newly spawned thread. The controller is executed with the

VC’s privileges and sanitized request. The HTTP server

sanitizes the incoming request by removing headers such

as Cookie; it also sets the X-Hails-User header to the

user-name, if the request is from an authenticated user.

The main controller may be a simple request handler

that returns a basic HTML page without accessing any

sensitive data (e.g., an index or about page). A more in-

teresting VC may access sensitive user data from an MP

database before computing a response. In this case, the

VC invokes the MP by performing a database operation

such as insert or fetch. The invocation consists of sev-

eral steps. First, the Hails runtime instantiates the MP

with its privilege and establishes a connection to the as-

sociated database, as specified in the global configura-

tion file. Then, the MP executes the database operations

supplied by the VC, and, in coordination with the Hails

runtime, labels the data according to its policies. While

some database operations are not sensitive (e.g., accessing

a public git repository in GitStar), many involve private

information. In such cases, the database operation will

also “raise” the current label of the VC, and thereby affect

all its future communication.

When a VC produces an HTTP response, the runtime

checks that the current label, which reflects all data ac-

cesses or other sensitive operations, is still compatible

with the end-user’s browser. For example, if alice has

sent a request to the Code Viewer asking for code from a

private repository, the response produced by Code Viewer

will only be forwarded by the Hails server if the final label

of Code Viewer can flow to 〈alice,TRUE〉
On the client side, the Hails browser extension, detailed

in Section 3.3, restricts all incoming responses and outgo-

ing requests according to the response label. For example,

if the Code Viewer returns a response labeled 〈alice∨
http://code.google.com,TRUE〉, the rendered page

may retrieve scripts for prettifying code from http://

code.google.com, but not retrieve images from http:/

/haskell.org. On the other hand, a publicly labeled

response imposes no restrictions on the requests triggered

by the page.

2.6 Trust assumptions

The Hails runtime, including the confinement mechanism,

HTTP server, and libraries are part of the TCB. Parts of

the system, namely our labels and confinement mecha-

nism, have been formalized in [30, 39–41]. We remark

that different from other work, our language-level concur-

rent confinement system is sound even in the presence of

termination and timing covert channels [41]. However,

similar to other MAC systems (e.g., [24]), we assume that

the remaining Hails components are correct and that the

underlying OS and network are not under the control of

an attacker.

By visiting a web page, the MPs invoked by the VC

presenting the page are trusted by users to preserve their

privacy. This is a consequence of MPs being allowed

to manage all aspects of their database. However, one

MP cannot declassify data managed by another, and thus

users can choose to use trustworthy MPs. Facilitating this

choice, Hails makes the MP policies and dependency rela-

tionships between VCs and MPs available for inspection.

Since a user can choose to invoke a VC according

to the MPs it depends on, VCs are mostly untrusted.

On the server-side, VCs cannot exfiltrate user data from

the database without collusion from an MP the user has

trusted. Nevertheless, VCs cannot be considered com-

pletely untrusted since they directly interact with users

through their browser. Unfortunately, in today’s browsers,

even with our client-side sandbox, a malicious VC can co-

erce a user to declassify sensitive data.

3 Implementation

Hails employs a combination of language-level, OS-level

and browser-level confinement mechanisms spread across

all layers of the application stack to achieve its security

goals. Most notably, we use a language-level information

flow control (IFC) framework to enforce fine-grained poli-

cies on VCs and MPs. This section describes this frame-

work, and some of the implementation details of our OS

and browser confinement mechanisms.

3.1 Language-level confinement

Hails applications are written in Haskell. Haskell is

a statically- and strongly-typed, memory-safe language.

Crucially, Haskell’s type system distinguishes operations

involving side-effects (such as potentially data-leaking

I/O) from purely-functional computation. As a conse-

quence, for example, compiling a VC’s main controller

with an appropriately specified type is sufficient to assert

that the VC cannot perform arbitrary network communi-

cation.

Hails relies on the safety of the Haskell type sys-

tem when incorporating untrusted code. However, like

other languages, Haskell “suffers” from a set of features

that allow programmers to perform unsafe, but useful,

actions (e.g., type coercion). To address this, we ex-

7

tended the Glasgow Haskell Compiler (GHC) with Safe

Haskell [44]. Safe Haskell, deployed with GHC as of

version 7.2, guarantees type safety by removing the small

set of language features that otherwise allow programs to

violate the type system and break module boundaries.

With this change, Haskell permits the implementation

of language-level dynamic IFC as a library. Accord-

ingly, we implemeted LIO [40], which employs the label-

tracking and confinement mechanisms of Section 2.2. De-

spite sharing many abstractions with OS-level IFC sys-

tems, such as HiStar [46] and Flume [17], LIO is more

fine-grained (e.g., it allows labels to be associated with

values, such as documents and email addresses) and thus

better suited for web applications.

