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Abstract— We introduce an optimization-based control ap-
proach that enables a team of robots to cooperatively track
a target using onboard sensing. In this setting, the robots are
required to estimate their own positions as well as concurrently
track the target. Our probabilistic method generates controls
that minimize the expected uncertainty of the target. Addition-
ally, our method efficiently reasons about occlusions between
robots and takes them into account for the control generation.
We evaluate our approach in a number of experiments in
which we simulate a team of quadrotor robots flying in three-
dimensional space to track a moving target on the ground.
We compare our method to other state-of-the-art approaches
represented by the random sampling technique, lattice planning
method, and our previous method. Our experimental results
indicate that our method achieves up to 8 times smaller
maximum tracking error and up to 2 times smaller average
tracking error than the next best approach in the presented
scenarios.

I. INTRODUCTION

Tracking a moving target has many potential applications
in various fields. For example, consider a search and rescue
scenario where autonomous ground robots are deployed to
assist disaster victims but they are not able to localize
themselves in an unknown environment. In this case, one
could use flying robots that due to their higher altitude can
take advantage of, e.g., GPS signals on the one hand and
can help to localize the ground robots by observing them
on the other hand. Although it comes at the cost of higher
complexity in motion planning, using multiple cooperatively
controlled robots in this setting provides advantages, such as
increased coverage and robustness to failure.

Consider a scenario depicted in Fig. 1 where a team
of aerial robots equipped with onboard cameras is tasked
with tracking and estimating the position of a mobile robot
with respect to a global frame of reference. Some of the
quadrotors may be in the field of view of the external global
sensor while others are not. The ideal cooperative control
algorithm for this team would take into account all visibility
constraints and uncertainties in order to establish a config-
uration of quadrotors that propagates position information
from the global sensors through the quadrotors to the target.

We introduce a centralized planning approach that gener-
ates controls for multiple robots and minimizes the uncer-
tainty of the tracked target. At any particular instance an
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Fig. 1. Three quadrotors cooperatively tracking a target following a figure-
eight trajectory (blue line). The green ellipsoids show the 3-dimensional
covariances of quadrotors’ positions. The green ellipse represents the 2-
dimensional covariance of the position of the target. Magenta lines depict
the measurements between quadrotors and the global camera (blue cube
at the top). How should the quadrotors move in order to minimize the
uncertainty of the target?

individual quadrotor may not be able to see the target due to
occlusions or the sensor’s limited field-of-view. To formulate
a cost function that considers these discontinuities in the
sensor domain, we extend the approach from [26] to multiple
robots and penalize the trace of the target’s covariance. Using
this cost function, we employ an optimization framework to
find locally optimal controls. We execute these controls in
the Model Predictive Control (MPC) fashion and estimate
the state of the quadrotor team and target using an Extended
Kalman Filter (EKF) [30].

The novel contributions of this paper are as follows: a) we
take into account sensing discontinuities caused, for example,
by occlusions in different multi-robot configurations in a
manner that is amenable to continuous optimization, and
b) we generate 3D positional control inputs for all the
quadrotors. We evaluated our approach in a number of
simulations and compared it to our previous method in which
we introduced cooperative multi-robot control with switching
of sensing topologies [12, 13].

The video of the simulation experiments that present the
results of our method is available at:



http://tinyurl.com/iros16tracking.

II. RELATED WORK

The task of cooperative target tracking has been addressed
in various ways. Many researchers considered centralized [6,
8], decentralized [1, 23, 25], and distributed [17, 18, 31]
approaches to control multiple aerial or ground robots. Nev-
ertheless, all of the above approaches do not take into account
the position uncertainty of the robots that are deployed to
perform the tracking task. The position of the robots is
assumed to either be known or independently obtained with
high accuracy. In this work, we consider both the position
uncertainty of the tracked target as well as the uncertainty
in the robots’ poses.

