
Page 1

CS252/Patterson
Lec 19.14/6/01

CS252
Graduate Computer Architecture

Lecture 19:
 Intro to Static Pipelining

April 6, 2001
Prof. David A. Patterson
Computer Science 252

Spring 2001

CS252/Patterson
Lec 19.24/6/01

Review: Dynamic Examples
• P6 (Pentium Pro, II, III) successful micro-

architecture, even with imitator (AMD Athlon)
– Translate most 80x86 instructions to micro-operations

» Longer pipeline than RISC instructions
– Dynamically execute micro-operations

• “Netburst” (Pentium 4, …) success not clear
– Much longer pipeline, higher clock rate in same technology as P6
– Trace Cache to capture micro-operations, avoid hardware

translation

• Multithreading to increase performance for
servers, parallel programs written to use threads

– Extra copies of PCs, Registers per thread; e.g., IBM AS/400

• Simultaneous Multithreading (SMT) exploit
underutilized Dynamic Execution HW to get higher
throughput at low extra cost?

CS252/Patterson
Lec 19.34/6/01

Overview

• Last 3 lectures: binary compatibility and
exploiting ILP in hardware: BTB, ROB,
Reservation Stations, ...

• How far can you go in compiler?
• What if you can also change instruction set

architecture?
• Will see multi billion dollar gamble by two Bay

Area firms for the future of computer
architecture: HP and Intel to produce IA-64

– 7 years in the making?

CS252/Patterson
Lec 19.44/6/01

Static Branch Prediction
• Simplest: Predict taken

– average misprediction rate = untaken branch frequency,
which for the SPEC programs is 34%.

– Unfortunately, the misprediction rate ranges from not
very accurate (59%) to highly accurate (9%)

• Predict on the basis of branch direction?
– choosing backward-going branches to be taken (loop)
– forward-going branches to be not taken (if)
– SPEC programs, however, most forward-going branches

are taken => predict taken is better

• Predict branches on the basis of profile
information collected from earlier runs

– Misprediction varies from 5% to 22%

CS252/Patterson
Lec 19.54/6/01

Running Example

• This code, a scalar to a vector:
for (i=1000; i>0; i=i–1)

x[i] = x[i] + s;

• Assume following latency all examples

Instruction Instruction Execution Latency
producing result using result in cycles in cycles
FP ALU op Another FP ALU op 4 3
FP ALU op Store double 3 2
Load double FP ALU op 1 1
Load double Store double 1 0
Integer op Integer op 1 0

CS252/Patterson
Lec 19.64/6/01

FP Loop: Where are the Hazards?

Loop: L.D F0,0(R1) ;F0=vector element
 ADD.D F4,F0,F2 ;add scalar from F2

 S.D 0(R1),F4 ;store result

 DSUBUI R1,R1,8 ;decrement pointer 8B (DW)

 BNEZ R1,Loop ;branch R1!=zero
 NOP ;delayed branch slot

 Where are the stalls?

• First translate into MIPS code:
-To simplify, assume 8 is lowest address

Page 2

CS252/Patterson
Lec 19.74/6/01

FP Loop Showing Stalls

• 9 clocks: Rewrite code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

 1 Loop: L.D F0,0(R1) ;F0=vector element

 2 stall

 3 ADD.D F4,F0,F2 ;add scalar in F2
 4 stall

 5 stall

 6 S.D 0(R1),F4 ;store result

 7 DSUBUI R1,R1,8 ;decrement pointer 8B (DW)
 8 BNEZ R1,Loop ;branch R1!=zero

 9 stall ;delayed branch slot

CS252/Patterson
Lec 19.84/6/01

Revised FP Loop Minimizing Stalls

 6 clocks, but just 3 for execution, 3 for loop
overhead; How make faster?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

 1 Loop: L.D F0,0(R1)

 2 stall
 3 ADD.D F4,F0,F2

 4 DSUBUI R1,R1,8

 5 BNEZ R1,Loop ;delayed branch

 6 S.D 8(R1),F4 ;altered when move past DSUBUI

Swap BNEZ and S.D by changing address of S.D

CS252/Patterson
Lec 19.94/6/01

Unroll Loop Four Times
(straightforward way)

 Rewrite loop to
minimize stalls?

