
Page 1

CS252/Patterson
Lec 14.13/9/01

CS252
Graduate Computer Architecture

Lecture 14:
 Instruction Set #1: RISC/MIPS and DSPs

March 9, 2001
Prof. David A. Patterson
Computer Science 252

Spring 2001

CS252/Patterson
Lec 14.23/9/01

Multiprocessor Review

• Some optimism about future
– Parallel processing beginning to be understood in some

domains
– More performance than that achieved with a single-chip

microprocessor
– MPs are highly effective for multiprogrammed workloads
– MPs proved effective for intensive commercial workloads,

such as OLTP (assuming enough I/O to be CPU-limited),
DSS applications (where query optimization is critical), and
large-scale, web searching applications

• On-chip MPs appears to be growing
– 1) embedded market where natural parallelism often exists

an obvious alternative to faster less silicon efficient, CPU.
2) diminishing returns in high-end microprocessor encourage
designers to pursue on-chip multiprocessing

CS252/Patterson
Lec 14.33/9/01

3 Targets of Instruction Set

• Desktop computing: performance of programs
with integer and floating point data types, little
regard for program size or processor power

– Code size never reported in 4 generations of SPEC benchmarks

• Servers: today primarily for database, file
server, and web applications

– FP performance << integers and character string performance

• Embedded applications: value cost and power, so
code size important because less memory cheaper
and lower power

– Embedded MPU less die area than on-chip instruction memory!

CS252/Patterson
Lec 14.43/9/01

4 Classes of Instructions

• Moore’s Law+ graph coloring register allocator
algorithm => all machines use registers today

– Only exception: Java Virtual Machine, intended as a SW
interpreter, but some have made HW version

– Some DSPs have an accumulator (Multiply-Accumulate)

Comparing Number of Instructions

° Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator Register Register

(register-memory) (load-store)

Push A Load A Load R1,A Load R1,A

Push B Add B Add R1,B Load R2,B

Add Store C Store C, R1 Add R3,R1,R2

Pop C Store C,R3

CS252/Patterson
Lec 14.53/9/01

Memory Operands per Instruction

• RISC machines tend to have only register
operands + Load/Store

Number of
mem ory
addresses

Maximum
number of
operands
allowed

 Examples

0 3 Alpha, ARM, MIPS, PowerPC,
SPARC, SuperH, Trimedia CPU64

1 2 Intel 80x86, Motorola 68000, TI
TMS320C54x

2 2 VAX (also has 3-operand formats)

3 3 VAX (also has 2-operand formats)

CS252/Patterson
Lec 14.63/9/01

Numerous addressing modes has been tried
Addressing mode Example Meaning

Register Add R4,R3 R4 ← ← R4+R3

Immediate Add R4,#3 R4 ← ← R4+3

Displacement Add R4,100(R1) R4 ← ← R4+Mem[100+R1]

Register indirect Add R4,(R1) R4 ← ← R4+Mem[R1]

Indexed / Base Add R3,(R1+R2) R3 ← ← R3+Mem[R1+R2]

Direct or absolute Add R1,(1001) R1 ← ← R1+Mem[1001]

Memory indirect Add R1,@(R3) R1 ← ← R1+Mem[Mem[R3]]

Auto-increment Add R1,(R2)+ R1 ← ← R1+Mem[R2]; R2 ← ← R2+d

Auto-decrement Add R1,–(R2) R2 ← ← R2–d; R1 ← ← R1+Mem[R2]

Scaled Add R1,100(R2)[R3] R1 ←← R1+Mem[100+R2+R3*d]

Why Auto-increment/decrement? Scaled?

Page 2

CS252/Patterson
Lec 14.73/9/01

Addressing Mode Usage?
(ignore register mode)

3 desktop programs:

•Displacement: 42% avg, 32% to 55%

•Immediate: 33% avg, 17% to 43%

•Register deferred (indirect): 13% avg, 3% to 24%

•Scaled: 7% avg, 0% to 16%

•Memory indirect: 3% avg, 1% to 6%

•Misc: 2% avg, 0% to 3%

75% displacement & immediate
88% displacement, immediate & register indirect

7 5 %

8 8 %

CS252/Patterson
Lec 14.83/9/01

Addressing and Alignment: how do byte
addresses map onto words? restrictions?