The problem of target localization is very similar to the
task of target tracking. There have been many authors that
worked on target localization [9, 10, 11, 14, 29] in a multi-
robot scenario with onboard sensing. It is worth noting that
these approaches are implemented in a distributed fashion
which makes them well-suited for multi-robot scenarios
with limited communication. One of the simplifications
introduced in these approaches, however, is to limit the
robots to planar movements and disable the possibility that
the robots can be perceived by each other. In our work,
we relax these assumptions and show how to cope with
occlusions between different robots. Furthermore, the above-
mentioned approaches use the mutual information measures
as an uncertainty measure. In contrast, we use the trace of the
covariance. We chose this utility measure because it copes
better with degenerate covariances (and equally well with
circular covariances) than the mutual information approach,
as shown by Beinhofer et al. [4] and our previous work [13].
For more details please see [13].

Cooperative localization (CL) is the use of multiple robots
for accurate state estimation [24, 33]. These works mainly
address state estimation and localization, while we focus on
tracking and control generation.

Another tracking approach was proposed by Ahmad and
Lima [2] where the authors weight the observations of in-
dividual robots based on their localization uncertainty. Zhou
and Roumeliotis [32] proposed a similar approach but their
focus is on the non-convex optimization of the cost function
and evaluation of different sensor models. In both of these
approaches, the authors decouple the target tracking from
the robots’ localization, which does not take into account
the high correlation of the target’s and the robots’ position
estimates.

Lima et al. [21] propose a distributed formation con-
trol approach for target tracking. Although the target is
tracked using a modified particle filter, the non-linear model-
predictive controller models the uncertainty of the target
using a covariance-based method that does not account for
occlusions. Our method uses a similar non-linear model-
predictive controller formulation that does account for oc-
clusions.

Another approach by Ahmad et al. [3] addresses the
problem of cooperative target tracking and robot localiza-

tion using least square minimization. However, their graph
optimization approach does not provide the uncertainty of
the associated estimates, thus the optimization is unable to
minimize the uncertainty.

There have been several optimization-based approaches [3,
15, 16] that tackle the problem of cooperative multi-robot
localization using only onboard sensors. These approaches,
however, provide the maximum-likelihood state estimates
which does not directly minimize the uncertainty of the target
pose.

In our previous work [12] we introduced the concept of
level-based sensing topologies, which simplifies the reason-
ing about occlusions and reduces the considered control
space of each robot to a two-dimensional plane. In this
paper, we tackle the problem of generating locally optimal
controls for each quadrotor in the full 3-dimensional space
and we explicitly reason about occlusions in the trajectory
optimization algorithm. In addition, we do not, as previously,
apply the same controls over the look-ahead horizon in the
optimization but consider arbitrary trajectories with different
controls for different time steps. Moreover, by removing the
level-based sensing topologies in this work, we enable more
realistic simulations as the quadrotors are not assumed to
instantly jump from one topology level to another.

III. PROBLEM DEFINITION

We propose a centralized approach where we jointly
estimate the positions of the quadrotors and the target using
an EKF. First, we describe our state estimation technique
to then focus on the control generation and reasoning about
occlusions.

A. Assumptions

In the presented approach, we assume certain properties of
the system that enable us to simplify the computation. First
of all, we apply an EKF, hence the Markov assumption [30]
that the measurements are conditionally independent given
the joint state. We assume that there exists one global fixed
sensor with limited range, therefore necessitating the use of a
quadrotor team for tracking the target. We fix the orientation
of the moving quadrotors so that one can only control their
3D position. For the moving target, a standard uncontrolled
motion model is applied. We assume the target tracking
never experiences complete failure, otherwise the scenario
would evolve into a simultaneous exploration and tracking
problem. For the part of the system responsible for the
control generation, we follow Platt et al.[28] and assume that
the maximum likelihood observation is obtained at each time
step. This eliminates the stochasticity of the cost functions.

B. State Estimation with EKF

1) System Parametrization: The state at time t consists of
n individual quadrotor poses x

(i)
t , i ∈ [1, n] and the target

pose x
(targ)
t . Let u(i)

t be the control input applied to the ith
robot at time t. The joint state and control input are defined



as:

xt = [x
(1)
t , . . . ,x

(n)
t ,x

(targ)
t ] (1)

ut = [u
(1)
t , . . . ,u

(n)
t ] (2)

Let Σt be the uncertainty covariance of the joint state.
The dynamics and measurement models for the joint state

are given by the stochastic, differentiable functions f and h:

xt+1 = f(xt,ut,qt), qt ∼ N(0, Qt) (3)
zt = h(xt, rt), rt ∼ N(0, Rt) (4)

where qt is the dynamics noise, rt is the measurement noise,
and they are assumed to be zero-mean Gaussian distributed
with state-dependent covariances Qt and Rt, respectively.