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4 ;drop DSUBUI & BNEZ
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D -8(R1),F8 ;drop DSUBUI & BNEZ
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D -16(R1),F12 ;drop DSUBUI & BNEZ
10 L.D F14,-24(R1)
11 ADD.D F16,F14,F2
12 S.D -24(R1),F16
13 DSUBUI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

 15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
 Assumes R1 is multiple of 4

1 cycle stall
2 cycles stall

CS252/Patterson
Lec 19.104/6/01

Unrolled Loop Detail

• Do not usually know upper bound of loop
• Suppose it is n, and we would like to unroll

the loop to make k copies of the body
• Instead of a single unrolled loop, we

generate a pair of consecutive loops:
– 1st executes (n mod k) times and has a body that is

the original loop
– 2nd is the unrolled body surrounded by an outer loop

that iterates (n/k) times
– For large values of n, most of the execution time will

be spent in the unrolled loop

CS252/Patterson
Lec 19.114/6/01

Unrolled Loop That Minimizes Stalls

• What assumptions
made when moved
code?

– OK to move store past
DSUBUI even though
changes register

– OK to move loads before
stores: get right data?

– When is it safe for
compiler to do such
changes?

1 Loop:L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

 14 clock cycles, or 3.5 per iteration

CS252/Patterson
Lec 19.124/6/01

Compiler Perspectives on Code Movement
• Compiler concerned about dependencies in program
• Whether or not a HW hazard depends on pipeline
• Try to schedule to avoid hazards that cause

performance losses
• (True) Data dependencies (RAW if a hazard for HW)

– Instruction i produces a result used by instruction j, or
– Instruction j is data dependent on instruction k, and instruction k

is data dependent on instruction i.

• If dependent, can’t execute in parallel
• Easy to determine for registers (fixed names)
• Hard for memory (“memory disambiguation” problem):

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

Page 3

CS252/Patterson
Lec 19.134/6/01

Where are the name dependencies?

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4 ;drop DSUBUI & BNEZ
4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D -8(R1),F4 ;drop DSUBUI & BNEZ
7 L.D F0,-16(R1)
8 ADD.D F4,F0,F2
9 S.D -16(R1),F4 ;drop DSUBUI & BNEZ
10 L.D F0,-24(R1)
11 ADD.D F4,F0,F2
12 S.D -24(R1),F4
13 DSUBUI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

 How can remove them?
CS252/Patterson

Lec 19.144/6/01

Where are the name dependencies?

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4 ;drop DSUBUI & BNEZ
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D -8(R1),F8 ;drop DSUBUI & BNEZ
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D -16(R1),F12 ;drop DSUBUI & BNEZ
10 L.D F14,-24(R1)
11 ADD.D F16,F14,F2
12 S.D -24(R1),F16
13 DSUBUI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

 The Orginal“register renaming”

CS252/Patterson
Lec 19.154/6/01

Compiler Perspectives on Code
Movement

• Name Dependencies are Hard to discover for Memory
Accesses

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

• Our example required compiler to know that if R1
doesn’t change then:

0(R1) ≠≠ -8(R1) ≠≠ -16(R1) ≠≠ -24(R1)

 There were no dependencies between some loads and
stores so they could be moved by each other

CS252/Patterson
Lec 19.164/6/01

Steps Compiler Performed to Unroll
• Check OK to move the S.D after DSUBUI and

BNEZ, and find amount to adjust S.D offset
• Determine unrolling the loop would be useful by

finding that the loop iterations were independent
• Rename registers to avoid name dependencies
• Eliminate extra test and branch instructions and

adjust the loop termination and iteration code
• Determine loads and stores in unrolled loop can be

interchanged by observing that the loads and
stores from different iterations are independent

– requires analyzing memory addresses and finding that they do
not refer to the same address.