We believe the Hails architecture is equally realizable

in other languages, though possibly with less backward

compatibility. For example, JiF [33], Aeolus [5] and

Breeze [15] provide similar confinement guarantees and

are also good choices. However, to use existing libraries

JiF and Aeolus typically require non-trivial modifications,

while Breeze requires porting to a new language. Con-

versely, about 4,000 modules in Hackage (27%), a popu-

lar Haskell source distribution site, are currently safe for

Hails applications to import. Of course, the functions that

perform arbitrary I/O are not directly useful, and, like in

JiF, must be modified to run in LIO. Nevertheless, many

core libraries require no modifications. Moreover, we ex-

pect the number of safe modules to grow significantly

with the next GHC release, which refactors core libraries

to remove unsafe functions from general-purpose mod-

ules.

3.2 OS-level confinement

Hails uses Linux isolation mechanisms to confine pro-

cesses spawned by VCs. These techniques are not novel,

but it is important that they work properly. Using clone

with the various CLONE NEW* flags, we give each con-

fined process its own mount table and process ID names-

pace, as well as a new network stack with a new loop-

back device and no external interfaces. Using a read-only

bind-mount and the tmpfs file system, we create a system

image in which the only writable directory is an empty

/tmp. Using cgroups, we restrict the ability to create and

use devices and consume resources. With pivot root

and umount, we hide filesystems outside of the read-only

system image. The previous actions all occur in a setuid

root wrapper utility, which finally calls setuid and drops

capabilities before executing the confined process.

3.3 Browser-level confinement

VC responses are protected from inappropriate leaks on

the client side using a sandbox. The sandbox, imple-

Figure 4: Hails client sandbox configuration. Users may

(dis)allow communication to explicit hosts when the page label

does not permit the flow directly.

mented as a browser extension for chrome, intercepts all

network communication. In turn, all requests triggered by

the page are allowed only if they are guaranteed to not

leak information.

The Hails client-side sandbox arbitrates traffic accord-

ing to the label of the page, which is analogous to a server-

side thread label. The Hails HTTP server sends the header

X-Hails-Label with every VC response containing the

initial page label, i.e., the label of response. As previ-

ously mentioned, if the page label is public, the sandbox

does not impose any restrictions on the external requests

triggered by the page. If the page label is not public, the

sandbox only allows a request to a remote host if the page

label is compatible with the principal implied by the re-

mote host name. For instance, an image will be fetched

from maps.google.com and a link will be followed to

hackage.haskell.org if the page label is 〈alice∨
http://maps.google.com:80/ ∨ http://hackage.

haskell.org:80/,TRUE〉. However, an XMLHttpRe-

quest to evil.appspot.com will not be allowed. Sim-

ilarly, if the page was instead labeled 〈alice,TRUE〉 the

sandbox would reject all requests.

Users may approve otherwise disallowed network com-

munication at the risk of potentially leaking their sensitive

data to designated remote hosts. The first time a request

to a disallowed host is intercepted, our extension requires

the user to intervene. Specifically, the user is alerted and

asked to approve network communication to the host in

question. Clicking “No” blocks network access to the host

for that iframe or tab. (The user can still view the con-

tents of the page, except for resources, such as images or

style-sheets, from the blocked host.) Conversely, clicking

“Yes” allows the page to load normally; however, as illus-

trated in Figure 4, an icon is used to warn the user of a

potential leak. In both cases, the user decision is saved for

future requests and may easily be changed, as also high-

lighted in Figure 4.

The client-side sandbox is the least satisfying aspect

of Hails’s security, in part because it requires each user

to install a new extension. In Section 7 we discuss the

limitations of our current extension and future research

8

directions that could help address leaking sensitive data

through the browser. Here, we finally remark that stan-

dards proposals such as Mozilla’s CSP [42] show that

browser vendors are open to incorporating mechanisms

that coordinate with web servers to enforce security poli-

cies. Addressing data leaks on the server-side first, with

systems like Hails, will help compel changes in tomor-

row’s browsers.

4 Applications

We built and deployed GitStar.com, a Hails platform

centered around source code hosting and project manage-

ment. We and others have authored a number Hails ap-

plications for the GitStar platform. Below we detail some

of these applications including the core interface, a code

viewer, follower application, wiki and messaging system.

GitStar At its core, GitStar includes a basic MP and

VC. The MP manages users’ SSH public-keys, project

membership and project meta-data such as name and de-

scription; the VC provides a simple user interface for

managing such projects and users.

Since Hails does not have built-in support for git or

SSH, the GitStar platform includes an SSH server (and

git’s transport utilities) as an external service. Our modi-

fied SSH server queries the GitStar VC when authenticat-

ing users and determining access control for repositories.

Conversely, the GitStar MP communicates with an HTTP

service atop this external git-repository server to access

git objects.

