Channel Polarization Through the Lens of Blackwell Measures

N. Goela, M. Raginsky – Fall 2020 Summary of Theoretical Results

N. Goela and M. Raginsky, **Channel Polarization Through the Lens of Blackwell Measures**, IEEE Transactions on Information Theory, vol. 66, no. 10, pp. 6222-6241, <u>October 2020</u>.

Real-Valued Functionals of BICs

Any measurable function $f: [0,1] \Rightarrow \mathbb{R}$ induces a **channel functional** $I_f(W)$ on the collection of binary-input, memoryless, channels (BICs). We will focus on discrete BICs.

$$I_f(W) = \int_{[0,1]} f(dm_W) = E[f(S)]$$

 $S \sim m_W$

 $m_{\ensuremath{\mathcal{W}}}$ denotes the Blackwell measure of channel $\ensuremath{\mathcal{W}}$

https://en.wikipedia.org/wiki/David_Blackwell

Real-Valued Functionals of BICs

Measurable Function $f: [0,1] \Rightarrow \mathbb{R}$	Functional $I_f(W)$	Description
$f(s) = 1 - h_2(s)$	I(W)	Mutual Information
$f(s) = s(1 + \log_2 s)^r + \bar{s}(1 + \log_2 \bar{s})^r$	$M_r(W)$	Moments of Information Density
$f(s) = 2\sqrt{s(1-s)}$	Z(W)	Bhattacharyya Parameter
$f(s) = 2s^{\alpha}(1-s)^{1-\alpha}$	$H_{\alpha}(W)$	Hellinger Affinity
$f(s) = 2^{-\rho} \left(s^{\frac{1}{1+\rho}} + (1-s)^{\frac{1}{1+\rho}} \right)^{1+\rho}$	$e^{-E_0(\rho,W)}$	Gallager E_0 function
$f(s) = \left(\lambda \wedge \bar{\lambda}\right) - \left((2\bar{\lambda}s) \wedge (2\bar{s}\lambda)\right)$	$B_{\lambda}(W)$	Bayesian Information Gain
f(s) = 2s - 1	$1-2P_{e,ML}(W)$	1-2(Prob of ML Decoding Error)
$f(s) = (2s - 1)^2$	$\rho_{max}^2(W)$	Squared Maximal Correlation

Polarization of Channels

After several steps of polarization, transformed channels become either **"perfect"** channels with capacity nearly 1 bit or completely **opaque channels** with capacity nearly 0 bits.

[1] E. Arikan, Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels, IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051--3073, July 2009.

One-Step Channel Polarization

Definition

$$|I_f(W_1 \otimes W_2)| \leq |I_f(W_1) \wedge I_f(W_2)| \leq |I_f(W_1) \vee I_f(W_2)| \leq |I_f(W_1 \otimes W_2)|$$

Theorem 5

For arbitrary **symmetric BICs** W_1 , W_2 , the above phenomenon of one-step polarization holds for all **convex-** \cup $f: [0,1] \Rightarrow \mathbb{R}$

Several Different Proofs

- (1) Follows as a consequence of the Blackwell-Sherman-Stein theorem.
- (2) Follows from the definitions of one-step polarized channels, Jensen's inequality, and symmetry.
- (3) Equivalent proofs of Blackwell ordering of channels in the literature of density evolution.

Martingale Conditions

Random Channel Polarization Process: $\{I_f(W_n)\}_{n=0}^{n=\infty}$

Consider any class of BICs closed under the polar transforms, such that $I_f(\cdot)$ is bounded. If one of the following conditions is true for all pairs of arbitrary BICs (W_1, W_2) in the class, then the polarization process $\{I_f(W_n)\}_{n=0}^{n=\infty}$ is a MG, sub-MG, or super-MG:

$$I_{f}(W_{1} \circledast W_{2}) + I_{f}(W_{1} \circledast W_{2}) = I_{f}(W_{1}) + I_{f}(W_{2})$$

$$\geq (sub-MG)$$

$$\leq (super-MG)$$

Martingale Conditions

Theorem 6 – Martingales

For the class of symmetric BICs, the martingale conditions hold if and only if they hold on the class of BSCs. The function $f: [0,1] \Rightarrow \mathbb{R}$ may be non-convex.

Proof

Exploit theorem by Land and Huber establishing the channel decomposition of symmetric BICs into compound "mixture" of BSCs.