• Big Endian: address of most significant
IBM 370, Motorola 68k, MIPS, Sparc, HP

• Little Endian: address of least significant
Intel 80x86

msb lsb

3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0

Alignment: require that objects fa l l on address
that is mult iple of their size.

0 1 2 3

Al igned

Not
Al igned

CS252/Patterson
Lec 14.93/9/01

A "Typical" RISC

• 32-bit fixed format instruction (3 formats)
• Memory access only via load/store instrutions
• 32 32-bit GPR (R0 contains zero, DP take pair)

– 64-bit addresses => 64-bit registers; all desktop RISCs today

• 3-address, reg-reg arithmetic instruction;
registers in same place

• Single address mode for load/store:
base + displacement

– no indirection (except via registers)

• Simple branch conditions
• Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
 CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

CS252/Patterson
Lec 14.103/9/01

Example: MIPS (Note register location)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

CS252/Patterson
Lec 14.113/9/01

MIPS arithmetic instructions

Instruction Example Meaning Comments

add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible

subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exception possible

add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exception possible

add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions

subtract unsigned subu $1,$2,$3 $1 = $2 – $3 3 operands; no exceptions

add imm. unsign. addiu $1,$2,100 $1 = $2 + 100 + constant; no exceptions

multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product

multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product

divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = remainder

 Hi = $2 mod $3

divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient & remainder

 Hi = $2 mod $3

Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi

Move from Lo mflo $1 $1 = Lo Used to get copy of Lo
CS252/Patterson

Lec 14.123/9/01

MIPS logical instructions

Instruction Example Meaning Comments

and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND

or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR

xor xor $1,$2,$3 $1 = $2 Å $3 3 reg. operands; Logical XOR

nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR

and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant

or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant

xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant

shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant

shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant

shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)

shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable

shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable

shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

Page 3

CS252/Patterson
Lec 14.133/9/01

MIPS data transfer instructions
Instruction Comment
SW 500(R4), R3 Store word
SH 502(R2), R3 Store half
SB 41(R3), R2 Store byte

LW R1, 30(R2) Load word
LH R1, 40(R3) Load halfword
LHU R1, 40(R3) Load halfword unsigned
LB R1, 40(R3) Load byte
LBU R1, 40(R3) Load byte unsigned
LUI R1, 40 Load Upper Immediate (16 bits shifted left by 16)

Why need LUI?

0000 … 0000

LUI R5

R5

CS252/Patterson
Lec 14.143/9/01

MIPS jump, branch, compare instructions
Instruction Example Meaning

branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100
Equal test ; PC re lat ive branch

branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100
Not equal test ; PC relat ive

set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; 2 ’s comp.

set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant ; 2 ’s comp.

set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; natura l numbers

set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant ; natura l numbers

jump j 10000 go to 10000
Jump to target address

jump register jr $31 go to $31
For swi tch, procedure return

jump and link jal 10000 $31 = PC + 4; go to 10000
For procedure cal l

CS252/Patterson
Lec 14.153/9/01

CS 252 Administrivia

• Quiz #1 Wed March 7 5:30-8:30 306 Soda
• Pizza at LaVal’s
• Cal-Stanford Day?
• Next Wednesday Christoforos Kozyrakis lecture

on multimedia and vector instruction sets
– He is leading the design of a 100M+ transistor

microprocessor at Berkeley which is a vector microprocessor
for multimedia applications

CS252/Patterson
Lec 14.163/9/01

Pitfall: Innovating at the instruction
set architecture to reduce code size
without accounting for the compiler.