We consider two types of sensors and corresponding mea-
surements: absolute (global) measurements, e.g., GPS, and
relative measurements between two quadrotors or a quadrotor
and the target, e.g., distance or relative pose measurements.
The stochastic measurement function of the absolute sensors
is given by:

z
(i)
t = h(i)(x

(i)
t , r

(i)
t )

while the relative sensor model is:

z
(i,j)
t = h(i,j)(x

(i)
t ,x

(j)
t , r

(i,j)
t )

All measurement functions can be naturally extended for the
joint state [22].

2) Uncertainty Model: Given the current belief (xt,Σt),
control input ut and measurement zt+1, the belief dynamics
is described by the EKF equations.

In order to model the discontinuity in the sensing domain,
which can be caused either by a limited field of view, sensor
failure or occlusions, we follow the method from [26] and
introduce a binary vector δt ∈ Rdim[z]. The kth entry in the
vector δt takes the value 1 if the kth dimension of zt is
available and a value of 0 if no measurement is obtained.
We detail the method for computing δt in Sec. III-D.

The EKF update equations are as follows:

xt+1 = f(xt,ut,0) +Kt(zt − h(xt)) (5a)

Σt+1 = (I −KtHt)Σ
�
t+1 (5b)

Kt = Σ�
t+1H

ᵀ
t ∆t[∆tHtΣ

�
t+1H

ᵀ
t ∆t +WtRtW

ᵀ
t ]

�1∆t

(5c)

Σ�
t+1 = AtΣtA

ᵀ
t + VtQtV

ᵀ
t (5d)

At =
∂f

∂x
(xt,ut,0), Vt =

∂f

∂q
(xt,0) (5e)

Ht =
∂h

∂x
(xt+1,0), Wt =

∂h

∂r
(xt+1,0) , (5f)

where ∆t = diag[δt] and zt is a measurement obtained at
time step t.

It is worth noting that the Kalman gain update in Eq. 5c
includes the binary matrix ∆t to account for discontinuities
in the sensor domains. Due to the Markov assumption, the
individual measurements can be separately fused into the
belief using the EKF update equations.

3) Dynamics Model: The dynamics of an individual
quadrotor is given by: f (i)(x(i),u(i),q(i)) = x(i)+u(i)∆t+
q(i) where x(i),u(i) ∈ R3 are the 3D position and velocity
and ∆t is the length of a time step. In this paper, we use a
constant velocity motion model for the target, however our
approach generalizes to any uncontrolled motion model.

4) Observation Model: The cameras are assumed to be at
the center of each quadrotor facing down. The absolute sen-
sor provides the 3D position of the observed quadrotor/target
as a measurement:

h(i)(x
(i)
t , r

(i)
t ) = x

(i)
t + r

(i)
t

The relative sensor model provides the position of the
(observed) jth quadrotor/target relative to the (observing) ith
quadrotor:

h(i,j)(x
(i)
t ,x

(j)
t , r

(i,j)
t ) = (x

(j)
t − x

(i)
t ) + r

(i,j)
t .

C. Control Generation using Optimization

At each time step t we seek a set of control inputs
ut:T=t+h that for a time horizon h minimizes the uncertainty
of the target while penalizing collisions and the control
effort. In order to minimize the uncertainty of the target, we,
similarly to [13], penalize the trace of the target covariance.
In consequence, it is possible for the quadrotor covariance
to get large if the quadrotor is not near the other quadrotors
or the global sensor. However, it is possible to bring the
quadrotor back near the target if it is feasible within the time
horizon of the controller. The other components included in
the cost function are: the distance of every quadrotor pair to
avoid collisions and the cost of the control effort. The final
cost function is composed as follows:

ct(xt,Σt,ut) = α tr(Σ
(targ)
t ) + βccollision(xt) + γ||ut||22

cT (xT ,ΣT ) = α tr(Σ
(targ)
T ) + βccollision(xT )

ccollision(x) =

n∑
i=1

n∑
j=i+1

max(dmax − ||x(j) − x(i)||22, 0)

where α, β, and γ are user-defined scalar weighting pa-
rameters and dmax is the maximum distance for which the
collision cost takes effect.

