Lecture 15
Multimedia Instruction Sets:
SIMD and Vector

Christoforos E. Kozyrakis
(kozyraki@cs.berkeley.edu)

CS252 Graduate Computer Architecture

University of California at Berkeley
March 14th, 2001

The Need for Multimedia I1SAs

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, /14101

« Why aren't general-purpose processors and ISAs
sufficient for multimedia (despite Moore's law)?
* Performance
- A 1.2GHz Athlon can do MPEG-4 encoding at 6.4fps
- One 384Kbps W-CDMA channel requires 6.9 GOPS
* Power consumption
- A 1.2GHz Athlon consumes ~60W

- Power consumption increases with clock frequency and
complexity

* Cost

- A 1.2GHz Athlon costs ~$62 to manufacture and has a list
price of ~$600 (module)

- Cost increases with complexity, area, transistor count,
power, etc

Example: 3D Graphics

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, /14101

Display Lists
Load Breakdown

X Transform
Geometry Pipe Lighting 10%
Iy

10%

Rasterization
Anti-aliasing
Shading, fogging
Texture mapping
Alpha blending

Z-buffer 55%
Clipping o
Frame-buffer ops|

—_—

35%
Rendering Pipe

Output to Screen

What is Multimedia Processing?

o252, Lecture 15: Mulimeda rstruction Set: SIMD and Vector
« Desktop:

- 3D graphics (games)

- Speech recognition (voice input)

- Video/audio decoding (mpeg-mp3 playback)
* Servers:

C.E. Kozyrakis, /14101

- Video/audio encoding (video servers, IP telephony)

- Digital libraries and media mining (video servers)

- Computer animation, 3D modeling & rendering (movies)
« Embedded:

- 3D graphics (game consoles)

- Video/audio decoding & encoding (set top boxes)

- Image processing (digital cameras)

- Signal processing (cellular phones)

Example: MPEG Decoding

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, /14101

Input Stream

Load Breakdown

10%
11
Dequantization 20%
11
25%
| Block Reconstruction| 30%
RGB->YUV 15%

1l
Output to Screen

Characteristics of Multimedia Apps (1)

o252, Lecture 15: Mulimeda rstruction Set: SIMD and Vector
* Requirement for real-time response

- “Incorrect” result often preferred to slow result

- Unpredictability can be bad (e.g. dynamic execution)
« Narrow data-types

- Typical width of data in memory: 8 to 16 bits

C.E. Kozyrakis, /14101

- Typical width of data during computation: 16 to 32 bits
- 64-bit data types rarely needed
- Fixed-point arithmetic often replaces floating-point
« Fine-grain (data) parallelism
- ldentical operation applied on streams of input data
- Branches have high predictability
- High instruction locality in small loops or kernels

Characteristics of Multimedia Apps (2)

o252, Lecture 15: Mulimeda rstruction Set: SIMD and Vector
« Coarse-grain parallelism
- Most apps organized as a pipeline of functions
- Multiple threads of execution can be used
* Memory requirements

- High bandwidth requirements but can tolerate high
latency

- High spatial locality (predictable pattern) but low
temporal locality

- Cache bypassing and prefetching can be crucial

C.E. Kozyrakis, /14101

Approaches to Mediaprocessing

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, /14101

General-purpose
processors with
SIMD extensions

N

Vector Processors

VLIW with SIMD extensions
(aka mediaprocessors)

—

Multimedia

Processing

DSPs ASICs/FPGAs

Overview of SIMD Extensions

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, /14101

Vendor | Extension | Year | # Instr Registers
HP MAX-1and 2 | 94,95 9,8 (int) Int 32x64b
Sun VIS 95 121 (int) FP 32x64b
Intel MMX 97 57 (int) FP 8x64b
AMD 3DNow! 98 21 (fp) FP 8x64b
Motorola Altivec 98 162 (int,fp) 32x128b (new)
Intel SSE 98 70 (fp) 8x128b (new)
MIPS MIPS-3D ? 23 (fp) FP 32x64b
AMD E 3DNow! 99 24 (fp) 8x128 (new)
Intel SSE-2 01 144 (int,fp) 8x128 (new)

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector.