• Relative MIPS Code size on EEMBC Telecom bench-
marks vs. Apogee Software Version 4.1 C compiler

Comp iler Green Hi lls:
Multi2000
Version 2.0

Al gorithmics
SDE 4.0B

IDT/c 7.2.1

Auto
Co llrelation 2.1 1.1 2.7
Co nvolutional
E ncoder 1.9 1.2 2.4
Fixed-po int Bit
Al location 2.0 1.2 2.3
Fixed P o int
Comp lex FFT 1.1 2.7 1.8
V iterb i G SM
Decoder 1.7 0.8 1.1
Geometric Mean 1.7 1.4 2.0

CS252/Patterson
Lec 14.173/9/01

Pitfall: Designing a “high-level”
instruction set feature specifically

oriented to supporting a HLL structure
• For example, VAX CALLS instruction steps

1) Align the stack if needed
2) Push argument count on the stack
3) Save registers indicated by call mask on the stack
4) Push the return address, top and base of stack

pointers on the stack
5) Clear the condition codes
6) Push status word and a zero word on the stack.
7) Update the two stack pointers.
8) Branch to the first instruction of the procedure.

• Architecture overkill: procs know # args,
faster linkage: CALLS slow, mismatch

CS252/Patterson
Lec 14.183/9/01

18%

3%

18%

62%

22%

19%

28%

31%

0%

0%

6%

94%

0%

0%

40%

60%

0% 20% 40% 60% 80% 100%

Byte (8 bits)

Halfword (16

bits)

Word (32 bits)

Double word (64

bits)

applu

equake

gzip

perl

Fallacy: There is such a thing
as a typical program

• SPEC 2000 data type usage per program.
What is typical?

Page 4

CS252/Patterson
Lec 14.193/9/01

DSPs and Media processors

• Both Typically embedded applications
• Difference is real-time performance, data I/O

– Worst case performance vs. average case performance
– Infinite, continuous streams of data vs. fixed data set

• Small number of key kernels critical, often
supplied by manufacturer

– Libraries are important, widely used
– Include tricks to improve performance for targeted kernels

but no compiler will generate

CS252/Patterson
Lec 14.203/9/01

DSP Introduction
• Digital Signal Processing: application of mathematical

operations to digitally represented signals
• Signals represented digitally as

sequences of samples
• Digital signals obtained from physical signals via

tranducers (e.g., microphones) and analog-to-digital
converters (ADC)

• Digital signals converted back to physical signals via
digital-to-analog converters (DAC)

• Digital Signal Processor (DSP):
electronic system that processes digital signals

CS252/Patterson
Lec 14.213/9/01

Common DSP algorithms
and applications

• Applications – Instrumentation and
measurement
– Communications
– Audio and video processing
– Graphics, image enhancement, 3- D rendering
– Navigation, radar, GPS
– Control - robotics, machine vision, guidance

• Algorithms
– Frequency domain filtering - FIR and IIR
– Frequency- time transformations - FFT
– Correlation

CS252/Patterson
Lec 14.223/9/01

What Do DSPs Need to Do Well?

• Most DSP tasks require:
– Repetitive numeric computations
– Attention to numeric fidelity
– High memory bandwidth, mostly via array accesses
– Real-time processing

• DSPs must perform these tasks efficiently
while minimizing:

– Cost
– Power
– Memory use
– Development time

CS252/Patterson
Lec 14.233/9/01

Who Cares about DSPs?

• DSP is a key enabling technology for many
types of electronic products

• DSP-intensive tasks are the performance
bottleneck in many computer applications
today

• Computational demands of DSP-intensive
tasks are increasing very rapidly

• In many embedded applications, general-
purpose microprocessors are not competitive
with DSP-oriented processors today

• 1997 market for DSP processors: $3 billion
• Texas Instruments sold off other divisions,

is a DSP company today
CS252/Patterson

Lec 14.243/9/01

A Tale of Two Cultures
• General Purpose Microprocessor traces roots back

to Eckert, Mauchly, Von Neumann (ENIAC)
• DSP evolved from Analog Signal Processors, using

analog hardware to transform phyical signals
(classical electrical engineering)

• ASP to DSP because
– DSP insensitive to environment (e.g., same response in snow or

desert if it works at all)
– DSP performance identical even with variations in components;

2 analog systems behavior varies even if built with same
components with 1% variation

• Different history and different applications led to
different terms, different metrics, some new
inventions

• Increasing markets leading to cultural warfare

Page 5

CS252/Patterson
Lec 14.253/9/01

DSP vs. General Purpose MPU

• DSPs tend to be written for 1 program, not
many programs.

– Hence OSes are much simpler, there is no virtual memory
or protection, ...

