
ForceHTTPS: Protecting High-Security Web Sites
from Network Attacks

Collin Jackson
Stanford University

collinj@cs.stanford.edu

Adam Barth
Stanford University

abarth@cs.stanford.edu

ABSTRACT
As wireless networks proliferate, web browsers operate in an
increasingly hostile network environment. The HTTPS pro-
tocol has the potential to protect web users from network
attackers, but real-world deployments must cope with mis-
con�gured servers, causing imperfect web sites and users to
compromise browsing sessions inadvertently. ForceHTTPS
is a simple browser security mechanism that web sites or
users can use to opt in to stricter error processing, improv-
ing the security of HTTPS by preventing network attacks
that leverage the browser's lax error processing. By aug-
menting the browser with a database of custom URL rewrite
rules, ForceHTTPS allows sophisticated users to transpar-
ently retro�t security onto some insecure sites that support
HTTPS. We provide a prototype implementation of Force-
HTTPS as a Firefox browser extension.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection�Unauthorized Access;
K.4.4 [Computers and Society]: Electronic Commerce�
Security

General Terms
Design, Security, Human Factors

Keywords
HTTPS, eavesdropping, pharming, same-origin policy

1. INTRODUCTION
HTTPS is designed to be secure against both eavesdrop-

pers and active network attackers. In practice, however, all
modern web browsers are willing to compromise the security
of sites that use HTTPS in order to be compatible with sites
that deploy HTTPS incorrectly. For example, if an active
attacker presents a self-signed certi�cate, web browsers per-
mit the user to click through a warning message and access
the site despite the error. This behavior compromises the
con�dentiality of the site's Secure cookies, which often store
a second factor of authentication, and allows the attacker to
hijack a legitimate user's session, potentially letting the at-
tacker to transfer money out of the user's bank account or

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

perform other misdeeds. Browsers accept broken certi�cates
and allow embedding of insecure scripts for two reasons:

• Compatibility. Many web sites have incorrectly con-
�gured certi�cates and embed insecure scripts. A browser
that enforces strict error processing is incompatible
with these sites and will lose users to a more permissive
browser.

• Unknown Intent. Some site owners intentionally use
self-signed certi�cates and host portions of their site
over HTTP because these mechanisms provide protec-
tion from passive attackers and they believe the risk
of an active attack is outweighed by the cost of imple-
menting HTTPS fully.

Although a security-conscious site owner, such as a bank,
might aim to implement a high-security site, he or she cur-
rently has no mechanism for communicating this intent to
the browser. Other site owners that are less security-conscious,
desiring protection only from passive network attackers, im-
plement low-security sites by deploying certi�cates that are
self-signed or have incorrect common names. The browser
has no mechanism for di�erentiating these two kinds of sites
and cannot distinguish between a legitimate miscon�gura-
tion in a low-security site and an attack on a high-security
site. Without guidance, a browser does not have the context
to make an useful risk-management decision about whether
to trade o� security for compatibility on a particular site.

1.1 Our Proposal
We propose ForceHTTPS, a simple mechanism that security-

conscious sites can use to opt in to stricter error processing
by the browser, essentially giving the browser guidance to
be more secure. By setting a ForceHTTPS cookie, a site
owner asks the browser to treat HTTPS errors as attacks,
not as simple con�guration mistakes. Speci�cally, enabling
ForceHTTPS causes the brower to modify its behavior as
follows:

1. Non-HTTPS connections to the site are redirected to
HTTPS, preventing contact to the site without TLS.

2. All TLS errors, including self-signed certi�cates and
common-name mismatches, terminate the TLS session.

3. Attempts to embed insecure (non-HTTPS) content into
the site fail with network errors.

This stricter error handling has several bene�ts, including
protecting the URL parameters, fragments, and Secure cook-
ies from network attackers and users who click through secu-
rity warnings. ForceHTTPS blocks participating sites from



embedding insecure content, such as scripts, cascading style
sheets, and SWF movies, in order to secure the user's ses-
sion with buggy sites that would otherwise allow an active
network attacker to steal the user's password and second
factor of authentication by silently replacing SWF movie
embedded in the login page. By enabling ForceHTTPS, a
site protects itself from careless mistakes by its own web de-
velopers. ForceHTTPS also o�ers a �developer mode� that
explains these errors so that the site's web developer can
�nd and �x vulnerabilities.
Used in concert with a phishing defense, such as Bank

of America's SiteKey [1], ForceHTTPS lets a site protect
itself from pharming. Previously proposed anti-pharming
defenses [6, 20, 15] are di�cult to implement and face ma-
jor challenges to deployment. By contrast, ForceHTTPS is
easy to implement because browsers already detect the er-
rors sites wish to block and easy to deploy because sites need
only set a single cookie. To demonstrate the feasibility of
our approach, we provide a prototype of ForceHTTPS as a
Firefox browser extension [12].