Examples of Media Functions

o252, Lecture 15: Mulimeda rstruction Set: SIMD and Vector
* Matrix transpose/multiply (3D graphics)
e DCT/FFT (Video, audio, communications)
* Motion estimation (Video)

* Gamma correction (3D graphics)

* Haar transform (Media mining)

* Median filter (Image processing)

* Separable convolution

« Viterbi decode

« Bit packing

« Galois-fields arithmetic

C.E. Kozyrakis, /14101

(Image processing)
(Communications, speech)
(Communications, cryptography)
(Communications, cryptography)

SIMD Extensions for GPP
* Motivation
- Low media-processing performance of GPPs

- Cost and lack of flexibility of specialized ASICs for
graphics/video

- Underutilized datapaths and registers
« Basic idea: sub-word parallelism

- Treat a 64-bit register as a vector of 2 32-bit or 4 16-bit
or 8 8-bit values (short vectors)

- Partition 64-bit datapaths to handle multiple narrow
operations in parallel
< [Initial constraints
- No additional architecture state (registers)
- No additional exceptions
- Minimum area overhead

C.E. Kozyrakis, /14101

Example of SIMD Operation (1)

C.E. Kozyrakis, /14101

Sum of Partial Products

CIC I |
C |
|

I
I
I[/ I[*\ I[
N o~
— g

*

Example of SIMD Operation (2)

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, /14101

Pack (Int16-

Summary of SIMD Operations (2)
o252, Lecture 15: Mulimeda rstruction Set: SIMD and Vector G Kazyrai, 3401
« Comparisons

- Integer and FP packed comparison

- Compare absolute values

- Element masks and bit vectors
* Memory

- No new load-store instructions for short vector

« No support for strides or indexing

- Short vectors handled with 64b load and store
instructions

- Pack, unpack, shift, rotate, shuffle to handle alignment of
narrow data-types within a wider one

- Prefetch instructions for utilizing temporal locality

SIMD Performance

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, /14101

‘DArilhmelic Mean @ Geometic Mean ‘

6]

Media Benchmarks
SN

Athlon Alpha Pentium 11l PowerPC UltraSparc
21264 G4 i

Speedup over Base
Architecture for Berkeley

Limitations
* Memory bandwidth
« Overhead of handling alignment and data width adjustments

Summary of SIMD Operations (1)
o252, Lecture 15: Mulimeda rstruction Set: SIMD and Vector .5 Kanyrai, 3301
« Integer arithmetic

- Addition and subtraction with saturation

- Fixed-point rounding modes for multiply and shift

- Sum of absolute differences

- Multiply-add, multiplication with reduction

- Min, max
« Floating-point arithmetic

- Packed floating-point operations

- Square root, reciprocal

- Exception masks
« Data communication

- Merge, insert, extract

- Pack, unpack (width conversion)

- Permute, shuffle

Programming with SIMD Extensions
252, Lactre 15: Multimedia rstuction Sets: SIND ard Vector CLE. Kazyrais, 3114701
« Optimized shared libraries

- Written in assembly, distributed by vendor
- Need well defined API for data format and use
« Language macros for variables and operations
- C/C++ wrappers for short vector variables and function calls
- Allows instruction scheduling and register allocation optimizations
for specific processors
- Lack of portability, non standard
« Compilers for SIMD extensions
- No commercially available compiler so far
- Problems

« Language support for expressing fixed-point arithmetic and
SIMD parallelism

« Complicated model for loading/storing vectors
« Frequent updates
« Assembly coding

A Closer Look at MMX/SSE

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, /14101

Pentiumlll (500MHz) with MMX/SSE
311

Speedup over Base Architecture

« Higher speedup for kernels with narrow data where 128b
SSE instructions can be used