• Schedule the code, preserving any dependences
needed to yield same result as the original code

CS252/Patterson
Lec 19.174/6/01

Administratrivia

• 3rd (last) Homework on Ch 3 due Saturday
• 3rd project meetings 4/11: signup today
• Project Summary due Monday night
• Quiz #2 4/18 310 Soda at 5:30

CS252/Patterson
Lec 19.184/6/01

Another possibility:
Software Pipelining

• Observation: if iterations from loops are independent,
then can get more ILP by taking instructions from
different iterations

• Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from
different iterations of the original loop (~ Tomasulo in
SW)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

Page 4

CS252/Patterson
Lec 19.194/6/01

Software Pipelining Example
Before: Unrolled 3 times
 1 L.D F0,0(R1)
 2 ADD.D F4,F0,F2
 3 S.D 0(R1),F4
 4 L.D F6,-8(R1)
 5 ADD.D F8,F6,F2
 6 S.D -8(R1),F8
 7 L.D F10,-16(R1)
 8 ADD.D F12,F10,F2
 9 S.D -16(R1),F12
 10 DSUBUI R1,R1,#24
 11 BNEZ R1,LOOP

After: Software Pipelined
 1 S.D 0(R1),F4 ; Stores M[i]
 2 ADD.D F4,F0,F2 ; Adds to M[i-1]
 3 L.D F0,-16(R1);Loads M[i-2]
 4 DSUBUI R1,R1,#8
 5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
– Maximize result-use distance
– Less code space than unrolling
– Fill & drain pipe only once per loop
 vs. once per each unrolled iteration in loop unrolling

SW Pipeline

Loop Unrolled
o

ve
rl

ap
p

ed
 o

p
s

Time

Time

5 cycles per iteration CS252/Patterson
Lec 19.204/6/01

When Safe to Unroll Loop?
• Example: Where are data dependencies?

(A,B,C distinct & nonoverlapping)
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}

1. S2 uses the value, A[i+1], computed by S1 in the same
iteration.
2. S1 uses a value computed by S1 in an earlier iteration, since
iteration i computes A[i+1] which is read in iteration i+1. The
same is true of S2 for B[i] and B[i+1].
This is a “loop-carried dependence”: between iterations

• For our prior example, each iteration was distinct
• Implies that iterations can’t be executed in parallel,

Right????

CS252/Patterson
Lec 19.214/6/01

Does a loop-carried dependence mean
there is no parallelism???

• Consider:
for (i=0; i< 8; i=i+1) {

A = A + C[i]; /* S1 */
}

Could compute:

“Cycle 1”: temp0 = C[0] + C[1];
temp1 = C[2] + C[3];
temp2 = C[4] + C[5];
temp3 = C[6] + C[7];

“Cycle 2”: temp4 = temp0 + temp1;
temp5 = temp2 + temp3;

“Cycle 3”: A = temp4 + temp5;

• Relies on associative nature of “+”.
• See “Parallelizing Complex Scans and Reductions” by Allan Fisher

and Anwar Ghuloum (handed out next week)
CS252/Patterson

Lec 19.224/6/01

Hardware Support for Exposing
More Parallelism at Compile-Time

• Conditional or Predicated Instructions
– Discussed before in context of branch prediction
– Conditional instruction execution

• First instruction slot Second instruction slot
LW R1,40(R2) ADD R3,R4,R5

ADD R6,R3,R7
BEQZ R10,L
LW R8,0(R10)
LW R9,0(R8)

• Waste slot since 3rd LW dependent on result
of 2nd LW

CS252/Patterson
Lec 19.234/6/01

Hardware Support for Exposing
More Parallelism at Compile-Time

• Use predicated version load word (LWC)?
– load occurs unless the third operand is 0

• First instruction slot Second instruction slot
LW R1,40(R2) ADD R3,R4,R5
LWC R8,20(R10),R10 ADD R6,R3,R7
BEQZ R10,L
LW R9,0(R8)

• If the sequence following the branch were
short, the entire block of code might be
converted to predicated execution, and the
branch eliminated

CS252/Patterson
Lec 19.244/6/01

Exception Behavior Support

• Several mechanisms to ensure that
speculation by compiler does not violate
exception behavior

– For example, cannot raise exceptions in predicated
code if annulled

– Prefetch does not cause exceptions

Page 5

CS252/Patterson
Lec 19.254/6/01

Hardware Support for Memory
Reference Speculation

• To compiler to move loads across stores,
when it cannot be absolutely certain that
such a movement is correct, a special
instruction to check for address conflicts
can be included in the architecture

– The special instruction is left at the original location of
the load and the load is moved up across stores

– When a speculated load is executed, the hardware
saves the address of the accessed memory location

– If a subsequent store changes the location before the
check instruction, then the speculation has failed

– If only load instruction was speculated, then it suffices
to redo the load at the point of the check instruction

CS252/Patterson
Lec 19.264/6/01

What if Can Chance Instruction Set?