1.2 Power Users
ForceHTTPS also enables �power users� to upgrade the se-

curity of sites that implement HTTPS insecurely by setting
a ForceHTTPS cookie on the site's behalf. This approach
follows a recent trend in which sophisticated users have
taken web security into their own hands. The NoScript [18]
browser extension enables users to �x cross-site scripting
vulnerabilities in sites they visit by disabling or limiting
the capabilities of scripts on that site, albeit at the cost of
functionality. Other client side tools for mitigating web site
vulnerabilities include Noxes [16] and NoMoXSS [28]. The
GMailSecure user script (which has had over 25,000 down-
loads) enables users to force secure connections to Gmail,
mitigating eavesdropping attacks without any reduction in
functionality.
In fact, this paper arose largely out of a desire by the au-

thors to secure their Gmail sessions while using the wireless
networks at security conferences after witnessing an alarm-
ingly e�ective attack demonstration at Black Hat 2007 [10].
Securing Gmail without Google's cooperation is challeng-
ing because Gmail's session identi�er is stored in an inse-
cure cookie that is transmitted whenever a user visits any
other Google property. By setting the ForceHTTPS cookie,
a Gmail user upgrades the session cookie to a Secure cookie
that is protected from both eavesdropping and active at-
tackers.

1.3 Organization
The rest of this paper is organized as follows. In Section 2

we describe the threats that ForceHTTPS is designed to
protect against. In Section 3 we survey existing techniques
that attempt to defend against these threats. In Section 4
we provide a speci�cation of our proposal. In Section 5
we discuss design decisions and implementation details. We
conclude in Section 6.

2. THREAT MODEL

2.1 Threats Addressed
ForceHTTPS is concerned with three threats: passive net-

work attackers, active network attackers, and imperfect web
developers.

• Passive Network Attackers. When a user browses
the web on a wireless network, a nearby attacker can
eavesdrop on unencrypted connections, such as HTTP
requests. Such a passive network attacker can steal
session identi�ers and hijack the user's session. These
eavesdropping attacks can be performed easily using
wireless sni�ng toolkits [29, 10]. Some sites, such as
Gmail, permit access over HTTPS, leading a user to
believe that accessing such a service over HTTPS pro-
tects them from an passive network attacker. Unfor-
tunately, this is often not the case as session identi-
�ers are typically stored in insecure cookies to per-
mit interoperability with HTTP versions of the ser-
vice. For example, the session identi�er for Gmail is
usually stored in a non-Secure cookie, permitting an
attacker to hijack the user's Gmail session if the user
makes a single HTTP request to Gmail. Additionally,
the subjects and snippets of the one hundred most re-
cent email messages can be retrieved using the user's
.google.com session cookie, which is sent in the clear
during every Google search request.

• Active Network Attackers. A more determined at-
tacker can mount an active attack, either by imperson-
ating a user's DNS server or, in a wireless network, by
spoo�ng network frames or o�ering a similarly-named
�evil twin� access point. If the user is behind a wireless
home router, the attacker can attempt to recon�gure
the router using default passwords and other vulnera-
bilities [26, 27, 25]. Some sites, such as banks, rely on
HTTPS to protect them from these active attackers.
Unfortunately, browsers allow their users to opt-out of
these protections in order to be compatible with sites
that incorrectly deploy HTTPS. These sites wish to be
protected from active network attackers even if users
do not understand the security warnings provided by
their browsers.

• Honest but Imperfect Web Developers. Large
web sites are constructed by numerous developers, who
occasionally make mistakes and are not all security ex-
perts. One simple mistake, such as embedding a cas-
cading style sheet or a SWF movie over HTTP, can
allow an active attacker to compromise the security
of an HTTPS site completely.1 Even if the site's de-
velopers carefully scrutinize their login page for mixed
content, a single insecure embedding anywhere on the
site compromises the security of their login page be-
cause the attacker can script (control) the login page
by injecting script into the page with mixed content.
Both the site's owner and the site's users could wish
the site to be secure despite its developers making mis-
takes.

2.2 Threats Not Addressed

• Phishing. Phishing attacks [7] occur when an at-
tacker solicits authentication credentials from the user
by hosting a fake site located on a di�erent domain
than the real site, perhaps driving tra�c to the fake

1Both cascading style sheets and SWF movies can script the
embedding page, to the surprise of many web developers.
Most browsers do not issue mixed content warnings when
insecure SWF �les are embedded.



site by sending a link in an email. Phishing attacks can
be very e�ective because users �nd it di�cult to dis-
tinguish the real site from a fake site [5]. ForceHTTPS
is not a defense against phishing, but it complements
many existing phishing defenses, such as SiteKey [1],
the Yahoo! Sign-in Seal [30], and Chase's Activation
Code [4], by instructing the browser to protect session
integrity and long-lived authentication tokens.

• Malware and Browser Vulnerabilities. Because
ForceHTTPS is implemented as a browser security mech-
anism, it relies on the trustworthiness of the user's sys-
tem to protect the session. Malicious code executing
on the user's system can compromise a browser session,
regardless of whether ForceHTTPS is used.

3. RELATED WORK
Previously known defenses to the threats described in Sec-

tion 2 are shown in Table 1 and summarized in this section.

3.1 User-Controlled Defenses

• User-enforced HTTPS. Many web sites serve the
same content over both HTTP and HTTPS, taking
care to use HTTPS on the login or credit card entry
page and HTTP elsewhere. This protects the user's
long-lived authentication credentials and �nancial de-
tails from being stolen by eavesdroppers while retain-
ing the performance bene�ts of unencrypted HTTP
tra�c. Unfortunately, many such sites set an non-
Secure cookie containing the user's session identi�er.
This cookie is sent in the clear over HTTP and can be
used by an eavesdropper to hijack the user's session.