GitStar allows users to create projects to which they can

push files via git. Projects may be public (anyone can

view or checkout repository contents) or private, in which

case only specific users identified as readers or collabora-

tors may access the project. In both cases, only collabora-

tors may push contents to the project repository. GitStar

provides an interface for managing these settings.

The rest of GitStar.com is provided by separately-

administered, mutually-distrustful Hails applications,

some of which were written by third-party developers.

Each application is independently accessible through a

unique subdomain of GitStar.com. When a user “in-

stalls” an application in a project, GitStar creates a link

on the project page that embeds an iframe pointing to

the application. This gives third-party applications a first-

class role in extending the user experience.

Code Viewer One of the most useful features of source-

code hosting sites is the ability to browse a project’s code.

We have implemented a code-viewing VC that allows

users to navigate to different branches in a project’s repos-

itory, view syntax-highlighted code, etc. Source code

markup is done on the client-side using Google’s Prettify

JavaScript library [14]. Additionally, if the source file is

written in C or Haskell, the VC provides the user with an

option to see the output of static-analysis tools splint [19]

and hlint [29], respectively.

Like all third-party applications, the Code Viewer is un-

trusted and accesses repository contents through the Git-

Star MP. When accessing objects in a private repository,

the GitStar MP changes the VC’s current label to restrict

communication to authorized readers of the repository.

Note that this may also restrict the VC from subsequently

writing to the database.

git-based Wiki The git-based Wiki displays Mark-

down files from the “wiki” branch of a project reposi-

tory as formatted HTML. It uses the pandoc library [25]

to convert Markdown to HTML. Like the Code Viewer,

the wiki VC accesses source files through the GitStar

MP, meaning it cannot show private wiki pages to the

wrong users. This application leverages functionality

originally intended for the Code Viewer for different pur-

poses, demonstrating the power of separating policies

from application logic.

Standalone Wiki The standalone wiki is similar to the

git-based Wiki, except that pages are stored directly in

a database rather than in files checked into git. To ac-

complish this, the developer wrote both an MP and a VC.

The MP stores a mapping between project names and

wiki pages. Wiki pages are labeled dynamically to allow

project readers and collaborators to read and write wiki

pages. This is different from the git-based Wiki in that it

allows a more relaxed policy: readers can create and mod-

ify wiki pages. Moreover, it is a concrete example of one

MP that depends on another (namely the GitStar MP).

Follower GitHub introduced the notion of “social cod-

ing,” which combines features from social networks with

project collaboration. This requires that a user be able to

“follow” other users and projects. GitStar does not pro-

vide this feature natively, but a Follower MP has been de-

veloped to manage such relationships. Users may now

add the “Bookmark” application (implemented as a VC)

to their project pages, which allows other users to add the

project to their list of followed repositories.

Messenger The Messenger application provides a sim-

ple private-messaging system for users. Its MP, as im-

plemented by the developer, defines a message model and

policies on the messaging data. The policy allows any

user to create a message, but restricts the reading of a mes-

sage to the sender and intended recipient. Interfacing with

the Messenger MP, the Messenger VC provides a page

where users may compose messages, and a separate page

9

where they may read incoming messages.

5 Design Patterns
In this section, we detail the applicability of some existing

security patterns within Hails, and various design patterns

that we have identified in the process of building GitStar.

Privilege separation Since MPs are trusted by users to

protect the confidentiality and integrity of their data, a

well-designed MP should be coded defensively. More-

over, an MP should treat all invoking VCs as untrusted,

including ones written by the same author.

The easiest way to program defensively is to minimize

use of an MP’s privileges, i.e., practice separation of priv-

ilege [35]. When doing so, invoking VCs will only be able

to fetch data that the end user can observe, as opposed to

all data when using the MP’s privileges. Similarly, this re-

stricts VCs to inserting already-labeled documents, as dis-

cussed in Section 2.3.2. This is important as it effectively

limits a VC to inserting user-endorsed data, as opposed to

almost-arbitrary data when using the MP privilege.

Trustworthy user input VC-constructed documents

cannot necessarily be trusted to represent user intentions;

thus, MPs should not allow VCs to arbitrarily insert data

on behalf of the user. Consider, for example, the policy

of the Follower MP imposed on user documents, as given

in Figure 3. Here, a VC, even one running on behalf of

alice, should not be allowed to construct and insert the

document of Figure 2, without alice or the MP endors-

ing its contents.

