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Scanning lots of objects ...




with high quality.







Aubry et. al, CVPR 2014

Xie et. al, IROS 2013 Kholgade et. al, SIGGRAPH 2014



Image-Based Reconstruction

Seitz et. al, CVPR 2006

Agarwal et. al, ICCV 2009



Active Reconstruction

MakerBot ($650) NextEngine ($2995)

“Shipping 4 tons of equipment to a foreign
country, trucking through narrow streets, and
carrying it into historic buildings, was nerve-
wracking and expensive.”

“During 5 months of scanning, we spent $50K
The Digital Michelangelo Project hiring museum guards to watch over us, the

($?, but probably a lot) statues, and the tourists.”



Active Reconstruction

?

Kinect (<$200)

Artec Eva ($20K)



Shortcomings

Object Size

Translucencies

Scanning Many Objects Color Extraction Dark Objects



Scalable High-quality 3D Scanning

= Scalability
-  How do we scan many
objects?
How do we keep device
costs low?

- High quality
- How do we extract high
quality shape models?

How do we extract high
quality color models?
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Big Berkeley Instance Recognition Dataset (BigBIRD)




BigBIRD

= 60012 MP DSLR images
= 600 Kinect RGB+D images

= All images are calibrated via two
bundle adjustment procedures

= Scanning 1 object involves
pushing a button after
calibration.

BigBIRD: A Large-Scale 3D Database of Object Instances,
A. Singh, 1. Sha, K. Narayan, T. Achim, P. Abbeel.
ICRA 2014.




Scalable High-quality 3D Scanning

= Scalability
-  How do we scan many
objects?
How do we keep device
costs low?

- High quality
How do we extract high
quality shape models?

How do we extract high
quality color models?




3D Scanning - Components

= Shape estimation

280

Newcombe et. al. ISMAR 2011

Zhou et. al. CVPR 2014

Whelan et. al. RSS-W 2012



Shape Estimation

Poisson Surface Reconstruction. M. Kazhdan, M.
Bolitho, and H. Hoppe. ESGP 2006.

Poisson reconstruction on all Kinect clouds



Shape Estimation

KinectFusion-based approach.



Shape Estimation

New approach. Fuse RGB + D.

Range Sensor and Silhouette Fusion for High-Quality
3D Scanning. K. Narayan, J. Sha, A. Singh, P. Abbeel.
ICRA 2015.



Visual Hull
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KinectFusion

Real-time

Fails in reconstructing objects
with transparencies,
specularities, and thin features.

Details are often smoothed away.




Insight

KinectFusion Visual Hull
Concavities J ¢
Transparencies J

Surface Detail J J

Refine the depth maps to
integrate information provided by
both of these modalities.

ﬂ!l 1! lal 1

® Camera focus
— Image plane
™ Visual cone
O Visual hull
@ True object




Our Approach

Segmentation + Visual Hull KinectFusion Compute Fused Cloud

Postprocess Cloud Mesh Generation



Segmentation

Manual SLIC segmentation on
5 objects

Build k-means background
models

Pixels farther than a threshold
belong to the object.

il

Retain Su per piXGlS With > (a) Interactive (b)‘;&&H (c) VO5 (d) Softsoap
Segmentation Detergent Shampoo Handsoa
30% coverage. ) ) ’ ’




Visual Hull

= Construct an implicit function F(x).
X is a 3D point.

= F(x) =1, xis “inside the
object”

= F(x) =0, x is “outside the
object”

® Camera focus
— Image plane
™ Visual cone
O Visual hull

@ True object

= X is “inside the object” if it projects
into 1 - e of the segmentation
masks, a.k.a. silhouettes.