« Lower speedup for those with irregular or strided accesses

CS 252 Administrivia

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector

« No announcements for today

C.E. Kozyrakis, /14101

« Chip design “toys” to see during break ©
- Wafers
- Packages
- Packaged chips
- Boards

Properties of Vector Processors

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector. C.E. Kozyrakis, /14101

« Single vector instruction implies lots of work (loop)
- Fewer instruction fetches
« Each result independent of previous result
- Compiler ensures no dependencies
- Multiple operations can be executed in parallel
- Simpler design, high clock rate

« Reduces branches and branch problems in pipelines

« Vector instructions access memory with known
pattern
- Effective prefetching
- Amortize memory latency of over large number of elements
- Can exploit a high bandwidth memory system
- No (data) caches required!

Components of a Vector Processor
5252, Lecture 15: Mtimedi Instrctin Sets: SIMD and Vector
+ Scalar CPU: registers, datapaths, instruction fetch logic
* Vector register
- Fixed length memory bank holding a single vector
- Has at least 2 read and 1 write ports
- Typically 8-32 vector registers, each holding 1 to 8 Kbits
- Can be viewed as array of 64b, 32b, 16b, or 8b elements
« Vector functional units (FUs)
- Fully pipelined, start new operation every clock
- Typically 2 to 8 FUs: integer and FP
- Multiple datapaths (pipelines) used for each unit to process
multiple elements per cycle
* Vector load-store units (LSUs)
- Fully pipelined unit to load or store a vector
- Multiple elements fetched/stored per cycle
- May have multiple LSUs
« Cross-bar to connect FUs , LSUs, registers

C.E. Kozyrakis, /14101

« Initially developed for super-computing applications,

Vector Processors

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector

C.E. Kozyrakis, /14101

but we will focus only on multimedia today

« Vector processors have high-level operations that
work on linear arrays of numbers: "vectors"

SCALAR
(1 operation)

el

E

add r3, ri, r2

VECTOR
(N operations)

vadd.wvv v3, vl, v2

3 vecor

length

Styles of Vector Architectures

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector.

 Memory-memory vector processors

C.E. Kozyrakis, /14101

- All vector operations are memory to memory

. Vector—register processors
- All vector operations between vector registers (except
vector load and store)

- Vector equivalent of load-store architectures

- Includes all vector machines since late 1980s
- We assume vector-register for rest of the lecture

Instr.
VADD.
VADD.
VMUL.
VMUL.

VLD
VLDS
VLDX
VST
VSTS
VSTX

Basic Vector Instructions

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector.

w
sV
w
sV

Operands
V1, V2, V3
V1, RO, V2
V1, V2, V3
V1, RO, V2
Vi, R1
V1, R1, R2
V1, R1, V2
Vi, R1
V1, R1, R2
V1, R1, V2

Operation
V1=V2+V3
V1=R0O+V2
V1=V2xV3
V1=ROxV2
V1=M[R1..R1+63]

.5 Kanyrai, 3saon
Comment

vector + vector
scalar + vector
vector x vector
scalar x vector
load, stride=1

V1=M[R1..R1+63*R2] load, stride=R2
V1=M[R1+V2i,i=0..63] indexed("gather")

M[RL..R1+63]=V1

store, stride=1

V1=M[R1..R1+63*R2] store, stride=R2
V1=M[R1+V2i,i=0..63] indexed(“scatter")

+ all the regular scalar instructions (RISC style)...

Vector Memory Operations
« Load/store operations move groups of data
between registers and memory

* Three types of addressing
- Unit stride
« Fastest
- Non-unit (constant) stride
- Indexed (gather-scatter)
« Vector equivalent of register indirect
« Good for sparse arrays of data
« Increases number of programs that vectorize
« Support for various combinations of data widths in
memory and registers
- {L,.W,.H.,.B} x {64b, 32D, 16b, 8b}

Setting the Vector Length
oz, v 15 ilied srition S IV i Vesar . Xy, 314101
« A vector register can hold some maximum number of
elements for each data width (maximum vector length
or MVL)

« What to do when the application vector length is not
exactly MVL?