Security-conscious users can mitigate this vulnerabil-
ity by attempting to visit the site using HTTPS, to
the exclusion of HTTP. For example, the user can dili-
gently type HTTPS URLs into the address bar and
check the status bar before clicking on links. Unfor-
tunately, even a single insecure HTTP request by the
web site can lead to a compromise of the session cook-
ies. If the insecure request is the result of a redirect or
button click, the user could be unaware of the request
until their credentials have already been compromised.

For example, Gmail serves its content to authenticated
users both over HTTPS and HTTP. The login form,
however, is served exclusively over HTTPS. Users that
want to check sensitive mail using Gmail can access
the Gmail site over HTTPS instead of HTTP. In fact,
many users install GMailSecure [21] to automatically
redirect them to HTTPS pages when using Gmail.
Unfortunately, GMailSecure does not actually protect
the session cookie on mail.google.com because it per-
forms the redirect after the browser has already sent
the HTTP request (which contains the cookie) in the
clear.

• Certi�cate Errors. Incorrectly con�gured web servers
can cause a number of HTTPS certi�cate errors:

� Common-Name Mismatch. HTTPS requires
that a server present a certi�cate whose common
name matches the server's host name. Many web
servers erroneously present certi�cates with incor-
rect common names.

Figure 1: This account has only ever been accessed
over HTTPS, but the con�dentiality of this user's
email has already been compromised because Fire-
fox leaked the user's cookie in an automatic request
for anti-phishing data from Google.

� Self-Signed. Many site owners wish to use HTTPS
but are unable or unwilling to purchase certi�-
cates from certi�cate authorities. Instead, these
owners deploy self-signed certi�cates that provide
security against passive attackers.

� Expired. Certi�cates are valid only for a limited
time period. Many web servers present certi�-
cates that have either not yet become valid or
whose validity period has expired.

When it encounters a certi�cate error, the browser
presents the user with a security warning dialog, giv-
ing the user the option to continue despite the er-
ror. Browsers permit users to override these secu-
rity errors in order to be compatible with miscon�g-
ured servers. Unfortunately, the warnings have be-
come commonplace, with approximately 63% of cer-
ti�cates causing errors [24]. Although the user is in
control, many users do not understand these warnings
and are trained to ignore them by the multitude of
miscon�gured sites [23]. ForceHTTPS lets sites force
these certi�cate errors to be treated as fatal.

• Extended Validation. Many certi�cate authorities
issue �extended validation� (EV) certi�cates that re-
quire more extensive investigation by the certi�cate
authority before being issued [9]. Like certi�cate warn-
ings, EV certi�cates are used to present information
about the connection security to the user. For exam-
ple, Internet Explorer 7 and Firefox 3 highlight the
site's identity in green if the site supplies a valid EV
certi�cate. Extended validation certi�cates have no
e�ect on the browser's defenses against network at-
tackers. A site that uses EV can still be contacted
via HTTP and mix insecure content into secure pages.
Moreover, the user is still able to accept a broken cer-
ti�cate for the host, putting primary control over en-
forcement in the hands of the user. ForceHTTPS al-
lows the site to make a security commitment to the
browser, rather than to the user.

• Firefox 3. Firefox 3 contains a new user interface
for dealing with certi�cate errors. Early versions of
this interface required ten clicks to accept certi�cate
errors and asked the user to type the domain name



Threat Model
Passive Attacker Active Attacker Imperfect Developer

User-controlled GMailSecure Certi�cate warnings Mixed content warnings
Site-controlled Secure cookies Locked same-origin policy, HTTPSSR Content restrictions

Table 1: Current attempts to defend against the threats that ForceHTTPS addresses.

manually in the hopes that this process would dis-
courage users from giving up their security. This pro-
posal was controversial [11] and was eventually scaled
back to require only four clicks [3] as a compromise for
site owners that use HTTPS with self-signed certi�-
cates. ForceHTTPS avoids compromising security for
usability by a�ecting only those sites that are security-
conscious.

• Mixed Content Warnings. Many sites serve the
same content over both HTTP and HTTPS. If the de-
veloper expected some of the content to be served over
HTTP only, the developer is likely to embed scripts us-
ing absolute paths containing the http scheme:

<script src="http://a.com/foo.js"></script>

Unfortunately, this compromises the security of HTTPS
on the entire site because an active attacker can navi-
gate the user's browser to the broken page over HTTPS,
replace the insecure script with his own, and invade the
security context of the secure site. These mistakes can
easily be corrected by using scheme-relative paths [8]:

<script src="//a.com/foo.js"></script>

These paths cause the browser to load the script over
HTTP when the page is viewed over HTTP and over
HTTPS when the page is viewed over HTTPS. Us-
ing this technique, a site can bene�t from caching and
increased performance when the page is viewed over
HTTP but retain security when the page is viewed over
HTTPS. Unfortunately, many web developers are un-
aware of scheme-relative paths and often accidentally
embed insecure scripts into secure pages. Browsers
warn the user about these insecure embeddings in dif-
ferent ways:

� Internet Explorer displays a �mixed content�
dialog that asks the user's permission before con-
tinuing. Insecure SWF movies and Java applets
are loaded automatically without any warnings.

� Firefox automatically accepts the mixed content,
but draws a red slash over the browser's lock icon.
Insecure images, SWF movies, and Java applets
do not trigger the slash.

� Opera automatically accepts the mixed content,
but replaces the lock icon with a question mark.

� Safari does not attempt to detect mixed content.