Example – Maximal Correlation

Definition

$$\rho_m(X;Y) = \max_{(f(X),g(Y))\in\mathcal{S}} \mathbb{E}\left(f(X)g(Y)\right)$$

S is the collection of real-valed random variables such that $\mathbb{E}f(X) = \mathbb{E}g(Y) = 0$ $\mathbb{E}f^2(X) = \mathbb{E}g^2(Y) = 1$

If either X or Y is binary-valued, then

$$\rho_m^2(X;Y) = \left[\sum_{x,y} \frac{(P_{XY}(x,y))^2}{P_X(x)P_Y(y)}\right] - 1$$

Define $\rho_m^2(W) = \rho_m^2(X; Y)$ for uniform input distribution: $P_X(x) = \frac{1}{2}$ and $P_{Y|X} = W$

Example – Maximal Correlation

If
$$f(s) = (2s - 1)^2$$
, then $I_f(W) = \rho_m^2(W)$

Theorem 5 applies for all symmetric BICs since *f* is **convex**-U

$$|I_f(W_1 \otimes W_2)| \leq |I_f(W_1) \wedge I_f(W_2)| \leq |I_f(W_1) \vee I_f(W_2)| \leq |I_f(W_1 \otimes W_2)|$$

Theorem 6 and Corollary 4 apply for class of symmetric BICs

$$I_f(W_1 \circledast W_2) + I_f(W_1 \circledast W_2) \leq I_f(W_1) + I_f(W_2)$$
 (super-MG)

Example – Maximal Correlation

Theorem 7

For the class of **symmetric BICs**, corresponding to the channel functional $I_f(W) = \rho_m^2(W)$, the channel polarization process is a super-martingale.

Proof

Apply Corollary 4. For $f(s) = (2s - 1)^2$, the functional inequality holds for all $p, q \in \left[0, \frac{1}{2}\right]$: $f(p \star q) + (1 - p \star q)f\left(\frac{pq}{1 - p \star q}\right) + (p \star q)f\left(\frac{\bar{p}q}{p \star q}\right) \leq f(p) + f(q)$ $RHS(p,q) - LHS(p,q) = \frac{4pq\bar{p}\bar{q}(2p - 1)^2(2q - 1)^2}{(1 - p \star q)(p \star q)} \geq 0$

Results for Class of Symmetric BICs

Possible to generalize to arbitrary BICs

Measurable Function $f: [0,1] \Rightarrow \mathbb{R}$	Functional $I_f(W)$	Polarization Processes $\{I_f(W_n)\}_{n=0}^{n=\infty}$
$f(s) = 1 - h_2(s)$	I(W)	Analytical: MG [1]
$f(s) = s(1 + \log_2 s)^r + \overline{s}(1 + \log_2 \overline{s})^r$ For $r = 2$, $f(s)$ is non-convex!	$M_r(W)$	Numerical: $M_2(W)$ super-MG Analytical: $V(W)$ super-MG [3]
$f(s) = 2\sqrt{s(1-s)}$	Z(W)	Analytical: super-MG [1]
$f(s) = 2s^{\alpha}(1-s)^{1-\alpha}$	$H_{\alpha}(W)$	Numerical: super-MG, $\alpha \in (0,1)$
$f(s) = 2^{-\rho} \left(s^{\frac{1}{1+\rho}} + (1-s)^{\frac{1}{1+\rho}} \right)^{1+\rho}$	$e^{-E_0(\rho,W)}$	Numerical: $e^{-E_0(\rho,W)}$ super-MG Analytical: $E_0(\rho,W)$ sub-MG [2]
$f(s) = \left(\lambda \wedge \bar{\lambda}\right) - \left(\left(2\bar{\lambda}s\right) \wedge \left(2\bar{s}\lambda\right)\right)$	$B_{\lambda}(W)$	Analytical: $B_{1/3}(W)$ neither sub-MG nor super-MG
f(s) = 2s - 1	$1 - 2P_{e,ML}(W)$	Analytical: super-MG
$f(s) = (2s - 1)^2$	$\rho_{max}^2(W)$	Analytical: super-MG

References Cited

[1] *E. Arikan*, Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels, IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051--3073, July 2009.

[2] The following paper established that the random process associated to Gallager's reliability function is a submartingale: *M. Alsan and E. Telatar*, **Polarization improves** E_0 , IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2714--2719, <u>May 2014</u>.

[3] The second moment of information density is related to the concept of channel dispersion, or varentropy as introduced generally in: *E. Arikan*, **Varentropy decreases under the polar transform**, IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3390--3400, June 2016.