< Vector-length (VL) register controls the length of any
vector operation, including a vector load or store
- E.g. vadd.vv with VL=10 is
for (1=0; 1<10; I++) VI[1]=V2[I1]+V3[I]

« VL can be anything from O to MVL

« How do you code an application where the vector
length is not known until run-time?

Choosing the Data Type Width
o252, Lecture 15: Mulimeda rstruction Set: SIMD and Vector .5 Kanyrai, 3saon
« Alternatives for selecting the width of elements in

a vector register (64b, 32b, 16b, 8b)

* Separate instructions for each width

- E.g. vadd64, vadd32, vadd16, vadd8

- Popular with SIMD extensions for GPPs

- Uses too many opcodes
« Specify it in a control register

- Virtual-processor width (VPW)

- Updated only on width changes
« NOTE

- MVL increases when width (VPW) gets narrower

- E.g. with 2Kbits for register, MVL is 32,64,128,256 for
64-,32-,16-,8-bit data respectively
- Always pick the narrowest VPW needed by the application

64 element SAXPY: scalar

Vector Code Example

T — S
Y[0:63] = Y[0:653] + a*X[0:63]

64 element SAXPY: vector

LD RO, a LD RO, a #l oad scalar a

ADDI R4, Rx, #512 VLD V1, Rx #l oad vector X
loop: LD R2, O(Rx) VMUL. SV V2, RO, V1 #vector nult

YBLTD 2421 Rg(IF??/) VLD V3, Ry #l oad vector Y

ADDD R4, R2, RA VADD. W V4, V2, V3 #vector add

sD R4, O(Ry) VST Ry, V4 #store vector Y

ADDI RX, Rx, #8
ADDI Ry, Ry, #8
SuB R20, R4, Rx
BNZ R20, | oop

Strip Mining
252, Lactre 15: Multimedia rstuction Sets: SIND ard Vector CE. Koryrakis, /14/010
* Suppose application vector length > MVL
« Strip mining
- Generation of a loop that handles MVL elements per iteration

- A set operations on MVL elements is translated to a single vector
instruction

« Example: vector saxpy of N elements
- First loop handles (N mod MVL) elements, the rest handle MVL

VL = (N mod MVL); // set VL = N mod MVL

for (1=0; I<VL; 1++) // 1st loop is a single set of
YLII=A*X[11+Y[1]; // vector instructions

Tow = (N mod MVL);

L = MVL; // set VL to MVL

for (I=low; I<N; I++) // 2™ loop requires N/MVL
YLII=A*X[11+Y[1]; // sets of vector instructions

Other Features for Multimedia

o252, Lecture 15: Mulimeda rstruction Set: SIMD and Vector .5 Kanyrai, 3saon
« Support for fixed-point arithmetic
- Saturation, rounding-modes etc
* Permutation instructions of vector registers
- For reductions and FFTs
- Not general permutations (too expensive)
« Example: permutation for reductions
- Move 2" half a a vector register into another one
- Repeatedly use with vadd to execute reduction
- Vector length halved after each step

0 15 16 63

0 1516 63

Optimization 1: Chaining

| e v s G s s Ge e v]
* Suppose:

vmul.vv V1,V2,V3

vadd.vv V4,V1,V5 # RAW hazard
« Chaining

- Vector register (V1) is not as a single entity but as a

group of individual registers

- Pipeline forwarding can work on individual vector elements
« Flexible chaining: allow vector to chain to any other

active vector operation => more read/write ports

Unchained |_|_|
vmul vadd

vmu

vadd

Chained

Chaining & Multi-lane Example
| e v s G s s Ge e v]

Scalar LsSu FUO FUl
vid =

vmul.vv SAAAA
l vadd.vv IYYVYYRI=EX X X2
addu =0 AAAA *eee
Time yid = AAAA XXX
vmul .vv S{AAAL 4400
vadd.vv Adddlisleeee
addu =0 Adaa 000
AAAA 4400
000

Element Operations: ¢ [A nstr. Issue: =

* VL=16, 4 lanes, 2 FUs, 1 LSU, chaining -> 12 ops/cycle
« Just one new instruction issued per cycle !!!!