As with certi�cate warnings, many users do not un-
derstand mixed content warnings, and some browsers
do not even give users the option of remaining secure.
Users have been trained to ignore these warnings be-
cause many HTTPS pages, such as the Gmail login

Figure 2: Users have been trained to click through
mixed content warnings at sites such as Gmail.

page shown in Figure 2, embed mixed content. Force-
HTTPS lets security-conscious sites block unwanted
mixed content inadvertently introduced by their im-
perfect developers.

3.2 Site-Controlled Defenses

• Secure Cookies. A security-conscious site can mark
a cookie as Secure, instructing the browser to refrain
from transmitting the cookie over an insecure connec-
tion. To use these cookies, the site must ensure that all
authenticated web tra�c occurs over HTTPS. Many
sites, including those that have deployed anti-phishing
defenses such as SiteKey, also use a long-lived Secure
cookie to store a second factor of authentication.

� Passive Attackers. Secure cookies defend well
against passive eavesdroppers. We recommend
that sites use Secure cookies as they prevent a
passive attacker from learning the con�dential in-
formation they store.

� Active Attackers. Unfortunately, active attack-
ers can use invalid certi�cates to steal Secure
cookies if users click through certi�cate warning
dialog boxes.

ForceHTTPS expands the usefulness of Secure cookies
to defend against active attackers by recording the web
site's intent to use a correct HTTPS certi�cate. When
the attacker presents an invalid certi�cate for the site,
the browser terminates the connection and does not
reveal the site's Secure cookies.

• Locked Same-Origin. Web Server Key Enabled Cook-
ies [20] proposes restricting access to cookies based on



the public key of the server. The goal of this policy is
to prevent a pharming attacker from accessing HTTPS
cookies set by the victim server. Karlof et. al. [15] ex-
tend this work to defend against dynamic pharming
through the use of two locked same-origin policies for
browsers. These policies augment the browser's secu-
rity policy to isolate web pages based on the security
of the connection from which they were loaded. Unfor-
tunately, both locked same-origin policies face major
deployment challenges.

� Weak. The weak locked same-origin policy iso-
lates pages loaded over broken HTTPS connec-
tions from those loaded over unbroken connec-
tions. To be secure against an active attacker, a
site must not embed any scripts, cascading style
sheets, applets, or SWF movies (instead, the site
must inline all scripts and style sheets) [15], but
this requires virtually all web sites to implement
major changes in order to meet this condition.

� Strong. The strong locked same-origin policy
segregates two pages if they where loaded over
HTTPS connections with di�erent public keys.
To enable the strong policy, a site must deploy
a pk.txt �le that speci�es the public keys with
which it intends to interact. This �le is di�cult
to deploy correctly and must be maintained as
servers refresh their keys, likely resulting in a sim-
ilar miscon�guration rate to that of deploying cer-
ti�cates for HTTPS.

ForceHTTPS also isolates broken and unbroken pages
by allowing security-conscious sites to forbid the browser
from loading broken sites, but ForceHTTP is easier for
sites to deploy: the site can opt in to ForceHTTPS by
simply setting a cookie.

• Content Restrictions. Using content restrictions,
web servers can transmit metadata to browsers in-
structing them to impose certain restrictions on the
web site's content, such as which scripts are allowed
to run. Content restrictions can limit the damage
caused by a cross-site scripting attack in which the de-
veloper incorrectly sanitizes malicious input. Content
restrictions can be communicated in HTTP headers or
<meta> tags [19]. Other proposals include whitelists
written in JavaScript, or using a special noexecute
property of DOM nodes [13]. ForceHTTPS is another
set of content restrictions, but instead of defending
against a web developer who inadvertently exposes
the session to cross-site scripting attacks, it defends
against a web developer who inadvertently exposes the
site to network attacks via mixed content.

4. SPECIFICATION
ForceHTTPS can be enabled in two ways:

• Site. A security-conscious site can enable ForceHTTPS
by setting a cookie with the name ForceHTTPS using a
Set-Cookie header in an error-free HTTPS response.
The browser will enable ForceHTTPS for that site as
long as the cookie has not expired. The domain and
path attributes of the cookie are ignored.

• User. A security-conscious user can enable Force-
HTTPS for a host through the browser user inter-
face. The browser gives them the option of con�guring
custom HTTP-to-HTTPS redirection rules and non-
Secure-to-Secure cookie upgrades for that domain.

ForceHTTPS can be disabled only by an error-free HTTPS
response or by the browser's user interface.
When ForceHTTPS is enabled for a host, the browser

modi�es its behavior as follows:

• Attempts to connect over a non-HTTPS protocol are
redirected to HTTPS.

• TLS errors during connections are treated as fatal.

• Attempts to embed insecure content in pages fail.

These rules prevent an active attacker from injecting script
into the host's security origin.

5. DISCUSSION
This section contains a discussion of design decisions, error

handling scenarios, limitations, and alternate policy adver-
tisement mechanisms.

5.1 Design Decisions
Although the ForceHTTPS mechanism is simple, a num-

ber of subtle decisions were made during its design.

• Redirecting URLs. When ForceHTTPS is enabled
for a host, the browser redirects HTTP requests to
that host to HTTPS. For example, if the user types
www.paypal.com in the location bar, the browser con-
nects to https://www.paypal.com/ instead, prevent-
ing a network attacker from intercepting the HTTP
request and redirecting the user to a phishing web
site. Additionally, this browser-side redirection trans-
parently corrects a common mixed content scenario
in which a site embeds active content from itself over
HTTP. To retro�t security onto sites like Google that
do not serve all of their content over HTTPS, Force-
HTTPS lets power users con�gure custom rewrite rules.