• DSPs sometimes run hard real-time apps
– You must account for anything that could happen in a time

slot
– All possible interrupts or exceptions must be accounted for

and their collective time be subtracted from the time
interval.

– Therefore, exceptions are BAD!

• DSPs have an infinite continuous data stream

CS252/Patterson
Lec 14.263/9/01

Today’s DSP “Killer Apps”
• In terms of dollar volume, the biggest

markets for DSP processors today include:
– Digital cellular telephony
– Pagers and other wireless systems
– Modems
– Disk drive servo control

• Most demand good performance
• All demand low cost
• Many demand high energy efficiency
• Trends are towards better support for

these (and similar) major applications.

CS252/Patterson
Lec 14.273/9/01

DSP Assumptions of the World

• Machines issue/execute/complete in order
• Machines issue 1 instruction per clock
• Each line of assembly code = 1 instruction
• Clocks per Instruction = 1.000
• Floating Point is slow, expensive

CS252/Patterson
Lec 14.283/9/01

FIR filter on (simple)
General Purpose Processor

loop:
lw x0, 0(r0)
lw y0, 0(r1)
mul a, x0,y0
add y0,a,b
sw y0,(r2)
inc r0
inc r1
inc r2
dec ctr
tst ctr
jnz loop

• Problems: Bus / memory bandwidth
bottleneck, control code overhead

CS252/Patterson
Lec 14.293/9/01

First Generation DSP (1982): Texas
Instruments TMS32010

• 16-bit fixed-point
• “Harvard architecture”

– separate instruction,
data memories

• Accumulator
• Specialized instruction set

– Load and Accumulate

• 390 ns Multiple-Accumulate
 (MAC) time; 228 ns today

Processor

Instruction
Memory

Data
Memory

T-Register

Accumulator

ALU

Multiplier

Datapath:

P-Register

Mem

CS252/Patterson
Lec 14.303/9/01

TMS32010 FIR Filter Code
• Here X4, H4, ... are direct (absolute) memory

addresses:
LT X4 ; Load T with x(n-4)

MPY H4 ; P = H4*X4

LTD X3 ; Load T with x(n-3); x(n-4) = x(n-3);
Acc = Acc + P

MPY H3 ; P = H3*X3

LTD X2

MPY H2

...

• Two instructions per tap, but requires unrolling

Page 6

CS252/Patterson
Lec 14.313/9/01

Features Common to Most DSP
Processors

• Data path configured for DSP
• Specialized instruction set
• Multiple memory banks and buses
• Specialized addressing modes
• Specialized execution control
• Specialized peripherals for DSP

CS252/Patterson
Lec 14.323/9/01

DSP Data Path: Arithmetic

• DSPs dealing with numbers representing real world
=> Want “reals”/ fractions

• DSPs dealing with numbers for addresses
=> Want integers

• Support “fixed point” as well as integers

S.
radix
point

-1 <= x < 1

S .
radix
point

–2N–1 <= x < 2N–1

(Integers)

CS252/Patterson
Lec 14.333/9/01

DSP Data Path: Precision

• Word size affects precision of fixed point numbers
• DSPs have 16-bit, 20-bit, or 24-bit data words
• Floating Point DSPs cost 2X - 4X vs. fixed point,

slower than fixed point
• DSP programmers will scale values inside code

– SW Libraries
– Seperate explicit exponent

• “Blocked Floating Point” single exponent for a
group of fractions

• Floating point support simplify development

CS252/Patterson
Lec 14.343/9/01

DSP Data Path: Overflow?

• DSP are descended from analog :
what should happen to output when “peg” an input?
(e.g., turn up volume control knob on stereo)

– Modulo Arithmetic???

• Set to most positive (2N–1–1) or
 most negative value(–2N–1) : “saturation”

• Many algorithms were developed in this model

CS252/Patterson
Lec 14.353/9/01

DSP Data Path: Multiplier

• Specialized hardware performs all key
arithmetic operations in 1 cycle

• ~ 50% of instructions can involve multiplier
=> single cycle latency multiplier

• Need to perform multiply-accumulate (MAC)
• n-bit multiplier => 2n-bit product

CS252/Patterson
Lec 14.363/9/01

DSP Data Path: Accumulator

• Don’t want overflow or have to scale accumulator
• Option 1: accumalator wider than product:

“guard bits”
– Motorola DSP:

24b x 24b => 48b product, 56b Accumulator

• Option 2: shift right and round product before
adder

Accumulator

ALU

Multiplier

Accumulator

ALU

Multiplier

Shift

G

Page 7

CS252/Patterson
Lec 14.373/9/01

DSP Data Path: Rounding for Fixed Pt.