Vector Architecture State

Virtual Processors ($mvl)

VPU VPl VP%VW\/I 1

General | Vo

Purpose vi g
Registers
Vi [, 0
rl _
vh, :
Flag i, °
Registers [y —

Optimization 2: Multi-lane Implementation

Pipelined
Datapath

Lane

Vector Reg.
Partition

Ly 2 |} Functional

To/From Memory System

« Elements for vector registers interleaved across the lanes
« Each lane receives identical control

« Multiple element operations executed per cycle

« Modular, scalable design

« No need for inter-lane communication for most vector
instructions

Optimization 3: Conditional Execution
e ==Y P o
« Suppose you want to vectorize this:
for (1=0; I<N, I++)
it (AlI]t=B[I]) AllI] -=B[I];

< Solution: vector conditional execution

- Add vector flag registers with single-bit elements

- Use avector compare to set the a flag register

- Use flag register as mask control for the vector sub

« Addition executed only for vector elements with
corresponding flag element set

« Vector code

vid V1, Ra

vid V2, Rb

vemp.neq.ww FO, V1, V2 # vector compare
vsub.vv V3, V2, V1, FO # conditional vadd
vst V3, Ra

Two Ways to Vectorization
| e s s e s Ge e v]
« Inner loop vectorization

- Think of machine as, say, 32 vector registers each with 16
elements

- linstruction updates 32 elements of 1 vector register
- Good for vectorizing single-dimension arrays or regular
kernels (e.g. saxpy)
« Outer loop vectorization

- Think of machine as 16 “virtual processors” (VPs)
each with 32 scalar registers! (- multithreaded processor)

- linstruction updates 1 scalar register in 16 VPs
- Good for irregular kernels or kernels with loop-carried
dependences in the inner loop
* These are just two compiler perspectives
- The hardware is the same for both

Outer-loop Example (1)

// Matrix-matrix multiply:
/7 sum a[i][t] * b[t][j] to get c[i][i]l
for (i=1; i<n; i++)
for (3=1; j<n; j++)
{
sum = 0;
for (t=1; t<n; t++)

sum += a[i][t] * b[t]l[j]; 7/ loop-carried
3} // dependence
c[ilf] = sum;

Designing a Vector Processor

| e v s G s s Ge e v]
« Changes to scalar core

* How to pick the maximum vector length?

* How to pick the number of vector registers?
« Context switch overhead?

« Exception handling?

« Masking and flag instructions?

How to Pick Max. Vector Length?

« Vector length => Keep all VFUs busy:

(# lanes) X (# VFUs)

* Vector length >= # Vector instr. issued/cycle

* Notes:

- Single instruction issue is always the simplest

- Don't forget you have to issue some scalar instructions as
well

Outer-loop Example (2)

// Outer-loop Matrix-matrix multiply:

/7 sum a[i][t] * b[t][j] to get c[i][i]l

/7 32 elements of the result calculated in parallel
// with each iteration of the j-loop (c[i][j:j+31])
for (i=1; i<n; i++) {

for (3=1; j<n; j+=32) { // loop being vectorized
sum[0:31]
for (t=1; t<n; t++)
ascalar = a[i][t]; // scalar load
bvector[0:31] = b[t][j:j+31]; // vector load
prod[0:31] = b_vector[0:31]*ascalar; // vector mul
sum[0:31] += prod[0:31]; // vector add

c[il[j:j+31] = sum[0:31]; // vector store

Changes to Scalar Processor

| e v s G s s Ge e v]