= Bloomenthal polygonization



Visual Hull




KinectFusion
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Marching Cubes

Truncated signed distance function (TSDF)

Iterative Closest Point



KinectFusion

(Align current cloud to rendered cloud)

“frame to model

Data in o, il registration”
- ﬁ -D: UNSEEN
6 o o ‘o o o ol

(Induct new cloud into model)

/\ (Output triangle mesh)
<- >

(Build synthetic depth map from model)




KinectFusion Variants

(a) First input image (b) Second input image

(c) Warped second image (d) Difference image

Steinbrucker et. al. ICCV 2011 Zhou et. al. SIGGRAPH 2014



KinectFusion Challenges

Snippets of (incomplete)
depth data

Cameras are far apart

Construct TSDF via BigBIRD calibration



KinectFusion

KinectFusion-based approach.



Depth Refinement

ldea:

Consider a single depth map associated with camera c and
angle a.

At a pixel (i, j), how do we combine the visual hull and
KinectFusion depths?



Missing Depth Values

= This happens on/near transparent regions.

= Resort to using the visual hull’s depth.

(a) Object color images (b) Raw depth maps (c) KinectFusion meshes (d) Soft visual hull meshes (e) Our method




KinectFusion and Visual Hull Agree

= This happens on “reliable” surfaces.

= Resort to using the visual hull’s depth map for finer surface details.

| L =N N

(a) Object color images (b) Raw depth maps (c) KinectFusion meshes (d) Soft visual hull meshes (e) Our method




KinectFusion and Visual Hull Disagree

= This happens at concavities.

= Resort to using the KinectFusion’s depth map.

"% Q @1 U1 ©

(a) Object color images (b) Raw depth maps (c¢) KinectFusion meshes (d) Soft visual hull meshes (e) Our method



Lots of Hallucinated Points

(a) Pot, with hallucinated points (b) Cup holder, with hallucinated points



What Causes Hallucinations?

Merged
® Sample hallucinated point Refined Depth
® Proof of hallucination Cloud,

/\ Visual cone Camera B Only

. Camera B

Camera A

Merged
Refined Depth Cloud,
Camera A Only

Merged Views,
All Cameras



Hallucinations: Before and After

(a) Pot, with hallucinated points (b) Pot, hallucinated points removed

(c) Cup holder, with hallucinated points (d) Cup holder, hallucinated points removed



Final Mesh Creation

= To construct a mesh, define a
function F(x). x is a 3D point:

= F(x) =1, x lies within 1
mm of a point in the de-
hallucinated cloud AND
lies within 1 - e of the
silhouettes.

= F(x) =0, otherwise



10N

Final Mesh Creat

Our Approach

CGIT 2000.

Kobbelt.
Lindstrom et

tion 1998.
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Results (Simple Objects)




Results (Objects with Concavities)




Results (Objects with Translucencies)




Quantitative Measurements

Primitive Fitting RMS Errors (mm)
PR [25] SVH KF [22] OUR METHOD

Pringles 0.566  0.541  0.850 0.563 (a) Almonds Can
Dove Soap 0.995 0.981 1.123 0.948
Almond Can 0339 0303  0.662 0.294

3M Spray 2018 1971  2.189 1.958

(b) Dove Soap Box (c) Pringles Can  (d) 3M Spray



3D Scanning - Components

= Color estimation

Zhou et. al. ACM TOG 2014

Hernandez, Thesis 2004

Rusu, ICRA 2011




Previous Work: Comparisons

Original Image PCL Volumetric Saturation Color Optimization
Blending [1] Blending [2] [3]

[1] Rusu, ICRA 2011
[2] Hernandez et. al., Thesis 2004
[3] Zhou et. al., ACM TOG 2014



Previous Work: Comparisons

Original Image  Our Approach PCL Volumetric Saturation Color Optimization
Blending [1] Blending [2] [3]

[1] Rusu, ICRA 2011

[2] Hernandez et. al., Thesis 2004
[3] Zhou et. al., ACM TOG 2014




Our Approach

We are given a mesh M which contains
vertex set P.

We are also given RGB images {l;} that
observe the object.

l; has intrinsics matrix K; and extrinsics
matrix T;.