• Even with guard bits, will need to round when
store accumulator into memory

• 3 DSP standard options
• Truncation: chop results

=> biases results up
• Round to nearest:

< 1/2 round down, >= 1/2 round up (more positive)
=> smaller bais

• Convergent:
< 1/2 round down, > 1/2 round up (more positive),
= 1/2 round to make lsb a zero (+1 if 1, +0 if 0)
=> no bais
IEEE 754 calls this round to nearest even

CS252/Patterson
Lec 14.383/9/01

DSP Memory
• FIR Tap implies multiple memory accesses
• DSPs want multiple data ports
• Some DSPs have ad hoc techniques to reduce

memory bandwidth demand
– Instruction repeat buffer: do 1 instruction 256 times
– Often disables interrupts, thereby increasing interrupt

response time

• Some recent DSPs have instruction caches
– Even then may allow programmer to “lock in” instructions

into cache
– Option to turn cache into fast program memory

• No DSPs have data caches
• May have multiple data memories

CS252/Patterson
Lec 14.393/9/01

DSP Addressing
• Have standard addressing modes: immediate,

displacement, register indirect
• Want to keep MAC datapth busy
• Assumption: any extra instructions imply clock

cycles of overhead in inner loop
=> complex addressing is good
=> don’t use datapath to calculate fancy
address

• Autoincrement/Autodecrement register indirect
– lw r1,0(r2)+ => r1 <- M[r2]; r2<-r2+1
– Option to do it before addressing, positive or negative

CS252/Patterson
Lec 14.403/9/01

DSP Addressing: Buffers
• DSPs dealing with continuous I/O
• Often interact with an I/O buffer (delay lines)
• To save memory, buffer often organized as circular

buffer
• What can do to avoid overhead of address checking

instructions for circular buffer?
• Option 1: Keep start register and end register per

address register for use with autoincrement
addressing, reset to start when reach end of buffer

• Option 2: Keep a buffer length register, assuming
buffers starts on aligned address, reset to start
when reach end

• Every DSP has “modulo” or “circular” addressing

CS252/Patterson
Lec 14.413/9/01

DSP Addressing: FFT
• FFTs start or end with data in wierd bufferfly order

0 (000) => 0 (000)
1 (001) => 4 (100)
2 (010) => 2 (010)
3 (011) => 6 (110)
4 (100) => 1 (001)
5 (101) => 5 (101)
6 (110) => 3 (011)
7 (111) => 7 (111)

• What can do to avoid overhead of address checking
instructions for FFT?

– Have an optional “bit reverse” address addressing mode for use with
autoincrement addressing

• Many DSPs have “bit reverse” addressing for radix-2
FFT

CS252/Patterson
Lec 14.423/9/01

Addressing mode usage for DSP TI
TMS320C54x for 54 library routines (static)

Addressing Mode Percent Runni ng

Immediate 30.0% 30%

Autoincrement, post increment (incr.
register after use contents as address)

18.8% 49%

Register indirect 17.4% 66%

Direct 12.0% 78%

Displacement 10.8% 89%

Autodecrement, post decrement (decr.
register after use contents as address)

6.1% 95%

Autoincrement, post increment by
contents of A R0, with circular
addressing

2.2% 97%

Autoincrement, post increment by
contents of A R0

1.5% 99%

• MIPS modes = 70%; autoinc,dec 25%;
circular = 2.2%, bit reverse = 0.0%

Page 8

CS252/Patterson
Lec 14.433/9/01

DSP Instructions

• May specify multiple operations in a single
instruction

• Must support Multiply-Accumulate (MAC)
• Need parallel move support
• Usually have special loop support to reduce branch

overhead
– Loop an instruction or sequence
– 0 value in reigster usually means loop maximum number of times
– Must be sure if calculate loop count that 0 does not mean 0

• May have saturating shift left arithmetic
• May have conditional execution to reduce branches

CS252/Patterson
Lec 14.443/9/01

DSP vs. General Purpose MPU

• DSPs are like embedded MPUs, very concerned
about energy and cost.