• State Exhaustion. Because the browser has limited
state, the browser's cookie eviction policy is critical
to the security of ForceHTTPS. An attacker who is
able to force the browser to evict the ForceHTTPS
cookie is e�ectively able to �unforce� HTTPS. More-
over, if the browser evicts the ForceHTTPS cookie be-
fore other cookies for the same host, the attacker can
potentially use the non-evicted cookies (which might
store session tokens or second factors of authentica-
tion) as part of an attack. To prevent these state ex-
haustion attacks, the browser should reserve space for
ForceHTTPS cookies and limit the rate at which it ac-
cepts new ForceHTTPS cookies. If the browser uses
an rate-limiting scheme with exponential back-o�, the
browser can typically prevent an attacker from �ood-
ing its ForceHTTPS cookie store in a single session. A
concerted attacker, however, can eventually over�ow
the state limit over many successive sessions. To pre-
vent the other cookies from being stolen, the browser
should evict all other cookies for a domain if it evicts
the ForceHTTPS cookie.



• Denial of Service. The largest risk in deploying
ForceHTTPS is that of denial of service. An attacker
who can set a ForceHTTPS cookie for a victim host
can prevent users from using that site if the site re-
quires broken HTTPS to function properly. There are
two restrictions on when a site can set a ForceHTTPS
cookie to mitigate this issue:

� The server must set the ForceHTTPS cookie dur-
ing a non-broken HTTPS session. By establish-
ing a non-broken HTTPS session, the host has
demonstrated the ability to conduct secure HTTPS.
If the browser permitted ForceHTTPS cookies to
be set over HTTP, an active attacker could con-
duct denial of service beyond his ability to control
the user's network.

� The server must set the ForceHTTPS cookie us-
ing the Set-Cookie header, rather than using script
to set the document.cookie property. If script
were permitted to set ForceHTTPS cookie, a tran-
sient cross-site scripting vulnerability could result
in a long-lasting denial of service.

Even with these restrictions, a shared domain Force-
HTTPS cookie could still be used for denial of service:
A student hosting content on https://www.stanford.edu/
could set a ForceHTTPS cookie for .stanford.edu,
denying service to many Stanford web sites. To pre-
vent this scenario, a ForceHTTPS cookie enables Force-
HTTPS only for the host that sent the cookie.

• Policy Expressiveness. When a site enables Force-
HTTPS, the browser makes several modi�cations to its
behavior at once. Instead, the browser could respect
�ner-grained policies capable of expressing more spe-
ci�c behavior changes, for example allowing a site to
require HTTPS without disavowing mixed content or
certi�cate errors. However, exposing a more expressive
policy interface increases the burden on site developers
to select the appropriate policy and on browser devel-
opers to correctly implement each policy permutation.
We reserve the value of the ForceHTTPS cookie for
future enhancements to the mechanism.

5.2 Error Handling
Although it provides stricter error handling, ForceHTTPS

must be prepared to handle miscon�gured clients and servers.
If ForceHTTPS simply were to provide a click-through er-
ror dialog box, the bene�ts of the mechanism would be lost.
Many users consider clicking through security dialog boxes
to be a routine task.

• Wireless HotSpot. The most common client error
occurs when a user �rst connects their computer to a
wireless hotspot. Before allowing access to the Inter-
net, the hotspot typically redirects all network requests
to its registration page. If the user attempts to nav-
igate to an HTTPS site, the hotspot will be unable
to present a valid certi�cate and the connection will
generate a certi�cate error. In this situation, the two
options o�ered by current browsers are both poor. The
user can either abandon the request (and not join the
network) or can accept the broken certi�cate, sending
their secure cookies to the hotspot registration page.

To better recover from this error condition, the browser
could attempt to connect to a known HTTP page on
the browser vendor's web site and compare its contents
to a known value. If a redirect is encountered or the
contents of the page do not match the expected value,
the browser could ask the user if they would like to con-
nect to the wireless network registration page (which
consists of the redirected content). This technique
permits the registration page to successfully redirect
the user without compromising the user's cookies and
without revealing any sensitive query parameters (as
used by PHP sites that set session.use_trans_sid to
true and session.use_cookies to false).

• Embedded Content. When ForceHTTPS is enabled
for a host, the browser prevents pages on that host
from embedding non-HTTPS content. The security
of the site can still be compromised, however, if the
site embeds content from an HTTPS connection that
encountered a certi�cate error. For this reason, certi�-
cate errors are treated as fatal network errors during
any dependent load on a ForceHTTPS page. For con-
tent that would appear in a frame, the broken content
is replaced with a message indicating that the content
could not be loaded securely.

• Opting Out. If a ForceHTTPS site persists in being
miscon�gured, the user can remove the ForceHTTPS
cookie through the same user interface used to en-
able ForceHTTPS. This process requires several steps,
i.e. not a single mouse click, and both clears the user's
cookies and restarts the browser to prevent any exist-
ing browser state from being compromised. We ex-
pect that the rate of ForceHTTPS hosts miscon�g-
uration will be signi�cantly lower than the general
HTTPS miscon�guration rate because the owners of
the ForceHTTPS hosts have indicated (by enabling
ForceHTTPS) that they take seriously the security of
their sites and do not wish to allow users to connect
over broken HTTPS connections. In contrast, users
will need to become familiar with the browser's mech-
anism to bypass standard certi�cate errors in order to
access many miscon�gured sites.