The final objective function is:

min
xt:T ,ut:T�1

E[cT (xT ,ΣT ) +

T�1∑
t

ct(xt,Σt,ut)] (6)

s. t. xt+1 = f(xt,ut,0)

xt ∈ Xfeasible, ut ∈ Ufeasible

x0 = xinit, Σ0 = Σinit

For trajectory optimization, one can solve a nonlinear
optimization problem to find a locally optimal set of con-
trols [27]. In this work, we used sequential quadratic pro-
gramming (SQP) to locally optimize the non-convex, con-
strained optimization problem. The innermost QP solver
was generated by a numerical optimization code framework
called FORCES [7]. FORCES generates code for solving



Fig. 2. Signed distance if the quadrotor/target is inside the view frustum
(left) and outside the view frustum (right).

QPs that is specialized for convex multistage problems
such as trajectory optimization. The running time of each
optimization is O(dim[x]3T ) [27].

Given the output controls ut:T�1 computed using trajec-
tory optimization, we follow the model predictive control
paradigm [5] by executing a subset of the optimized controls
at each time step and then replanning. We use the previously
computed controls as an initialization to warm start the
optimization.

D. Reasoning about Occlusions

The absolute/relative position of a quadrotor/target may
not be observable due to occlusions from other quadrotors
and the limited field-of-view of the sensors. As previously
mentioned, we model this discontinuity with the binary
variable δ (according to [26]). In order to make the objective
function differentiable, we approximate δ with a sigmoid
function. It is worth noting that this δ is only required in
the optimization step, the state estimation EKF step remains
as defined previously.

Let sd(i,j)(x) be the signed distance of x(j) to the
field-of-view of the jth quadrotor (see Fig. 2). The signed
distance is negative if the jth quadrotor is visible and positive
otherwise. We introduce the parameter α which determines
the slope of the sigmoidal approximation. The sigmoidal
approximation of the measurement availability δ is given by:

δ(i,j) =
1

1 + exp[−α · sd(i,j)(x)]
(7)

For more details on the sigmoidal approximation of the
availability of the measurement we refer the reader to [26].

To calculate the signed distance of x(j) to the field-of-view
of x(i), we first represent the field-of-view as a truncated
view frustum with a minimum and maximum distance given
by the sensor model as depicted in Fig. 3. If x(j) is outside
of the view frustum, sd(i,j)(x) is the distance of x(j) to
the view frustum as shown in the right part of Fig. 2. If
x(j) is inside the view frustum and there are no occlusions,
the signed distance is computed as shown in the left part
of Fig. 2. In the presence of occlusions, we first determine
the shadows of all the occlusions in the plane of x(j). In the
next step, we use an open source 2D polygon clipping library
- GPC1 to generate the 2D polygon field-of-view, and then

1http://www.cs.man.ac.uk/˜toby/gpc/

Fig. 3. Signed distance function in the presence of occlusions. First, we
determine the shadows of all the occlusions such that the resulting field-of-
view (the shaded area) is calculated. The signed distance is computed as
the distance to the field-of-view.

calculate the signed distance. Fig. 3 shows an example of a
signed distance function in the presence of an occlusion.

