Channel Polarization Through the Lens of Blackwell Measures

N. Goela, M. Raginsky - Fall 2020
Summary of Theoretical Results

N. Goela and M. Raginsky, Channel Polarization Through the Lens of Blackwell Measures, IEEE Transactions on Information Theory, vol. 66, no. 10, pp. 6222-6241, October 2020.

Real-Valued Functionals of BICs

Any measurable function $f:[0,1] \Rightarrow \mathbb{R}$ induces a channel functional $\mathbf{I}_{\boldsymbol{f}}(\mathbf{W})$ on the collection of binary-input, memoryless, channels (BICs). We will focus on discrete BICs.

$$
\begin{gathered}
\mathrm{I}_{f}(W)=\int_{[0,1]} f\left(\mathrm{dm}_{W}\right)=\mathrm{E}[f(S)] \\
S \sim \mathrm{~m}_{W}
\end{gathered}
$$

m_{W} denotes the Blackwell measure of channel W

Real-Valued Functionals of BICs

Measurable Function	Functional	Description
$f:[0,1] \Rightarrow \mathbb{R}$	$\mathrm{I}_{f}(W)$	
$f(s)=1-h_{2}(s)$	$I(W)$	Mutual Information
$f(s)=s\left(1+\log _{2} s\right)^{r}+\bar{s}\left(1+\log _{2} \bar{s}\right)^{r}$	$M_{r}(W)$	Moments of Information Density
$f(s)=2 \sqrt{s(1-s)}$	$Z(W)$	Bhattacharyya Parameter
$f(s)=2 s^{\alpha}(1-s)^{1-\alpha}$	$\mathrm{H}_{\alpha}(W)$	Hellinger Affinity
$\left.f(s)=2^{-\rho\left(\frac{1}{1+\rho}\right.}+(1-s)^{\frac{1}{1+\rho}}\right)^{1+\rho}$	$e^{-E_{0}(\rho, W)}$	Gallager E_{0} function
$f(s)=(\lambda \wedge \bar{\lambda})-((2 \bar{\lambda} s) \wedge(2 \bar{s} \lambda))$	$B_{\lambda}(W)$	Bayesian Information Gain
$f(s)=\|2 s-1\|$	$1-2 P_{e, M L}(W)$	$1-2$ (Prob of ML Decoding Error)
$f(s)=(2 s-1)^{2}$	$\rho_{\max }^{2}(W)$	Squared Maximal Correlation

Polarization of Channels

After several steps of polarization, transformed channels become either "perfect" channels with capacity nearly 1 bit or completely opaque channels with capacity nearly 0 bits.

[1] E. Arikan, Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels, IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073, July 2009.

One-Step Channel Polarization

Definition

$$
\mathrm{I}_{f}\left(W_{1} \text { 㘢 } W_{2}\right) \square \leq \mathrm{I}_{f}\left(W_{1}\right) \wedge \mathrm{I}_{f}\left(W_{2}\right) \square \leq \mathrm{I}_{f}\left(W_{1}\right) \vee \mathrm{I}_{f}\left(W_{2}\right) \square \leq \mathrm{I}_{f}\left(W_{1} \circledast W_{2}\right)
$$

Theorem 5
For arbitrary symmetric BICs W_{1}, W_{2}, the above phenomenon of one-step polarization holds for all convex-U $f:[0,1] \Rightarrow \mathbb{R}$

Several Different Proofs

(1) Follows as a consequence of the Blackwell-Sherman-Stein theorem.
(2) Follows from the definitions of one-step polarized channels, Jensen's inequality, and symmetry.
(3) Equivalent proofs of Blackwell ordering of channels in the literature of density evolution.

Martingale Conditions

Random Channel Polarization Process: $\left\{\mathrm{I}_{f}\left(W_{n}\right)\right\}_{n=0}^{n=\infty}$

Consider any class of BICs closed under the polar transforms, such that $\mathrm{I}_{f}(\cdot)$ is bounded. If one of the following conditions is true for all pairs of arbitrary BICs $\left(W_{1}, W_{2}\right)$ in the class, then the polarization process $\left\{\mathrm{I}_{f}\left(W_{n}\right)\right\}_{n=0}^{n=\infty}$ is a MG, sub-MG, or super-MG:

Martingale Conditions

Theorem 6 - Martingales

For the class of symmetric BICs, the martingale conditions hold if and only if they hold on the class of BSCs. The function $f:[0,1] \Rightarrow \mathbb{R}$ may be non-convex.