Since VCs do not own user privilege and, as discussed

above, MPs should not grant their privileges, Hails pro-

vides a mechanism for transforming user input data to

a labeled document, that retains integrity. Recall that a

VC’s main controller is invoked, by the Hails server, with

a pre-labeled HTTP request; the label on this request has

the integrity of the user (e.g., 〈TRUE,alice〉). If the VC

directly manipulates the request to construct an appro-

priate document, the integrity will be stripped. Hence,

Hails provides a library for transforming a labeled, URL-

encoded body (e.g., submitted from an HTML form in the

user’s browser) into a labeled document, that MPs may

expose to VCs. This transformer takes a user-endorsed re-

quest and returns an MP-endorsed document that the VC

may, in turn, insert into the database.

Users must still trust VCs to construct HTML forms

that will reflect their intentions. However, an MP may in-

spect requests before transforming them to labeled docu-

ments. Moreover, policies, such as that of Figure 3, would

prevent a VC trusted only by bob from modifying alice’s

data.

Partial update The trustworthy user input pattern is

suitable for inserting and updating documents in whole;

it is not, however, directly applicable to partially updat-

ing documents. Returning to the Follower user model of

Figure 2, a VC that wishes to present a form for updat-

ing the user’s email address would have to include all the

remaining fields as hidden input variables. Though this

would allow the VC to update the email field by effec-

tively inserting a new labeled document, this approach is

error prone and not scalable.

Instead, we found that a partial document that contains

the newly-updated fields, the document keys, and a token

$hailsDbOp indicating the operation (partialUpdate,

in this case) is sufficient for the MP to update an existing

document. This partial-document must be endorsed by the

user or MP, by, for example, applying the previous pat-

tern. Directly, to carry out the partial update, the MP first

verifies that the user is aware of the update by checking

the presence of the operation token $hailsDbOp. Next,

the MP uses the keys to fetch the existing document and

merges the newly-updated fields into the document. Fi-

nally, the document update is performed, imposing re-

strictions similar to those of Section 2.3.2.

Delete We have found that most applications use a pat-

tern similar to the partial update pattern when deleting

documents: a VC invokes an MP with a document con-

taining the target-document’s keys and an operation token

indicating a delete, i.e., $hailsDbOp set to delete. As

in the partial update, this document must be endorsed by

the user or MP by applying the trustworthy input pattern.

Directly, the VC may invoke the MP with the labeled doc-

ument, who, in turn, removes the target document after

inspection.

Privilege delegation Hails provides a call-gate mech-

anism, inspired by [46], with which code can authenti-

cate itself to a called function, i.e., prove possession of

privileges, without actually granting any privileges to the

called function. One use of call gates is to delegate priv-

ileges. For instance, an MP can provide a gate that sim-

ply returns its own privilege, on the condition that it was

called by a particular VC.

While earlier version of GitStar utilized privilege dele-

gation, we now largely avoid it; in many cases, we found

modifying the policy to be a better alternative. For in-

stance, the early version of the GitStar VC used the Git-

Star MP’s privilege to look up project readers and collab-

orators for the SSH server. Now, we simply created a user

account for the SSH server and added this principal as

a reader in the project collection policy. Nevertheless,

such refactoring may not always be possible and privilege

delegation may prove necessary.

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Pong Table DB Read DB Write

N
or

m
al

iz
ed

 R
eq

ue
st

s/
S

ec
on

d
(R

/S
)

82,275 R/S 618 R/S 23,118 R/S 9,9434 R/S

47,577 R/S

479 R/S

1,140 R/S

1,370 R/S

Hails
Sinatra

Java Jetty
Apache PHP

Figure 5: Micro-benchmarks of basic web application oper-

ations. The measurements are normalized to the Java Jetty

throughput. All database operations are on MongoDB.

6 Evaluation

We compare the performance of the Hails framework

against existing web frameworks, and report on the ex-

perience of application authors not involved in the design

and implementation of the framework.

6.1 Performance Benchmarks

To demonstrate how Hails performs in comparison to

other widely-used frameworks, we present the results of

four micro-benchmarks that reflect basic operations com-

mon to web applications. Figure 5 shows the performance

of Hails, compared with:

⊲ Ruby Sinatra framework [36] on the Unicorn web

server. Sinatra is a common application framework

for small Ruby applications and APIs (e.g., the GitHub

API is written using Sinatra).

⊲ PHP on the Apache web server with mod php.

Apache+PHP is one of the most widely deployed

technology for web applications, including WordPress

blogs, Wikipedia, and earlier versions of Facebook.

⊲ Java on the Jetty web server [10]. Jetty is a container for

Oracle’s Java Servlet specification, and is widely used

in production Java web-applications including Twitter’s

streaming API, Zimbra and Google AppEngine.

We use httperf [31] to measure the throughput of

each server setup when 100 client connections continu-

ously make requests in a closed-loop—we report the av-

erage responses/second. The client and server were ex-

ecuted on separate machines, each with two Intel Xeon

E5620 (2.4GHz) processors, and 48GB of RAM, con-

nected over a Gigabit local network.