For each p € P, we want to estimate C(p),

the color of vertex p. C denotes the color
model.

p is denotes a vertex position while C(p) is
a 3-vector that represents an RGB value.




Our Approach

V(p) c {I;}: the subset of images observing
p without occlusion.

Ii(p, T;): color obtained by projecting p
onto |; using extrinsics T; and intrinsics K;.

Error residual |C(p) - li(p, T;) | ? should be
small.

Viable objective to minimize:

FCM=2Y ¥ @) -Tip.T)

PEP L€V (p)

lllumination assumptions?



Intermediate Results

= Current objective reduces
ghosting

= Problems to resolve

= Faded textures

= Speckled regions

(a) Iteration 0 (b) Iteration 200



Intermediate Results

= Faded textures

(a) Iteration O (b) Iteration 200



Alleviating Faded Textures

= Original objective projects a
vertex v onto all views

= Views with specularities will
draw Vv’s color towards white,
producing faded colors.

= |dea: select the top N views per
vertex, where views are sorted
by the camera foreshortening
angle.

(a) Iteration 0 (b) Iteration 200



Alleviating Faded Textures

(a)N =1 (b) N = 10 (¢) N = 30 (¢) N = 50 (d) N = 100



Intermediate Results

= Speckled regions

()N =1 (b) N =10 (¢) N =30 ¢) N =50




Smoothing Speckled Regions

= Causes for speckled regions

= Varying the cameras used in adjacent

= |dea: add color regularization term to the
objective. We only smooth edges where:

vertices

Differing N for adjacent vertices

Both vertices are not textured

Exactly one vertex is textured

Boundary

i artifacts




Smoothing Speckled Regions

r

No smoothing

JCn=3Y ¥ IC@-Tiem)P

PEP eV (pitp)

Smoothing

FCT=3F T €0 -Tie T+

pEP LV (pitp)

—): Y (1—tpty)-[IC(p) - @)

Boundary 2 peby €N(p)

artifacts
gone

Boundary

i artifacts

(a) No smoothing, A = 0 b) Smoothing, X\ = 10




Alternating Optimization

JCT=23% Y [ICp)-Tip,T)|*+

pEP eV (pitp)
A S .
S L Y, (I—ny)-[[Cp)—C@)I”
PEPp’eN(p)

= |dea: inspired from Zhou et.
al. 2014, optimize Cand T
separately.

Fixing T and optimizing C

= Involves solving a quadratic
objective.

Fixing C and optimizing T

= Gauss-Newton: involves
solving |I]| 6 x 6 systems of
equations in parallel.



Coarse-to-fine Levenberg-Marquardt

Original Reconstructed

Resolving small features requires
us to subdivide M multiple times.

e —

Sufficient subdivision yields
meshes with 10x or more
vertices.

This substantially slows down
optimization.

Idea: run optimization in coarse-
to-fine steps.

Reconstructed, Zoom



Successes




Successes




Cases to Improve




Cases to Improve




Evaluation Methodology

We quantitatively compare our
method to other techniques via
an online user survey

= http://tinyurl.com/
iros2015coloropt

Each participant is given 16
multiple choice questions

= Each question features a
different reconstructed object

= Question asked: which of the
following images matches
“Reference” most closely?


http://tinyurl.com/iros2015coloropt

User Study Summary
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User Study Summary: O1

O1

0 0. 225 O 45 0. 675 0.9



User Study Summary: 02




User Study Summary: 04




User Study Summary: O5




User Study Summary: O11




User Study Summary: 012




User Study Summary: 013
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User Study Summary: 016




Scalable High-quality 3D Scanning

= Scalability
-  How do we scan many
objects?
How do we keep device
costs low?

- High quality
- How do we extract high
quality shape models?

How do we extract high
quality color models?
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Possible Future Directions

- Single-camera scanning

= Pitfalls:

with previous algorithms?

- Calibration accuracy
= Loop closure issues
- Manual intervention




Thank You