IV. EVALUATION AND DISCUSSION

We evaluated our approach in a number of simulation
experiments. The simulation environment consists of a fixed
global down-looking camera attached 4 meters above the
origin of the coordinate system, a ground robot target and a
varying number of quadrotors equipped with down-looking
cameras. These scenarios are similar to the real robot ex-
periments presented in [13]. Each quadrotor is controlled
through the velocity commands u(i) = [vx, vy, vz]. For each
quadrotor, Xfeasible is unrestricted while Ufeasible is define
as −1 ≤ u(i) ≤ 1. The cost function parameters are:
α = 106, β = 102, and γ = 1. The state of the target
consists of its position and velocity x(targ) = [x, y, vx, vy]
and the target moves on the XY-plane. The length of the
simulation time step is equal to 0.1s. All camera sensors in
this setup have the same properties as described in Sec. III-
B.4, and can detect objects in a 3-meter high truncated
pyramid. Consequently, the global camera is not able to
see the target directly. The camera measurement standard
deviation is set to 0.02m, based on the average standard
deviation of a commodity depth sensor [19]. In addition, the
measurement covariance scales quarticly with the distance to
the measured quadrotor (it is equal to 0.02 only at the zero
distance). In order to make simulations even more realistic,
we also introduce motion noise with standard deviation equal
to 0.1m/s. Each experiment uses a different random seed.
We evaluated our approach for 3 different target trajectories,
including a figure eight trajectory (see Fig. 1), a spiral
trajectory of a approximate size of 1.6mx1.6m, and a random
walk trajectory with a step size of 0.03m. The figure eight
and spiral trajectories simulate an adversarial target that
is attempting to evade being tracked, while the random
walk trajectory simulates a non-adversarial (but still non-
cooperative) target.

An example of a system setup with the field of view of
each camera is depicted in Fig. 1, where the target trajectory
is a figure eight. The target trajectory is not known to the
quadrotors. Our system aims to estimate the position of
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Fig. 4. Comparison of different time horizons in the optimization step. The time horizons are 2, 5, and 10 time steps, respectively. Evaluation measures
are shown with 95% confidence intervals over 10 runs with 3 quadrotors. Results are presented only for the figure eight trajectory for brevity, however, we
obtained similar results for other trajectories, i.e. spiral and random walk. There is no significant difference in the tracking error for these time horizons.
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Fig. 5. Comparison between different sampling approaches and the optimization approach presented in this paper. From left to right: random sampling,
lattice sampling and optimization. Evaluation measures are shown with 95% confidence intervals over 10 runs with 3 quadrotors. Results are presented only
for the figure eight trajectory for brevity, however, we obtained similar results for other trajectories, i.e. spiral and random walk. The quantitative results
from this experiment for all the trajectories are summarized in Table I. The optimization approach yields better results than the other presented methods.
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Fig. 6. Comparison of our optimization-based approach applied to different number of quadrotors used for the tracking task. From left to right the number
of quadrotors are: 1, 3 and 5. Evaluation measures are shown with 95% confidence intervals over 10 runs. Results are presented only for the figure eight
trajectory for brevity, however, we obtained similar results for other trajectories, i.e. spiral and random walk. The experiments confirms the intuition that
deploying more quadrotors improves the tracking performance up to a point of diminishing returns.

the target as accurately as possible by actively controlling
the quadrotors. Some of the simulation experiments are
presented in the video attached to this submission2.

A. Experiments

We present different sets of experiments illustrating vari-
ous evaluation criteria of our system.

1) Time Horizon Experiment: We evaluate the influence
of different time horizons on the tracking accuracy. Fig. 4
shows the statistics for three different time horizons for the
figure eight trajectory. We obtained similar results for the
spiral and random trajectories. Based on these results, the
time horizon has no significant effect on the performance in
this setting, most likely because we are using MPC in which

2http://tinyurl.com/iros16tracking

we plan over the given time horizon, execute the first control,
then repeat. In addition, the optimization applies the constant
velocity prediction of the target, which is constantly violated
by the fact that the target is moving on a curved trajectory.
We therefore set the time horizon to be 2 time steps for the
remaining experiments.