In the Pong benchmark the server simply responds with

the text “PONG”. This effectively measures the through-

put of the web server itself and overhead of the frame-

work. Hails responds to 1.7× fewer requests/second

than Jetty. However, the measured throughput of 47,577

requests/second is roughly 28% and 47× higher than

Apache+PHP and Sinatra, respectively.

In the Table benchmark, the server dynamically renders

an HTML table containing 5,000 entries, effectively mea-

suring the performance of the underlying language. Hails

respectively responds to 30% and 23% fewer request-

s/second than Jetty and Apache+PHP, but 6× more than

Sinatra. Hails is clearly less performant than Jetty and

Apache+PHP for such workloads, even though Haskell

should be faster than PHP at CPU workloads. We be-

lieve that this is primarily because Hails does not allow

pipelined HTTP responses, so a large response body must

be generated in memory and sent in its entirety at once

(as opposed to sent in chunks as output is available).

Nonetheless, Hails responds to 6× more requests/second

than Sinatra.

The DB Read and DB Write benchmarks compare the

performance of the read and write database throughput.

Specifically, for the DB Read benchmark the server re-

sponds with a document stored in the MongoDB, while

for the DB Write the server inserts (with MongoDB’s

fsync and safe settings on) a new document into a

database collection and reports success. Like the Ruby

library, the Haskell MongoDB library does not imple-

ment a connection pool, so we loose significant paral-

lelism in the DB Read workload when compared to Jetty

and Apache+PHP. In the DB Write workload, this effect

is obviated since the fsync option serializes all writes.

6.2 Experience Report

We gathered experience reports from four developers that

used Hails to build applications. Their reflections validate

some of the design choices we made in Hails, as well as

highlight some ways in which we could make Hails appli-

cations easier to write.

We conjectured that separating code into MPs and VCs

leads to building applications for which it is easier to rea-

son about security. This was validated by the application

authors who remarked that although “experienced devel-

opers [need to] write the tough [MP] code and present a

good interface,” when compared to frameworks such as

Rails, not having to “sprinkle [security] checks in the con-

troller” made it easier to be sure that “a check was not

missing.” With Hails, they, instead, “spent time focus-

ing on developing the [VC] functionality.” We further

found that developers (ourselves included) had a num-

ber of mass-assignment bugs in VC code [34]. Different

from [20, 34], these bugs did not prove to be vulnerabil-

ities in GitStar—the policies specified by the GitStar MP

11

trivially prevents attacks wherein one user tries to imper-

sonate another. Though such vulnerabilities can be ad-

dressed differently, we found that similar bugs are easy

to introduce and a well-specified policy can prevent them

from becoming privacy concerns.

Implementing MPs using an earlier version of Hails

proved challenging for most of the developers. In par-

ticular, while devising policies for a model was generally

straightforward, developers felt that the API for actually

implementing policy modules was difficult to learn. In

fact, inspecting the code of one of the blog applications,

we found that the developer had a bug that leaked blog

posts regardless of whether the user decided to publish

the blog post or not. This bug was a result of inadver-

tently making posts, as opposed to just post IDs, keys. We

believe that this was due in part due to the terse policy-

specification API.

Addressing the challenges with specifying policies, we

designed the DSL presented in Section 2.3. We found this

DSL to make policy specification much simpler. Equally

important, developers have found it easier to understand

what an MP enforces and thus make a more informed de-

cision when deciding to use the library.

We are actively working on improving the Hails devel-

opment experience. Compared to other frameworks, Hails

needs more “good documentation with recipes.” Develop-

ers found that the lack of “scaffolding tools for generating

boiler-plate code [and] a template framework” impedes

the development process. Part of our ongoing work in-

cludes building scaffolding tools for both VCs and MPs,

adopting a templating language, and creating additional

tutorials that illustrate typical application development.

7 Discussion and Limitations

In this section, we discuss the ramifications of the de-

sign and implementation of Hails and suggest solutions

to some of its limitations.

Browser-level confinement As previously noted, we

cannot expect all users to install the Hails browser exten-

sion which provides confinement in the browser. A differ-

ent approach would be to re-write VC output at the server-

side before sending it to the client, neutralizing data-

exfiltration risks. Until recently, such content-rewriting

was a dangerous proposition. In particular, Google [28],

Yahoo [11], Facebook [13], and Microsoft [16] have all

developed technology to constrain the effects of third-

party web content such as advertisements; but the design

of existing browser interfaces made those tools vulnerable

to attack [26].

However, ECMAScript 5 Strict mode, now supported

by most browsers, makes the prospect of safe re-writing

far more tractable. For instance, SES [43], one promis-

ing approach with solid theoretical foundations, can now

be implemented in about 200 lines of JavaScript. Though

SES is not compatible with popular JavaScript libraries

such as jQuery, this may well change. In our prelimi-

nary experimentation with Caja [28], a system which in-

fluenced SES, we successfully sandboxed VC responses

in a similar fashion to our browser extension. Hence, if

we cannot get traction from the browser vendors with our

custom HTTP header, in the future we will experiment

with a server-side filter that parses and regenerates HTML

(so as to sanitize URLs in src and href attributes), and

enforces JavaScript confinement with SES.