• Superscalar processors decide on the fly
how many instructions to issue

– HW complexity of Number of instructions to issue O(n2)

• Why not allow compiler to schedule
instruction level parallelism explicitly?

• Format the instructions in a potential issue
packet so that HW need not check explicitly
for dependences

CS252/Patterson
Lec 19.274/6/01

VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for multiple
operations

– In IA-64, grouping called a “packet”
– In Transmeta, grouping called a “molecule” (with “atoms” as ops)

• Tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168
bits wide

– Need compiling technique that schedules across several branches

CS252/Patterson
Lec 19.284/6/01

Recall: Unrolled Loop that Minimizes
Stalls for Scalar

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

CS252/Patterson
Lec 19.294/6/01

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L.D F14,-24(R1) 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8
S.D -0(R1),F28 BNEZ R1,LOOP 9

 Unrolled 7 times to avoid delays
 7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
 Average: 2.5 ops per clock, 50% efficiency
 Note: Need more registers in VLIW (15 vs. 6 in SS)

CS252/Patterson
Lec 19.304/6/01

Recall: Software Pipelining

• Observation: if iterations from loops are independent,
then can get more ILP by taking instructions from
different iterations

• Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from
different iterations of the original loop (~ Tomasulo in
SW)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

Page 6

CS252/Patterson
Lec 19.314/6/01

Recall: Software Pipelining Example
Before: Unrolled 3 times
 1 L.D F0,0(R1)
 2 ADD.D F4,F0,F2
 3 S.D 0(R1),F4
 4 L.D F6,-8(R1)
 5 ADD.D F8,F6,F2
 6 S.D -8(R1),F8
 7 L.D F10,-16(R1)
 8 ADD.D F12,F10,F2
 9 S.D -16(R1),F12
 10 DSUBUI R1,R1,#24
 11 BNEZ R1,LOOP

After: Software Pipelined
 1 S.D 0(R1),F4 ; Stores M[i]
 2 ADD.D F4,F0,F2 ; Adds to M[i-1]
 3 L.D F0,-16(R1); Loads M[i-2]
 4 DSUBUI R1,R1,#8
 5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
– Maximize result-use distance
– Less code space than unrolling
– Fill & drain pipe only once per loop
 vs. once per each unrolled iteration in loop unrolling

SW Pipeline

Loop Unrolled

o
ve

rl
ap

p
ed

 o
p

s

Time

Time

CS252/Patterson
Lec 19.324/6/01

Software Pipelining with
Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

L.D F0,-48(R1) ST 0(R1),F4 ADD.D F4,F0,F2 1
L.D F6,-56(R1) ST -8(R1),F8 ADD.D F8,F6,F2 DSUBUI R1,R1,#242
L.D F10,-40(R1) ST 8(R1),F12 ADD.D F12,F10,F2 BNEZ R1,LOOP 3

• Software pipelined across 9 iterations of original loop
– In each iteration of above loop, we:

» Store to m,m-8,m-16 (iterations I-3,I-2,I-1)
» Compute for m-24,m-32,m-40 (iterations I,I+1,I+2)
» Load from m-48,m-56,m-64 (iterations I+3,I+4,I+5)

• 9 results in 9 cycles, or 1 clock per iteration
• Average: 3.3 ops per clock, 66% efficiency
 Note: Need fewer registers for software pipelining

 (only using 7 registers here, was using 15)

CS252/Patterson
Lec 19.334/6/01

Trace Scheduling

• Parallelism across IF branches vs. LOOP branches?
• Two steps:

– Trace Selection
» Find likely sequence of basic blocks (trace)

of (statically predicted or profile predicted)
long sequence of straight-line code

– Trace Compaction
» Squeeze trace into few VLIW instructions
» Need bookkeeping code in case prediction is wrong

• This is a form of compiler-generated speculation
– Compiler must generate “fixup” code to handle cases in which

trace is not the taken branch
– Needs extra registers: undoes bad guess by discarding