5.3 Limitations
Although ForceHTTPS has numerous security bene�ts, it

cannot prevent all attacks. In this section, we describe some
vulnerabilities that ForceHTTPS does not address.

• Attacks on Initialization. If a user is unable to
establish a secure connection to a server, then that
server cannot set a ForceHTTPS cookie. An attacker
who controls the user's network on every visit to a
target site can prevent the ForceHTTPS cookie at that
site from ever being set. Although the user will be
exposed to a large number of warnings, ForceHTTPS
will not yet be enabled and thus cannot force the user
to make the correct security decision. However, if the
user does ever connect to the site securely, the browser
enforce security until the ForceHTTPS cookie expires.

• Privacy. Like any cookie, ForceHTTPS leaves a trace
on the user's system for each ForceHTTPS site vis-
ited. Users who are concerned about privacy from



web sites or from other users who use the same sys-
tem often reject or frequently clear their cookies. By
clearing cookies, these users can remove all evidence
of the ForceHTTPS cookie. Although they lose Force-
HTTPS protection their next visit, the user's decision
to purge all browser state associated with the site will
make it unlikely that the browser will have second fac-
tor authentication tokens for a future attacker to steal.
(Note that the precon�gured ForceHTTPS cookies and
rewrite rules are the same for each user and do not re-
veal the user's browsing behavior other than to identify
them as a ForceHTTPS user.)

• Developer Errors Other Than Mixed Content.
By enabling ForceHTTPS, the web developer opts in
to more stringent error processing, but the developer
still compromise the security of his or her site by mak-
ing mistakes. We list a few common mistakes of this
sort to remind the reader that ForceHTTPS (and more
generally encryption) is not a panacea.

� Cross-Site Scripting (XSS). ForceHTTPS pro-
vides no protection if the site contains a cross-site
scripting vulnerability. Such a site is completely
vulnerable to a web attacker.

� Cross-Site Request Forgery (CSRF). Simi-
larly, ForceHTTPS does not protect a site that
contains a cross-site request forgery vulnerabil-
ity [14]. CSRF vulnerabilities often give attack-
ers the ability to issue commands from the user's
browser.

� HTTP Response Splitting. If the server does
not properly sanitize carriage returns and other
whitespace in input included in HTTP response
headers, an attacker can inject headers (and po-
tentially scripts) into HTTP responses. An HTTP
response splitting vulnerability can often be used
to manipulate ForceHTTPS cookies.

� document.domain. A site that sets its domain
to a value must trust all the hosts with that value
as a su�x. These hosts can enter the site's secu-
rity sandbox and script its pages.

• Plug-ins. Analysis of browser security features must
take plug-ins into account because plug-ins such as
Flash Player and Java are widely deployed and can
often provide attackers an alternate route to circum-
venting a security mechanism. ForceHTTPS must en-
sure that browser network requests on behalf of plug-
ins, which carry the user's cookies, enforce the Force-
HTTPS restrictions. Furthermore, all cookie manage-
ment by plug-ins must respect the ForceHTTPS pol-
icy. If the plug-in allows the site to make direct net-
work requests using raw sockets, it cannot be forced
to use HTTPS without breaking backwards compati-
bility. We consider it the web site's responsibility to
provide appropriate encryption of the raw socket tra�c
if necessary; ForceHTTPS does not provide protection
from the imperfect developer in this case.

• Complexity of Rewrite Rules. As we describe in
Section 5.5, the rewrite rules required to enable Force-
HTTPS at a legacy web site can range from very sim-
ple to impossible. A site could become vulnerable if

rewrite rules are introduced that redirect sensitive in-
formation to an attacker. Rewrite rules can also break
functionality at the web site, rendering certain pages
inaccessible or issuing unauthorized transactions. If
the web site changes signi�cantly, or the site decides
to change its support for HTTPS, the rewrite rules
might need to be updated. We consider the installa-
tion and editing of rewrite rules to be a decision with
serious security consequences, similar to installing a
browser plug-in. The addition of new rewrite rules is
a feature primarily for advanced users.

5.4 Other Policy Advertisement Mechanisms
Other mechanisms that could be used for advertising a

ForceHTTPS policy include DNS records and XML �les.

• DNS. In the HTTP Service Security Requirements
(HTTPSSR) proposal [22], a site can indicate its desire
for HTTPS by including an HTTPSSR record in DNS.
The proposal relies on DNSSEC to prevent a network
attacker from manipulating this record. Although the
HTTPSSR proposal does not address mixed content,
certi�cate error user interfaces, or cookie security, it
could be extended to do so. The DNS policy adver-
tisement mechanism has a number of advantages:

1. The secure initialization step is not required. The
browser can obtain the ForceHTTPS policy on
the �rst visit to the site, even if the network is
compromised.

2. The browser is not required to maintain any per-
sistent state associated for each host, preventing
state exhaustion attacks.

3. HTTP response splitting attacks do not allow an
attacker to manipulate ForceHTTPS policies.

Unfortunately, DNSSEC is not widely deployed. With-
out DNSSEC, sites can store their ForceHTTPS poli-
cies in DNS using the stateful, secure-initialization ap-
proach of ForceHTTPS cookies. To support this ap-
proach, HTTPSSR records would need to include an
�expires� �eld. The Time-To-Live (TTL) supplied by
DNS is not suitable for storing policy expiry because
it provides a maximum, rather than a minimum, du-
ration for the validity of the record.