Query interface Hails queries are limited to expres-

sions on keys. By separating keys from elements, the

decision to permit a query is simple: if a Hails compo-

nent can read from the database collection, it may per-

form a key-based query. This limited interface is sufficient

for many VCs, which may perform further refinement of

query results by inspecting labeled fields in their own ex-

ecution contexts.

For larger datasets, better performance would result

from filtering on all relevant fields in the underlying

database system itself. Additionally, this would obviate

the need to reason about the security semantics of keys.

However, providing this more-general interface to a Hails

application would require sensitivity to label policies in-

side the query engine. Since Hails builds atop MongoDB,

which provides a JavaScript interface, we hope to compile

policies to code that can implement the necessary label-

checking logic.

8 Related Work

Information flow control and web applications A se-

ries of work based on Jif addresses security in web ap-

plications. SIF (Servlet Information Flow) is a framework

that essentially allows programmers to write their web ap-

plications as Servlets in Jif [9]. Swift [8], based on Jif/s-

plit [45, 47], compiles Jif-like code for web applications

into JavaScript code running on the client-side and Java

code running on the server by applying a clever partition-

ing algorithm. SIF and Swift do not support information

flow control with databases or untrusted executables; on

the other hand, Hails provides weak security guarantees

on the client side.

Ur/Web [6] is a domain specific language for web appli-

cation development that includes a static information flow

analysis called UrFlow. Policies are expressed in the form

of SQL queries and while statically enforced, can depend

12

on dynamic data from the database. Security can also be

enforced on the client side in a similar manner to Swift,

with Ur/Web compiling to both the server and client. A

crucial difference from Hails is that Ur/Web does not aim

to support a platform architecture consisting of mutually

distrustful applications as Hails does. Moreover, Hails is

more amendable to extensions such as executing untrusted

binaries or scaling to a distributed setting.

Logical attestation [37] allows specifying a security

policy in first-order logic and the system ensures that the

policy is obeyed by all server-side components. This sys-

tem was implemented as a new OS, called Nexus. Hails’s

DC labels are similar to Nexus’ logical attestation, but

based on a simpler logic, namely propositional logic. A

crucial difference between the Nexus OS [37] and Hails

is that we provide very fine grained labeling and a frame-

work for separating data-manipulating code from other

application logic at the language level. For a web frame-

work, fine grained policies are desirable; the language-

level approach also addresses the limitations of cobufs

used in Nexus [37]. Moreover, requiring users to install

a new OS as opposed to a library is not always feasible.

Nevertheless, their work is very much complimentary:

GitStar can potentially use Nexus to execute untrusted ex-

ecutables in an environment that is less restricting that our

Linux jail (e.g., it could have network access as directed

by Nexus).

The closest related work to Hails is W5 [18]. Similar to

Hails, they propose a separation of user data and policies

(MPs), from from the application logic (VCs). Moreover,

they propose an architecture that, like Hails, uses IFC to

address issues with current website architectures. W5’s

design is structured around OS-level IFC systems. This

approach is less flexible in being coarser grained, but, like

Nexus, complimentary. A distinguishing factor from W5

is our ability to report on the implementation and evalua-

tion of production system.

Trust management Trust Management is an approach

to distributed access control and authorization, popular-

ized in [2]. Related work includes [1, 3, 12, 21, 22]. One

central idea in trust management, which we follow in the

present paper, is to separate policy from other components

of the system. However, trust management makes access

control decisions based on policy supplied by multiple

parties; in contrast, our approach draws on information

flow concepts, avoiding the need for access requests and

grant/deny decisions.

Persistent storage Li and Zdancewic [23] enforce in-

formation flow control in PHP programs that interact with

a relational database. They statically indicate the types of

the input fields and the results of a predetermined num-

ber of database queries. In contrast, Hails allows arbitrary

queries on keys and automatically infers the security lev-

els of the returned results.

Extending Jif, Fabric [24] is an IFC language that is

used to build distributed programs with support for data

stores and transactions. Fabric safely stores objects, with

exactly one security label, into a persistent storage con-

sisting of a collection of objects. Different from Fabric,

Hails store units (documents) can have different security

labels for individual elements. Like Fabric, Hails can only

fetch documents based on key fields.

BStore [4] separates application and data storage code

in a similar fashion to Hails’s separation of code into VCs

and MPs. Their abstraction is at the file system granu-

larity, enforcing policies by associating labels with files.