2) Sampling vs. Optimization Experiment: We compare
our optimization-based control generation with random sam-
pling [6] and lattice planners [20]. Random sampling meth-
ods randomly sample controls to generate trajectories while
lattice planners draw samples from a predefined manifold,
which in our case was a sphere with radius equal to the
maximum allowed control effort. For both methods, the cost
of each resulting trajectory is evaluated and the controls
corresponding to the minimum cost trajectory are executed.
Fig. 5 shows the statistical results of the comparison between
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Fig. 7. Comparison between not taking occlusions into account in the optimization step (top) and accounting for occlusions using the signed distance
function presented in this work (bottom). Results collected for 3 different trajectories: figure eight (left), spiral (middle) and random walk (right) Statistics
and 95% confidence intervals over 10 runs with 3 quadrotors. Taking occlusions into account is beneficial especially at the spots right below the global
camera where the quadrotors have to stay close to each other.

the sampling method, lattice sampling method and our ap-
proach for 3 quadrotors for the figure eight trajectory. In
order to make a fair comparison for the sampling methods,
we chose the number of samples such that the execution
times per one optimization step of all the methods were
similar and we averaged the results over 10 runs. One can
notice a significantly larger tracking error and the trace of
the target covariance in performance of both of the sampling
methods compared to the trajectory optimization approach. It
is worth noting that the lattice approach yields worse results
than the random sampling approach. It is due to the fact that
generating controls of the same magnitude throughout the
trajectory causes the quadrotors to constantly overshoot the
target.

3) Number of Quadrotors Experiment: We compared the
tracking performance and the execution time for different
numbers of quadrotors. The statistics presented in Fig. 6
demonstrates a visible improvement by using a larger number
of quadrotors which confirms the intuition that larger teams
facilitate more reliable and accurate target tracking. It is
important to note that the quadrotors are able to leverage their
large quantity despite the very narrow field of view of the
cameras. This behavior is achieved because of the reasoning
about occlusions which prevents the quadrotors to block each
other’s views. The average time for one optimization step for
3 quadrotors was equal to 0.156± 0.002s.

4) Optimization with Occlusions Experiment: To evaluate
the importance of considering occlusions, we evaluated our
method with and without reasoning about occlusions for
a team of 3 quadrotors (Fig. 7) and measured the target
covariance and target tracking error for all the trajectories.
Of note is the much larger error and higher uncertainty
in Fig. 7(top) than Fig. 7(bottom) for all the trajectories,

indicating that reasoning about occlusions is particularly
important for target tracking with multi-robot teams.

5) Topology Switching Experiment: We compare the
method proposed in this paper to our previous target tracking
method that introduced level-based sensing topologies and an
efficient topology switching algorithm [12]. In this approach,
the quadrotors are organized on different levels with an
assumption that each level can only sense the adjacent
level below it. At each time step the algorithm determines
the planar controls for each of the quadrotors as well as
determines whether to switch to one of the neighboring
topologies by moving one of the quadrotors by one level up
or down. This approach was introduced in order to avoid the
reasoning about occlusions between quadrotors at different
altitudes. However, a topology switch is assumed to be
instantaneously completed, which is not realistic.

In order to make our approach and the level-based ap-
proach comparable for standard quadrotors, we introduce
a delay of 3 time steps for the topology switch in order
to realistically simulate a real quadrotor adjusting altitude.
The performance of both algorithms for the figure eight
trajectory is depicted in Fig. 8. The quadrotors perform
better when explicitly reasoning about occlusions with our
approach, especially when the target is far away from the
global camera. This phenomena can be explained by Fig. 9.
In the level-based approach, if the target is far away from
the global camera the optimal topology is a chain topology.
Our approach, however, is able to form a different sensing
topology that is superior to the previous one due to its higher
number of available measurements (see Fig. 9). This superior
topology is not valid for the level-based approach as it vio-
lates the assumption of sensing only the adjacent level below
the current level. This topology enables the algorithm to