• XML. Using the XML paradigm, a site can advertise
its ForceHTTPS policy in an XML document hosted
over HTTPS at a well-known location. This tech-
nique is used by Adobe Flash Player to determine
if a server is willing to receive cross-domain URL re-
quests. Adobe's crossdomain.xml policy �le could be
extended to advertise a ForceHTTPS policy:

<?xml version="1.0" ?>
<cross-domain-policy

xmlns:f="http://www.forcehttps.com/">
<allow-access-from

domain="*.stanford.edu" />
<f:forcehttps

expires="Mon, 11 Feb 2009 23:39:27 GMT"/>
</cross-domain-policy>



The browser will enable ForceHTTPS for that site for
the duration speci�ed by the expires attribute of this
element. This element can be included in existing
crossdomain.xml �les using a unique XML names-
pace for the element. This approach has the advan-
tage that a site must already control the contents of
its crossdomain.xml �le in order to be secure against
attacks using the Flash plug-in. Additionally, using
XML to store policy information makes it possible to
extend this policy advertisement mechanism to include
future security policies.

5.5 Example Rewrite Rules
In creating our prototype implementation of ForceHTTPS,

we developed rewrite rules for seven popular sites to under-
stand the subtleties in deploying ForceHTTPS. To develop
the rewrite rules, we installed the ForceHTTPS extension
and enabled ForceHTTPS for each site we wanted to sup-
port. We then turned on client-side error logging and tried
to log in and log out on each site. Using the error mes-
sages we identi�ed HTTP content that could be served over
HTTPS and used rewrite rules to transform those HTTP
requests into HTTPS. The results are summarized below.

• PayPal. We did not need specialized rewrite rules
for paypal.com, which serves all content on its main
site over HTTPS. We also enabled ForceHTTPS for
paypalobjects.com, where PayPal's static scripts and
stylesheets are hosted. This precaution is necessary for
Firefox 2, which prompts users to override certi�cate
errors for embedded content, but is no longer necessary
in Firefox 3, which blocks such content automatically.

• American Express. American Express uses SWF
movies to load HTTP �les to display advertisements,
but the insecure �les are served from a di�erent do-
main (doubleclick.net) and cannot script the main
American Express page.

• Fidelity. Fidelity uses SWF movies that load HTTP
�les to display stock quotes, but these requests do
not require cookies, so no rewrite rules are necessary.
Fidelity hosts a crossdomain.xml �le that allows ac-
cess from *.fidelity.com and *.fmr.com. Thus, to
be protected from network attackers, Fidelity needs
a ForceHTTPS cookie for both .fidelity.com and
.fmr.com.

• Bank of America. Bank of America uses both HTTP
and HTTPS on its main home page, and certain pages
require cookies to be sent over HTTP. However, the
login page and online banking are handled on subdo-
mains, such as sitekey.bankofamerica.com. These
subdomains use HTTPS exclusively, so we set Force-
HTTPS cookies for the online banking subdomains.

• Gmail. Google's Gmail web site, mail.google.com,
presents a challenge because the site sets a domain-
wide .google.com cookie. We enabled ForceHTTPS
for the entire Google site and wrote rewrite rules to
redirect all Google pages to HTTPS except the search
page (which cannot be accessed over HTTPS). Addi-
tionally, we rewrote a query parameter for the login
page to indicate that we wished Google to mark its
session cookies Secure. It is important to redirect all

pages (except search) to HTTPS because Google's lo-
gin page sometimes transmits sensitive authentication
information in URL parameters. With ForceHTTPS
enabled, search tra�c at Google is not protected from
eavesdropping, but no cookies are sent with this tra�c,
keeping the user's session identi�er secure.

• Chase. Chase refuses to serve its home page over
HTTPS. We chose to redirect http://www.chase.com/
to https://chaseonline.chase.com, allowing the user
to log in securely, but preventing access to any news
or special o�ers that appear only on the Chase home
page. ForceHTTPS also automatically repairs mixed
content on Chase's login page by redirecting an inse-
cure SWF movie to HTTPS.

• Yahoo! Mail. We were unable to develop rewrite
rules for the Yahoo! Mail site because Yahoo! Mail
does not support HTTPS. We enabled ForceHTTPS
for the Yahoo! login page, with the goal of protect-
ing the user's password (rather than the session) from
active attacks. Because the Yahoo! Sign-in Seal [30]
is revealed by an insecure cookie, an active attacker
could display the sign-in seal on an HTTP page with-
out requiring the user to click through a security warn-
ing dialog. With ForceHTTPS installed, the attacker
cannot display the Sign-in Seal, upgrading Yahoo!'s
phishing defense to a pharming defense as well.