• Subtle compiler bugs mean wrong answer
vs. poorer performance; no hardware interlocks

CS252/Patterson
Lec 19.344/6/01

Advantages of HW (Tomasulo) vs.
SW (VLIW) Speculation

• HW advantages:
– HW better at memory disambiguation since knows actual addresses
– HW better at branch prediction since lower overhead
– HW maintains precise exception model
– HW does not execute bookkeeping instructions
– Same software works across multiple implementations
– Smaller code size (not as many nops filling blank instructions)

• SW advantages:
– Window of instructions that is examined for parallelism much higher
– Much less hardware involved in VLIW (unless you are Intel…!)
– More involved types of speculation can be done more easily
– Speculation can be based on large-scale program behavior, not just

local information

CS252/Patterson
Lec 19.354/6/01

Superscalar v. VLIW

• Smaller code size
• Binary compatibility

across generations
of hardware

• Simplified Hardware
for decoding, issuing
instructions

• No Interlock
Hardware (compiler
checks?)

• More registers, but
simplified Hardware
for Register Ports
(multiple independent
register files?)

CS252/Patterson
Lec 19.364/6/01

Problems with First Generation VLIW

• Increase in code size
– generating enough operations in a straight-line code

fragment requires ambitiously unrolling loops
– whenever VLIW instructions are not full, unused functional

units translate to wasted bits in instruction encoding

• Operated in lock-step; no hazard detection HW
– a stall in any functional unit pipeline caused entire processor

to stall, since all functional units must be kept synchronized
– Compiler might prediction function units, but caches hard to

predict

• Binary code compatibility
– Pure VLIW => different numbers of functional units and unit

latencies require different versions of the code

Page 7

CS252/Patterson
Lec 19.374/6/01

Intel/HP IA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

• IA-64: instruction set architecture; EPIC is type
– EPIC = 2nd generation VLIW?

• Itanium™ is name of first implementation (2001)
– Highly parallel and deeply pipelined hardware at 800Mhz
– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• 128 64-bit integer registers + 128 82-bit floating
point registers

– Not separate register files per functional unit as in old VLIW

• Hardware checks dependencies
(interlocks => binary compatibility over time)

• Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

CS252/Patterson
Lec 19.384/6/01

IA-64 Registers
• The integer registers are configured to help

accelerate procedure calls using a register stack
– mechanism similar to that developed in the Berkeley RISC-I

processor and used in the SPARC architecture.
– Registers 0-31 are always accessible and addressed as 0-31
– Registers 32-128 are used as a register stack and each

procedure is allocated a set of registers (from 0 to 96)
– The new register stack frame is created for a called

procedure by renaming the registers in hardware;
– a special register called the current frame pointer (CFM)

points to the set of registers to be used by a given procedure

• 8 64-bit Branch registers used to hold branch
destination addresses for indirect branches

• 64 1-bit predict registers

CS252/Patterson
Lec 19.394/6/01

IA-64 Registers

• Both the integer and floating point registers
support register rotation for registers 32-128.

• Register rotation is designed to ease the task of
allocating of registers in software pipelined loops

• When combined with predication, possible to avoid
the need for unrolling and for separate prologue
and epilogue code for a software pipelined loop

– makes the SW-pipelining usable for loops with smaller numbers
of iterations, where the overheads would traditionally negate
many of the advantages

CS252/Patterson
Lec 19.404/6/01

Intel/HP IA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

• Instruction group: a sequence of consecutive
instructions with no register data dependences

– All the instructions in a group could be executed in parallel, if
sufficient hardware resources existed and if any dependences
through memory were preserved

– An instruction group can be arbitrarily long, but the compiler must
explicitly indicate the boundary between one instruction group and
another by placing a stop between 2 instructions that belong to
different groups

• IA-64 instructions are encoded in bundles, which are
128 bits wide.