level-based 2D opt. lattice sampling 3D opt. no occ. ours (3D opt.)
avg. max tracking error (8) [m] 0.016± 0.024 0.41± 1.00 0.027± 0.028 0.0061± 0.0072 0.0037± 0.0050
avg. max tracking error rel. (8) 26x 1x 15x 67x 111x
avg. tracking error (8) [m] 0.0030± 0.0036 0.037± 0.073 0.0035± 0.0044 0.0021± 0.0010 0.0012± 0.00071
avg. tracking error rel. (8) 12x 1x 11x 18x 31x
avg. max tracking error (spiral) [m] 0.017± 0.018 0.070± 0.14 0.028± 0.061 0.011± 0.027 0.0015± 0.00088
avg. max tracking error rel. (spiral) 4x 1x 2.5x 6x 47x
avg. tracking error (spiral) [m] 0.0010± 0.0027 0.0055± 0.014 0.0020± 0.0043 0.0018± 0.0013 0.00052± 0.00023
avg. tracking error rel. (spiral) 5.5x 1x 3x 3x 11x
avg. max tracking error (rw) [m] 0.0065± 0.013 0.0071± 0.018 0.15± 0.44 0.018± 0.033 0.0042± 0.011
avg. max tracking error rel. (rw) 23x 21x 1x 8x 36x
avg. tracking error (rw) [m] 0.00091± 0.0011 0.0012± 0.00090 0.0030± 0.014 0.0021± 0.0024 0.00063± 0.00034
avg. tracking error rel. (rw) 3x 2.5x 1x 1.5x 5x

TABLE I. Quantitative results for the experiments with 3 quadrotors for 3 different trajectories: 8 - figure eight, spiral and rw - random walk. Max target
tracking error was averaged over 10 runs, target tracking error was averaged over all time steps and 10 runs. Our approach yields significantly smaller

error than the other baseline methods for all the tested trajectories.
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Fig. 8. Target tracking results for our previous level-based approach [12]
(top) and the hereby presented method without explicitly reasoning about
sensing topologies (bottom). Statistics and 95% confidence intervals over
10 runs with 3 quadrotors. Results are presented only for the figure
eight trajectory for brevity, however, we obtained similar results for other
trajectories, i.e. spiral and random walk. The quantitative results from this
experiment for all the trajectories are summarized in Table I. The approach
presented in this paper is more beneficial for the reasons explained in Fig. 9.

localize the quadrotor on the left side due to the measurement
of the other quadrotor and have two localized quadrotors
observe the target. It is worth noting that our novel approach
can create a greater variety of sensing topologies compared
to our previous approach without explicitly reasoning about
sensing topologies.

6) Average Error Comparisons: Table I summarizes the
statistics of the average tracking error and maximum average
tracking error for different approaches and trajectories tested
in our experiments. It is worth noting that our approach
achieved up to 8 times smaller average maximum tracking
error and up to 2 times smaller average tracking error

Fig. 9. An example of an advantage of our approach over the level-
based approach. Left: most beneficial sensing topology for the level-based
approach. The quadrotors form a chain topology as each level of quadrotors
is allowed to sense only one level below it. Right: A superior sensing
topology achieved by our novel method. The lower quadrotor is seen by
the global sensor and the other quadrotor. The upper quadrotor can localize
itself based on the observation of the lower quadrotor. Both quadrotors can
observe the tracking target which provides more information than the level-
based approach. There are no constraints for the topology levels.

compared to the the next best method. It is also apparent
that our method yields the largest improvement for the spiral
trajectory. The reason for that is that in the initial phases of
this trajectory the target stays underneath the camera so the
quadrotors have to stay close together to be in the global
camera view frustum. Hence, it is likely that the quadrotors
may occlude each other’s views. Since our method explicitly
reasons about these occlusions, it is able to outperform other
methods.

V. CONCLUSIONS AND FUTURE WORK

We presented an optimization-based probabilistic multi-
robot target tracking approach that efficiently reasons about
occlusions. We evaluated our approach in a number of
simulation experiments. We have compared our method to
other baseline approaches such as random sampling, lattice
sampling, and our previous work on sensing topologies [12].
Our experimental results indicated that our method achieves
up to 8 times smaller average maximum tracking error and
up to 2 times smaller average tracking error than the next
best approach in the presented scenarios.

In future work, we plan to extend our centralized planning



approach to fully decentralized, distributed planning. This
is advantageous in multi-robot settings with limited com-
munication. Another challenge lies in the scalability of our
method with respect to the number of quadrotors. In this
work we evaluate all the possible pairs of the quadrotors for
potential measurements which results in the n2 complexity.
We plan to develop intelligent sampling strategies to only
check these pairs of the quadrotors that are likely to observe
each other in the time horizon. Finally, we would like to
further demonstrate the applicability of our approach in a
real robot scenario.
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