6. CONCLUSIONS AND FUTURE WORK
ForceHTTPS lets users and web sites to opt in to stricter

error processing by the browser. For users, ForceHTTPS
can �x vulnerabilities in web sites and enable sites that were
not designed to be used over hostile networks to be browsed
securely over such networks. For web sites, ForceHTTPS
protects Secure cookies from active network attackers and
remediates accidental embedding of insecure content.
Previous anti-pharming proposals required either over-

hauling DNS or the deployment of complex, digitally signed
policy �les encoding the frequently-changing trust relation-
ships between domains. By contrast, ForceHTTPS merely
requires setting a cookie, a procedure that many sites al-
ready handle with every new session.
ForceHTTPS is a useful mitigation for mixed content, but

sites should strive to �x these bugs by removing insecure em-
beddings. Developers have trouble detecting mixed content
because all the major browsers have signi�cant bugs in their
mixed content detection mechanisms. In future work, we
plan to collaborate with web application vulnerability scan-
ner vendors to build a mixed content scanner that spiders a
web site and reports its mixed content vulnerabilities.
ForceHTTPS has already proven itself useful to its au-

thors, who now check their email at security conferences
without fear of eavesdropping and other network attacks.
We look forward to extending this protection to other users.

Acknowledgements
We thank Michael Barrett, Dan Boneh, John C. Mitchell,
Umesh Shankar, and Andy Steingruebl for their helpful sug-
gestions and feedback. This work is supported by grants
from the National Science Foundation and the US Depart-
ment of Homeland Security.



7. REFERENCES
[1] Bank of America SiteKey.

http://www.bankofamerica.com/privacy/sitekey/.

[2] A. Barth, C. Jackson, and J. C. Mitchell. Session
swapping: Login cross-site request forgery, March
2008. Manuscript.

[3] M. Beltzner et al. Create preference which restores
per-page ssl error override option for it professionals.
https:
//bugzilla.mozilla.org/show_bug.cgi?id=399275.

[4] Chase. Increased security. http://www.chase.com/
ccpmapp/shared/assets/page/occ_alert.

[5] R. Dhamija, J. D. Tygar, and M. Hearst. Why
phishing works. In Proceedings of the Conference on
Human Factors in Computing Systems (CHI), 2006.

[6] DNS Security Extensions. http://www.dnssec.net/.

[7] E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach.
Web Spoo�ng: An Internet Con Game. In 20th
National Information Systems Security Conference,
October 1997.

[8] R. Fielding. Relative Uniform Resource Locators.
IETF RFC 1808, June 1995.

[9] C. A. B. Forum. Extended validation certi�cate
guidelines. http:
//cabforum.org/EV_Certificate_Guidelines.pdf.

[10] R. Graham. Sidejacking with Hamster, August 2007.
http://erratasec.blogspot.com/2007/08/
sidejacking-with-hamster_05.html.

[11] F. Hecker et al. Improve error reporting for
invalid-certi�cate errors. https:
//bugzilla.mozilla.org/show_bug.cgi?id=327181.

[12] C. Jackson and A. Barth. ForceHTTPS Firefox
extension, 2008.
https://crypto.stanford.edu/forcehttps.

[13] T. Jim, N. Swamy, and M. Hicks. BEEP:
Browser-enforced embedded policies. In Proceedings of
the 14th International World Wide Web Conference
(WWW), 2007.

[14] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing
cross site request forgery attacks. In Proceedings of the
IEEE International Conference on Security and
Privacy for Emerging Areas in Communication
Networks (Securecomm), 2006.

[15] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner.
Dynamic pharming attacks and locked same-origin
policies for web browsers. In Proceedings of the 14th
ACM Conference on Computer and Communications
Security (CCS 2007), November 2007.

[16] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic.
Noxes: A client-side solution for mitigating cross site
scripting attacks. In Proceedings of the 21st ACM
Symposium on Applied Computing (SAC), 2006.

[17] D. Kristol and L. Montulli. HTTP State Management
Mechanism. IETF RFC 2109, February 1997.

[18] G. Maone. NoScript. http://noscript.net/.

[19] G. Markham. Content restrictions. http:
//www.gerv.net/security/content-restrictions/.

[20] C. Masone, K.-H. Baek, and S. Smith. Wske: Web
server key enabled cookies. In Proceedings of Usable
Security 2007 (USEC '07).

[21] M. Pilgrim. GMailSecure, 2005.
http://userscripts.org/scripts/review/1404.

[22] S. E. Schechter. Storing HTTP security requirements
in the domain name system, April 2007.
http://lists.w3.org/Archives/Public/
public-wsc-wg/2007Apr/att-0332/http-ssr.txt.

[23] S. E. Schechter, R. Dhamija, A. Ozment, and
I. Fischer. The emperor's new security indicators. In
Proceedings of the 2007 IEEE Symposium on Security
and Privacy.

[24] Security Space and E-Soft. Secure server survey, May
2007. http://www.securityspace.com/s_survey/
sdata/200704/certca.html.

[25] S. Stamm, Z. Ramzan, and M. Jakobsson. Drive-by
pharming. Technical Report 641, Indiana University
Computer Science, Decenber 2006.

[26] A. Tsow. Phishing with consumer electronics �
malicious home routers. In Models of Trust for the
Web Workshop at the 15th International World Wide
Web Conference (WWW), 2006.

[27] A. Tsow, M. Jakobsson, L. Yang, and S. Wetzel.
Warkitting: the drive-by subversion of wireless home
routers. Journal of Digital Forensic Practice, 1(2),
November 2006.

[28] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Cross site scripting
prevention with dynamic data tainting and static
analysis. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2007.

[29] Wireshark: What's on your network?
http://www.wireshark.org/.

[30] Yahoo! Inc. What is a sign-in seal? http://
security.yahoo.com/article.html?aid=2006102507.