Our main contribution provides a mechanism for associ-

ating labels with finer grained objects—namely Haskell

values. We believe that BStore is complimentary since

they address similar issues, but on the client side.

9 Conclusion

Ad-hoc mechanisms based on access control lists are an

awkward fit for modern web frameworks that incorporate

third-party software components but must protect user

data from inappropriate modification or sharing. By ap-

plying confinement mechanisms at the language, OS, and

browser levels, Hails allows mutually-untrusted applica-

tions to interact safely. Because the framework promotes

data-flow policies to first-class status, authors may spec-

ify policy concisely in one place and be assured that the

desired constraints on confidentiality and integrity are en-

forced across all components in the system, in a manda-

tory fashion, whatever their quality or provenance.

As a demonstration of the expressiveness of Hails,

we built a production system, GitStar, whose central

function of hosting source-control repositories with user-

configurable sharing is enriched by various third-party

applications for viewing documents and collaborating

within and between development projects. Through our

active use of this system and the experience of other de-

velopers who built VCs and MPs for it, we were able to

confirm the ability of the framework to support a modular

system of heterogeneously-trusted software components

that nevertheless can enforce flexible data-protection poli-

cies demanded by real-world users.

Acknowledgments

We thank Amy Shen, Eric Stratmann, Ashwin Siripurapu,

and Enzo Haussecker for sharing their Hails development

experience with us. We thank Diego Ongaro, Mike Piatek,

13

Justine Sherry, Joe Zimmerman, our shepard Jon Howell

and the anonymous reviewers for their helpful comments

on earlier drafts of this paper. This work was funded by

DARPA CRASH under contract #N66001-10-2-4088, by

multiple gifts from Google, and by the Swedish research

agency VR and STINT. Deian Stefan is supported by the

DoD through the NDSEG Fellowship Program.

References
[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access

control in distributed systems. ACM Transactions on Programming Lan-

guages and Systems, 15(4):706–734, Oct. 1993.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In

Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on, pages

164–173, 1996.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote

Trust-Management System Version 2. RFC 2704 (Informational), Sept.

1999. URL http://www.ietf.org/rfc/rfc2704.txt.

[4] R. Chandra, P. Gupta, and N. Zeldovich. Separating web applications from

user data storage with BSTORE. In Proceedings of the 2010 USENIX con-

ference on Web application development, pages 1–1, 2010.

[5] W. Cheng, D. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowling, D. Cur-

tis, L. Shrira, and B. Liskov. Abstractions for usable information flow control

in Aeolus. In Proceedings of the 2012 USENIX Annual Technical Confer-

ence, 2012.

[6] A. Chlipala. Static checking of dynamically-varying security policies in

database-backed applications. In Proceedings of the 9th USENIX Sympo-

sium on Operating Systems Design and Implementation, OSDI’10, 2010.

[7] K. Chodorow and M. Dirolf. MongoDB: the definitive guide. O’Reilly Me-

dia, Inc., 2010.

[8] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng.

Secure web applications via automatic partitioning. pages 31–44, Oct. 2007.

[9] S. Chong, K. Vikram, and A. C. Myers. Sif: Enforcing confidentiality and

integrity in web applications. In Proc. USENIX Security Symposium, pages

1–16, Aug. 2007.

[10] M. B. Consulting. Jetty webserver, March 2012. http://jetty.
codehaus.org/jetty/.

[11] D. Crockford. Making JavaScript safe for advertising. http://adsafe.

org/.

[12] J. DeTreville. Binder, a logic-based security language. In Proceedings of

the 2002 IEEE Symposium on Security and Privacy, pages 105–113. IEEE

Computer Society Press, May 2002.

[13] Facebook. Fbjs (Facebook JavaScript). http://developers.facebook.

com/docs/fbjs/.

[14] Google. Google code prettify, September 2012. http://code.google.
com/p/google-code-prettify/.

[15] C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett. Excep-

tionally available dynamic IFC. Submitted to POPL, July 2012.

[16] S. Isaacs. Microsoft web sandbox. http://www.websandbox.org/.

[17] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and

R. Morris. Information flow control for standard OS abstractions. In Pro-

ceedings of the 21st Symposium on Operating Systems Principles, October

2007.

[18] M. Krohn, A. Yip, M. Brodsky, R. Morris, and M. Walfish. A World Wide

Web Without Walls. In 6th ACM Workshop on Hot Topics in Networking

(Hotnets), Atlanta, GA, November 2007.

[19] D. Larochelle and D. Evans. Statically detecting likely buffer overflow vul-

nerabilities. In USENIX Security Symposium, August 2001.

[20] L. Latif. Github suffers a Ruby on Rails public key vulnerability, March

2012. http://www.theinquirer.net/inquirer/news/2157093/
github-suffers-ruby-rails-public-key-vulnerability.

[21] N. Li and J. C. Mitchell. RT: A role-based trust-management framework.