« Decode vector instructions

« Send scalar registers to vector unit
(vector-scalar ops)

« Synchronization for results back from vector
register, including exceptions

« Things that don't run in vector don't have high ILP,
so can make scalar CPU simple

How to Pick Max Vector Length?
| e v s G s s Ge e v]
« Longer good because:

Lower instruction bandwidth

- If know max length of app. is < max vector length, no strip
mining overhead

Tiled access to memory reduce scalar processor memory
bandwidth needs

- Better spatial locality for memory access
« Longer not much help because:

- Diminishing returns on overhead savings as keep doubling
number of elements

- Need natural app. vector length to match physical
register length, or no help

- Area for multi-ported register file

How to Pick # of Vector Registers?

o252, Lecture 15: Mulimeda rstruction Set: SIMD and Vector G oayrakis, 3/14/01
« More vector registers:
- Reduces vector register “spills” (save/restore)

- Aggressive scheduling of vector instructions: better
compiling to take advantage of ILP

* Fewer
- Fewer bits in instruction format (usually 3 fields)

« 32 vector registers are usually enough

Exception Handling: Arithmetic
o252, Lecture 15: Mulimeda rstruction Set: SIMD and Vector G oayrakis, 3/14/01
« Arithmetic traps are hard
* Precise interrupts => large performance loss

- Multimedia applications don't care much about arithmetic

traps anyway
« Alternative model

- Store exception information in vector flag registers

- A set flag bit indicates that the corresponding element

operation caused an exception

- Software inserts trap barrier instructions from SW to
check the flag bits as needed
1EEE floating point requires 5 flag registers (5 types of
traps)

Exception Handling: Interrupts

otz Locure 15: Wlimedi strction St SIND and Vetar [Ea——
« Interrupts due to external sources
- 1/0, timers etc
« Handled by the scalar core
« Should the vector unit be interrupted?
- Not immediately (no context switch)

- Only if it causes an exception or the interrupt handler
needs to execute a vector instruction

Context Switch Overhead?
. vThe Vvector register file holds a huge amount ofy
architectural state

- To expensive to save and restore all on each context
switch

« Extradirty bit per processor

- If vector registers not written, don't need to save on
context switch

« Extravalid bit per vector register, cleared on
process start
- Don't need to restore on context switch until needed

* Extra tip:

- Save/restore vector state only if the new context needs
to issue vector instructions

Exception Handling: Page Faults

otz Locure 15: limedi strctin St SIND and Vetar . Koayraks, 3/1a101
« Page faults must be precise

- Instruction page faults not a problem

- Data page faults harder
« Option 1: Save/restore internal vector unit state

- Freeze pipeline, (dump all vector state), fix fault,
(restore state and) continue vector pipeline

« Option 2: expand memory pipeline to check all
addresses before send to memory

- Requires address and instruction buffers to avoid stalls
during address checks

- On a page-fault on only needs to save state in those
buffers

- Instructions that have cleared the buffer can be allowed
to complete

Vector Power Consumption
o252, Lecture 15: Mulimeda rstruction Set: SIMD and Vector .5 Kanyrai, 3saon
« Can trade-off parallelism for power
- Power = C *vdd? *f
- If we double the lanes, peak performance doubles

- Halving f restores peak performance but also allows
halving of the vdd

- Power,, = (2C)*(Vdd/2)?*(f/2) = Power/4
« Simpler logic

- Replicated control for all lanes

- No multiple issue or dynamic execution logic
« Simpler to gate clocks

- Each vector instruction explicitly describes all the
resources it needs for a number of cycles

- Conditional execution leads to further savings

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector.

Why Vectors for Multimedia?