– Each bundle consists of a 5-bit template field and 3 instructions,
each 41 bits in length

• 3 Instructions in 128 bit “groups”; field determines if
instructions dependent or independent

– Smaller code size than old VLIW, larger than x86/RISC
– Groups can be linked to show independence > 3 instr

CS252/Patterson
Lec 19.414/6/01

5 Types of Execution in Bundle
Execution Instruction Instruction Example
Unit Slot type Description Instructions
I-unit A Integer ALU add, subtract, and, or, cmp

I Non-ALU Int shifts, bit tests, moves
M-unit A Integer ALU add, subtract, and, or, cmp

M Memory access Loads, stores for int/FP regs
F-unit F Floating point Floating point instructions
B-unit B Branches Conditional branches, calls
L+X L+X Extended Extended immediates, stops

• 5-bit template field within each bundle describes
both the presence of any stops associated with the
bundle and the execution unit type required by each
instruction within the bundle (see Fig 4.12 page 271) CS252/Patterson

Lec 19.424/6/01

FPUIA-32
Control

Instr.
Fetch &
Decode Cache

Cache

TLB

Integer Units

IA-64 Control

Bus

Core Processor Die 4 x 1MB L3 cache

Itanium™ Processor Silicon
(Copyright: Intel at Hotchips ’00)

Page 8

CS252/Patterson
Lec 19.434/6/01

Itanium™ Machine Characteristics
(Copyright: Intel at Hotchips ’00)

Organic Land Grid ArrayPackage

0.18u CMOS, 6 metal layerProcess

25.4M CPU; 295M L3Transistor Count

800 MHzFrequency

2.1 GB/sec; 4-way Glueless MPSystem Bus

4MB, 4-way s.a., BW of 12.8 GB/sec;L3 Cache

Dual ported 96K Unified & 16KD; 16KIL2/L1 Cache

6 / 2 clocksL2/L1 Latency

Scalable to large (512+ proc) systems

64 entry ITLB, 32/96 2-level DTLB, VHPTVirtual Memory Support

6 insts/clock (4 ALU/MM, 2 Ld/St, 2 FP, 3 Br)Machine Width

3.2 GFlops (DP/EP); 6.4 GFlops (SP)FP Compute Bandwidth

4 DP (8 SP) operands/clockMemory -> FP Bandwidth

14 ported 128 GR & 128 FR; 64 Predicates

32 entry ALAT, Exception DeferralSpeculation

Registers

Branch Prediction Multilevel 4-stage Prediction Hierarchy

CS252/Patterson
Lec 19.444/6/01

Branch
Hints

Memory
Hints

Instruction
Cache

& Branch
Predictors

 FetchFetch Memory Memory
SubsystemSubsystem

Three
levels of
cache:
L1, L2, L3

Register
Stack
& Rotation

 Explicit
 Parallelism

128 GR &
128 FR,
Register
Remap

&
Stack
Engine

Register Register
HandlingHandling

F
ast, S

im
p

le 6-Issu
e

IssueIssue ControlControl

Micro-architecture Features in hardwareMicro-architecture Features in hardware: :

Itanium™ EPIC Design Maximizes SW-HW Synergy
(Copyright: Intel at Hotchips ’00)

Architecture Features programmed by compiler::

Predication
Data & Control
Speculation

B
yp

asses &
 D

ep
en

d
en

cies
Parallel ResourcesParallel Resources

4 Integer +
4 MMX Units

2 FMACs
(4 for SSE)

 2 L.D/ST units

32 entry ALAT

Speculation Deferral Management

CS252/Patterson
Lec 19.454/6/01

10 Stage In-Order Core Pipeline
(Copyright: Intel at Hotchips ’00)

Front EndFront End
••Pre-fetch/Fetch of upPre-fetch/Fetch of up
to 6 instructions/cycleto 6 instructions/cycle

••Hierarchy of branchHierarchy of branch
predictorspredictors

••Decoupling bufferDecoupling buffer

Instruction DeliveryInstruction Delivery
••Dispersal of up to 6Dispersal of up to 6
instructions on 9 portsinstructions on 9 ports

••Reg.Reg. remapping remapping
••Reg. stack engineReg. stack engine

Operand DeliveryOperand Delivery
•• RegReg read + Bypasses read + Bypasses
•• Register scoreboardRegister scoreboard
•• Predicated Predicated

dependenciesdependencies

ExecutionExecution
•• 4 single cycle4 single cycle ALUs ALUs, 2 ld/, 2 ld/strstr
•• Advanced load controlAdvanced load control
•• Predicate delivery & branchPredicate delivery & branch
•• Nat/Exception/Nat/Exception///RetirementRetirement