In The Third DARPA Information Survivability Conference and Exposition

(DISCEX III). IEEE Computer Society Press, Apr. 2003.

[22] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain

discovery in trust management. Journal of Computer Security, 11(1):35–86,

Feb. 2003.

[23] P. Li and S. Zdancewic. Practical information-flow control in web-based in-

formation systems. In Proceedings of the 18th IEEE workshop on Computer

Security Foundations. IEEE Computer Society, 2005.

[24] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, , and A. C. Myers. Fabric:

A platform for secure distributed computation and storage. In Proceedings

of the 22nd ACM Symposium on Operating Systems Principles, Big Sky, MT,

October 2009.

[25] J. MacFarlane. Pandoc:a universal document converter. http://

johnmacfarlane.net/pandoc/.

[26] S. Maffeis and A. Taly. Language-based isolation of untrusted javascript.

In Computer Security Foundations Symposium, 2009. CSF’09. 22nd IEEE,

pages 77–91, 2009.

[27] J. Mayer and J. Mitchell. Third-party web tracking: Policy and technology.

In Security and Privacy (SP), 2012 IEEE Symposium on, pages 413–427,

2012.

[28] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active

content in sanitized javascript. http://google-caja.googlecode.com/
files/caja-spec-2008-06-07.pdf, June 2008.

[29] N. Mitchell. HLint Manual. http://community.haskell.org/~ndm/

darcs/hlint/hlint.htm.

[30] B. Montagu, B. Pierce, R. Pollack, and A. Surée. A theory of information-

flow labels. Draft, July, 2012.

[31] D. Mosberger and T. Jin. httperf-a tool for measuring web server perfor-

mance. ACM SIGMETRICS Performance Evaluation Review, 26(3):31–37,

1998.

[32] A. C. Myers and B. Liskov. A decentralized model for information flow

control. In Proceedings of the 16th ACM symposium on Operating systems

principles, pages 129–142, 1997.

[33] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label

model. ACM Transactions on Computer Systems, 9(4):410–442, October

2000.

[34] T. Preston-Werner. Public key security vulnerability and mitiga-

tion, March 2012. https://github.com/blog/1068-public-key-
security-vulnerability-and-mitigation.

[35] J. H. Saltzer and M. D. Schroeder. The protection of information in computer

systems. Proceedings of the IEEE, 63(9):1278–1308, September 1975.

[36] Sinatra. Sinatra, September 2012. http://www.sinatrarb.com/.

[37] E. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh, D. Williams, and

F. Schneider. Logical attestation: an authorization architecture for trustwor-

thy computing. In Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles, pages 249–264, 2011.

[38] E. Steel and G. Fowler. Facebook in privacy breach. The Wall Street Journal,

18, October 2010.

[39] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. Disjunction category

labels. In Proceedings of the NordSec 2011 Conference, October 2011.

[40] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic

information flow control in Haskell. In Proceedings of the 4th Symposium

on Haskell, pages 95–106, September 2011.

[41] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazières.

Addressing covert termination and timing channels in concurrent informa-

tion flow systems. In The 17th ACM SIGPLAN International Conference on

Functional Programming (ICFP), 2012.

[42] B. Sterne, M. Corporation, A. Barg, and G. Inc. Content security policy,

May 2012. https://dvcs.w3.org/hg/content-security-policy/
raw-file/tip/csp-specification.dev.html.

[43] A. Taly, Ú. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated

analysis of security-critical javascript APIs. In IEEE Symposium on Security

and Privacy, 2011.

[44] D. Terei, S. Marlow, S. P. Jones, , and D. Mazières. Safe Haskell. In Pro-

ceedings of the 5th Symposium on Haskell, September 2012.

[45] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Untrusted hosts and

confidentiality: Secure program partitioning. Oct. 2001.

[46] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making in-

formation flow explicit in HiStar. In Proceedings of the 7th Symposium on

Operating Systems Design and Implementation, pages 263–278, Seattle, WA,

November 2006.

[47] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using replication and

partitioning to build secure distributed systems. In Proceedings of the 2003

IEEE Symposium on Security and Privacy, SP ’03, Washington, DC, USA,

2003. IEEE Computer Society.

14

http://www.ietf.org/rfc/rfc2704.txt

	Introduction
	Design
	Principals and privileges
	Labels and confinement
	Model-Policy (Metapost)
	Automatic, fine-grained labeling
	Database access and policy application

	View-Controller (VC)
	Life-cycle of an application
	Application development and deployment
	An example user request

	Trust assumptions

	Implementation
	Language-level confinement
	OS-level confinement
	Browser-level confinement

	Applications
	Design Patterns
	Evaluation
	Performance Benchmarks
	Experience Report

	Discussion and Limitations
	Related Work
	Conclusion