– So concerned about cost is that they might even us a 4.0 micron
(not 0.40) to try to shrink the the wafer costs by using fab line
with no overhead costs.

• DSPs that fail are often claimed to be good for
something other than the highest volume application,
but that's just designers fooling themselves.

• Very recently convention wisdom has changed so
that you try to do everything you can digitally at
low voltage so as to save energy.

– 1995 people thought doing everything in analog reduced power, but
advances in lower power digital design flipped that wisdowm

CS252/Patterson
Lec 14.453/9/01

DSP vs. General Purpose MPU

• The “MIPS/MFLOPS” of DSPs is speed of
Multiply-Accumulate (MAC).

– DSP are judged by whether they can keep the multipliers
busy 100% of the time.

• The "SPEC" of DSPs is 4 algorithms:
– Inifinite Impule Response (IIR) filters
– Finite Impule Response (FIR) filters
– FFT, and
– convolvers

• In DSPs, algorithms are king!
– Binary compatability not an issue

• Software is not (yet) king in DSPs.
– People still write in assembly language for a product to

minimize the die area for ROM in the DSP chip.

CS252/Patterson
Lec 14.463/9/01

Pitfall: Getting good performance
from a compiler for DSPs

• ~10X in performance assembly vs. compiled
for TI DSP (May 2000 EEMBC results)

1.8

44.0

7.0

13.5 13.0

-

10.0

20.0

30.0

40.0

50.0

Auto Collrelation Convolutional
Encoder

Fixed-point Bit
Allocation

Fixed Point
Complex FFT

Viterbi GSM
Decoder

Telecom EEMBC Kernels for Texas Instructments TMS320C6203-
300MHz DSP

CS252/Patterson
Lec 14.473/9/01

Summary: How are DSPs different?

• Essentially infinite streams of data which
need to be processed in real time

• Relatively small programs and data storage
requirements

• Intensive arithmetic processing with low
amount of control and branching (in the
critical loops)

• High amount of I/ O with analog interface
• Loosely coupled multiprocessor operation is

popular: 1 program/CPU vs. SPMD?

CS252/Patterson
Lec 14.483/9/01

Summary: How are DSPs different?

• Single cycle multiply accumulate (multiple
busses and array multipliers)

• Complex instructions for standard DSP
functions (IIR and FIR filters, convolvers)

• Specialized memory addressing
– Modular arithmetic for circular buffers (delay lines)
– Bit reversal (FFT)

• Zero overhead loops and repeat instructions
• I/ O support – Serial and parallel ports

Page 9

CS252/Patterson
Lec 14.493/9/01

Summary:
Unique Features in DSP architectures

• Continuous I/O stream, real time requirements
• Multiple memory accesses
• Autoinc/autodec addressing
• Datapath

– Multiply width
– Wide accumulator
– Guard bits/shiting rounding
– Saturation

• Weird things
– Circular addressing
– Reverse addressing

• Special instructions
– shift left and saturate (arithmetic left-shift)

CS252/Patterson
Lec 14.503/9/01

DSP Summary 2
• DSP processor performance has increased

by a factor of about 150x over the past 15
years (~40%/year)

• Processor architectures for DSP will be
increasingly specialized for applications,
especially communication applications

• General-purpose processors will become
viable for many DSP applications

• Users of processors for DSP will have an
expanding array of choices

CS252/Patterson
Lec 14.513/9/01

For More DSP Information
• http://www.bdti.com

Collection of BDTI’s papers on DSP processors,
tools, and benchmarking.

• http://www.eg3.com/dsp
Links to other good DSP sites.

• Microprocessor Report
For info on newer DSP processors.

• DSP Processor Fundamentals,
Textbook on DSP Processors, BDTI

• IEEE Spectrum, July, 1996
Article on DSP Benchmarks

• Embedded Systems Prog., October, 1996
Article on Choosing a DSP Processor