CLE. Kazyrais, 3114701
Natural match to parallelism in multimedia
- Vector operations with VL the image or frame width
- Easy to efficiently support vectors of narrow data types
High performance at low cost
- Multiple ops/cycle while issuing 1 instr/cycle
- Multiple ops/cycle at low power consumption
- Structured access pattern for registers and memory
Scalable

- Get higher performance by adding lanes without architecture
modifications

Compact code size

- Describe N operations with 1 short instruction (v. VLIW)
Predictable performance

- No need for caches, no dynamic execution

Mature, developed compiler technology

A Vector Media-Processor: VIRAM

C.E. Kozyrakis, /14101

« Technology: IBM SA-27E

- 0.18mm CMOS, 6 copper layers
« 280 mm?die area

- 158 mm2 DRAM, 50 mm? logic
« Transistor count: ~115M

- 14 Mbytes DRAM

DRAM || DRAM || DRAM | DRAM
MACRO|| MACRO| MACRO| MACRO|

MENORY CROSSBAR.

* Power supply & consumption

ECTOR [VECTOR| VECTOR| VECTOR|
LANE || LA! LAl LANE

- 1.2V for logic, 1.8V for DRAM
- 2Wat 1.2v
* Peak performance
- 1.6/3.2 /6.4 Gops (64/32/16b ops)
- 3.2/6.4/12.8 Gops (with madd)
- 1.6 Gflops (single-precision)
« Designed by 5 graduate students

MENORY CROSSBAR.

DRAM || DRAM | DRAM | DRAM
MACRO|| MACRO| MACRO| MACRO)|

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector

FFT (1)

C.E. Kozyrakis, /14101

‘FFT (Floating-point, 1024 points)‘
160
— 124.3
§ 10 O VIRAM
= 92 @ Pathfinder-2
£ A
F 80 69 0O Wildstar
5 O TigerSHARC
3 B ADSP-21160
2 36
5 404 0 TMS320C6701
w 25
16.8
o

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector.

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector.

Comparison with SIMD
More scalable v

- Can use double the amount of HW (datapaths/registers)
without modifying the architecture or increasing
instruction issue bandwidth

Simpler hardware

- A simple scalar core is enough

- Multiple operations per instruction

Full support for vector loads and stores

- No overhead for alignment or data width mismatch
Mature compiler technology

- Although language problems are similar...
Disadvantages

- Complexity of exception model

- Out of fashion...

Performance Comparison

C.E. Kozyrakis, /14101

VIRAM MMX
iDCT 0.75 3.75 (5.0x)
Color Conversion 0.78 8.00 (10.2x)
Image Convolution 1.23 5.49 (4.5x)
QCIF (176x144) 7.1M 33M (4.6x)
CIF (352x288) 28M 140M (5.0x)

* QCIF and CIF numbers are in clock cycles per frame
« All other numbers are in clock cycles per pixel

* MMX results assume no first level cache misses

FFT (2)

C.E. Kozyrakis, /14101

‘ FFT (Fixed-point, 256 points)‘

160 151

o

@ 120 — (@ VIRAM

E) .

© 87 @ Pathfinder-1
.E 80 | | |@carmel

s O TigerSHARC
3 @ PPC 604E

@

5 40 — |O Pentium

7.2 8.1 9 7.3

SIMD Summary

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, /14101

Narrow vector extensions for GPPs

- 64b or 128b registers as vectors of 32b, 16b, and 8b
elements

Based on sub-word parallelism and partitioned
datapaths

Instructions

- Packed fixed- and floating-point, multiply-add, reductions
- Pack, unpack, permutations

- Limited memory support

2x to 4x performance improvement over base
architecture

- Limited by memory bandwidth

Difficult to use (no compilers)

Vector Summary

5252, Lecture 15: Multimedia Instruction Sets: SIMD and Vector C.E. Kozyrakis, /14101

« Alternative model for explicitly expressing data

parallelism

I code is vectorizable, then simpler hardware,
more power efficient, and better real-time model
than out-of-order machines with SIMD support
Design issues include number of lanes, number of
functional units, number of vector registers, length
of vector registers, exception handling, conditional
operations

« Will multimedia popularity revive vector

architectures?

10

