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Real-Valued Functionals of BICs

Any measurable function f:[0,1] = R induces a channel functional
(W) on the collection of binary-input, memoryless, channels (BICs).

We will focus on discrete BICs.

(W) = f[ojl]f(dmw) = E[f (5)]

S~mW

my, denotes the Blackwell
measure of channel W

https://en.wikipedia.org/wiki/David_Blackwell



Real-Valued Functionals of BICs

Measurable Function Functional
f:101] =R L, (W)
f(s) =1—hy(s) (W)
f(s) =s(1+1log,s)" +5(1+1log, )" M,.(W)
f(s) =2{s(1—5s) Z(W)
fils) =258l s) Ho (W)
1 1 \1+p e—Eo(pW)
f(s)=27° (Sm Fil1es S)m)
f(s) = (AA1) = ((24s) A (251)) B,(W)
f(s) =12s — 1] 1= 2P, (W)

f(s) =(2s — 1)° Pimax(W)

Description

Mutual Information
Moments of Information Density
Bhattacharyya Parameter
Hellinger Affinity

Gallager E, function

Bayesian Information Gain
1 — 2(Prob of ML Decoding Error)

Squared Maximal Correlation



Polarization of Channels

After several steps of polarization, transformed channels become either “perfect” channels
with capacity nearly 1 bit or completely opaque channels with capacity nearly 0 bits.

1Symmetrit: Capacity of Polarized Channels
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One-Step Channel Polarization

Definition

(W, B W,)

IA

I (W) A1 (W3)

IA

Ir(Wy) Vv 1 (W5)

IA

Ir (W, ® W)

Theorem 5
For arbitrary symmetric BICs W, , W,, the above

phenomenon of one-step polarization holds for all
convex-U f:[0,1] = R

Several Different Proofs

(1) Follows as a consequence of the Blackwell-
Sherman-Stein theorem.

(2) Follows from the definitions of one-step polarized
channels, Jensen’s inequality, and symmetry.

(3) Equivalent proofs of Blackwell ordering of
channels in the literature of density evolution.




Martingale Conditions

Random Channel Polarization Process: {I;(W,)}Z¢

Consider any class of BICs closed under the polar transforms, such
that If(-) is bounded. If one of the following conditions is true for all
pairs of arbitrary BICs (W;, W5) in the class, then the polarization
process {1 (W,)}1=¢ is a MG, sub-MG, or super-MG:

(W, BW,) +

Ir (W, ® W)

IN IV

[r(Wy) + 1, (W5)
(sub-MG)
(super-MQG)




Martingale Conditions

Theorem 6 — Martingales
For the class of symmetric BICs, the martingale conditions hold if and only if
they hold on the class of BSCs. The function f: [0,1] = R may be non-convex.

Corollary 4 — Functional Inequalities

If f(s) = f(5), then it suffices to show for all p,q € lO, %] :

Fo*a)+1-p*of (%)Hp*q)f (ppfq> = | f@ + £ @
> | (sub-MG)
Note if £(s) = £(5), f(;"; ) . f(%) < | (super-m@)

Proof
Exploit theorem by Land and Huber establishing the channel decomposition of
symmetric BICs into compound “mixture” of BSCs.




Example — Maximal Correlation

Definition

pm(X;Y) = (f(Xﬁ%))ESE(f(X)g(Y))

S is the collection of real-valed random variables such that
Ef(X) = Eg(Y) = 0
Ef*(X)=Eg*(Y)=1

If either X or Y is binary-valued, then

(Pxy (z,y))
L Px (z)Py (y)

T,y

P (X;Y) = —1

Define pZ, (W) = p2,(X;Y) for uniform input distribution:
Px(X)=% and Ple=W



Example — Maximal Correlation

If f(s) = (2s — 1)?, then (W) = pH(W)

Theorem 5 applies for all symmetric BICs since f is convex-U

[e(Wy W) < | It(W) ALe(Wy) | < | (W) V I(W,)

IA

I (W, ® W)

Theorem 6 and Corollary 4 apply for class of symmetric BICs

(W BW,) + [ W@W,) | < | I;(Wy) +1(W,) (super-MG)




Example — Maximal Correlation

Theorem 7

For the class of symmetric BICs, corresponding to the channel functional
[[(W) = p2 (W), the channel polarization process is a super-martingale.

Proof
Apply Corollary 4.
For f(s) = (2s — 1)?, the functional inequality holds for all p, g

floxq)+(1 —w@f(%) + (p*q)f(piqq> <

4pqpq(2p — 1)*(2q — 1)?
RHS(p,q) — LHS(p,q) =

1-p*xq)(p*q)

€ [0,%] :

f) + f(q)

=0




Results for Class of Symmetric BICs

Possible to generalize to arbitrary BICs

Measurable Function
f:[01] >R

f(s) =1 = hy(s)

f(s) =s(1 +log,s)" +5(1+1log,3)"
Forr = 2, f(s) is non-convex!

f(s) =2s(1—5)
FG)="25%(15) ="

14p
£(s) = 2-° (5798 + (1 = 5)7%9)

f(s) = (AA 1) = ((24s) A (251))

f(s) =1|2s — 1]
f(s) = (2s - 1)°

Functional
I, (W)
(W)

M, (W)

ZW)

He (W)
e _EO (p'W)

B, (W)

1—=2P,y (W)

Prax(W)

Polarization Processes
{IrWn)}n=o
Analytical: MG [1]

Numerical: M, (W) super-MG

Analytical: V(W) super-MG [3]
Analytical: super-MG [1]

Numerical: super-MG, a € (0,1)

Numerical: e “Eo(PW) syper-MG
Analytical: Ey(p, W) sub-MG [2]

Analytical: By /3(W) neither
sub-MG nor super-MG

Analytical: super-MG

Analytical: super-MG
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