IPG FET ROT EXP R E N R E G E X E D E T W R BWL.D

REGISTER READ
WORD-LINE
 DECODERENAMEEXPAND

INST POINTER
GENERATION

FETCH ROTATE EXCEPTION
DETECT

 EXECUTE WRITE-BACK

CS252/Patterson
Lec 19.464/6/01

Itanium processor 10-stage pipeline

• Front-end (stages IPG, Fetch, and Rotate):
prefetches up to 32 bytes per clock (2
bundles) into a prefetch buffer, which can
hold up to 8 bundles (24 instructions)

– Branch prediction is done using a multilevel adaptive
predictor like P6 microarchitecture

• Instruction delivery (stages EXP and REN):
distributes up to 6 instructions to the 9
functional units

– Implements registers renaming for both rotation and
register stacking.

CS252/Patterson
Lec 19.474/6/01

Itanium processor 10-stage pipeline
• Operand delivery (WLD and REG): accesses

register file, performs register bypassing,
accesses and updates a register scoreboard,
and checks predicate dependences.

– Scoreboard used to detect when individual instructions
can proceed, so that a stall of 1 instruction in a bundle
need not cause the entire bundle to stall

• Execution (EXE, DET, and WRB): executes
instructions through ALUs and load/store
units, detects exceptions and posts NaTs,
retires instructions and performs write-back

– Deferred exception handling for speculative instructions is
supported by providing the equivalent of poison bits,
called NaTs for Not a Thing, for the GPRs (which makes
the GPRs effectively 65 bits wide), and NaT Val (Not a
Thing Value) for FPRs (already 82 bits wides)

CS252/Patterson
Lec 19.484/6/01

Comments on Itanium

• Remarkably, the Itanium has many of the
features more commonly associated with the
dynamically-scheduled pipelines

– strong emphasis on branch prediction, register renaming,
scoreboarding, a deep pipeline with many stages before
execution (to handle instruction alignment, renaming, etc.),
and several stages following execution to handle exception
detection

• Surprising that an approach whose goal is to
rely on compiler technology and simpler HW
seems to be at least as complex as dynamically
scheduled processors!

Page 9

CS252/Patterson
Lec 19.494/6/01

Peformance of IA-64 Itanium?

• Despite the existence of silicon, no
significant standard benchmark results are
available for the Itanium

• Whether this approach will result in
significantly higher performance than other
recent processors is unclear

• The clock rate of Itanium (733 MHz) is
competitive but slower than the clock rates
of several dynamically-scheduled machines,
which are already available, including the
Pentium III, Pentium 4 and AMD Athlon

CS252/Patterson
Lec 19.504/6/01

Summary#1: Hardware versus
Software Speculation Mechanisms

• To speculate extensively, must be able to
disambiguate memory references

– Much easier in HW than in SW for code with pointers

• HW-based speculation works better when control
flow is unpredictable, and when HW-based
branch prediction is superior to SW-based
branch prediction done at compile time

– Mispredictions mean wasted speculation

• HW-based speculation maintains precise
exception model even for speculated instructions

• HW-based speculation does not require
compensation or bookkeeping code

CS252/Patterson
Lec 19.514/6/01

Summary#2: Hardware versus Software
Speculation Mechanisms cont’d

• Compiler-based approaches may benefit from the
ability to see further in the code sequence,
resulting in better code scheduling

• HW-based speculation with dynamic scheduling
does not require different code sequences to
achieve good performance for different
implementations of an architecture

– may be the most important in the long run?

CS252/Patterson
Lec 19.524/6/01

Summary #3: Software Scheduling

• Instruction Level Parallelism (ILP) found either by
compiler or hardware.

• Loop level parallelism is easiest to see
– SW dependencies/compiler sophistication determine if compiler can

unroll loops
– Memory dependencies hardest to determine => Memory disambiguation
– Very sophisticated transformations available

• Trace Sceduling to Parallelize If statements
• Superscalar and VLIW: CPI < 1 (IPC > 1)

– Dynamic issue vs. Static issue
– More instructions issue at same time => larger hazard penalty
– Limitation is often number of instructions that you can successfully

fetch and decode per cycle