Corollary 4 - Functional Inequalities

If $f(s)=f(\bar{s})$, then it suffices to show for all $p, q \in\left[0, \frac{1}{2}\right]$:

$$
\begin{gathered}
f(p \star q)+(1-p \star q) f\left(\frac{p q}{1-p \star q}\right)+(p \star q) f\left(\frac{\bar{p} q}{p \star q}\right) \\
= \\
\\
\text { Note if } f(s)=f(\bar{s}), \quad f\left(\frac{\bar{p} q}{p \star q}\right)=f\left(\frac{p \bar{q}}{p \star q}\right)
\end{gathered}
$$

Proof

Exploit theorem by Land and Huber establishing the channel decomposition of symmetric BICs into compound "mixture" of BSCs.

Example - Maximal Correlation

Definition

$$
\rho_{m}(X ; Y)=\max _{(f(X), g(Y)) \in \mathcal{S}} \mathbb{E}(f(X) g(Y))
$$

\mathcal{S} is the collection of real-valed random variables such that $\mathbb{E} f(X)=\mathbb{E} g(Y)=0$
$\mathbb{E} f^{2}(X)=\mathbb{E} g^{2}(Y)=1$
If either X or Y is binary-valued, then

$$
\rho_{m}^{2}(X ; Y)=\left[\sum_{x, y} \frac{\left(P_{X Y}(x, y)\right)^{2}}{P_{X}(x) P_{Y}(y)}\right]-1
$$

Define $\rho_{m}^{2}(W)=\rho_{m}^{2}(X ; Y)$ for uniform input distribution:

$$
P_{X}(x)=\frac{1}{2} \quad \text { and } P_{Y \mid X}=W
$$

Example - Maximal Correlation

$$
\text { If } f(s)=(2 s-1)^{2} \text {, then } \mathrm{I}_{f}(W)=\rho_{m}^{2}(W)
$$

Theorem 5 applies for all symmetric BICs since f is convex-U

$$
\mathrm{I}_{f}\left(W_{1} \text { 㘢 } W_{2}\right) \square \leq \mathrm{I}_{f}\left(W_{1}\right) \wedge \mathrm{I}_{f}\left(W_{2}\right) \square \leq \mathrm{I}_{f}\left(W_{1}\right) \vee \mathrm{I}_{f}\left(W_{2}\right) \square \leq \mathrm{I}_{f}\left(W_{1} \circledast W_{2}\right)
$$

Theorem 6 and Corollary 4 apply for class of symmetric BICs

$$
\mathrm{I}_{f}\left(W_{1} \text { * } W_{2}\right)+\mathrm{I}_{f}\left(W_{1} \circledast W_{2}\right) \quad \leq \quad \mathrm{I}_{f}\left(W_{1}\right)+\mathrm{I}_{f}\left(W_{2}\right) \quad \text { (super-MG) }
$$

Example - Maximal Correlation

Theorem 7

For the class of symmetric BICs, corresponding to the channel functional $\mathrm{I}_{f}(W)=\rho_{m}^{2}(W)$, the channel polarization process is a super-martingale.

Proof

Apply Corollary 4.
For $f(s)=(2 s-1)^{2}$, the functional inequality holds for all $p, q \in\left[0, \frac{1}{2}\right]$:

$$
\begin{gathered}
f(p \star q)+(1-p \star q) f\left(\frac{p q}{1-p \star q}\right)+(p \star q) f\left(\frac{\bar{p} q}{p \star q}\right) \leq f(p)+f(q) \\
R H S(p, q)-L H S(p, q)=\frac{4 p q \bar{p} \bar{q}(2 p-1)^{2}(2 q-1)^{2}}{(1-p \star q)(p \star q)} \geq 0
\end{gathered}
$$

Results for Class of Symmetric BICs

Possible to generalize to arbitrary BICs

Measurable Function $f:[0,1] \Rightarrow \mathbb{R}$	Functional $\mathrm{I}_{f}(W)$	Polarization Processes $\left\{\mathrm{I}_{f}\left(W_{n}\right)\right\}_{n=0}^{n=\infty}$
$f(s)=1-h_{2}(s)$	$I(W)$	Analytical: MG [1]

References Cited

[1] E. Arikan, Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels, IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073, July 2009.
[2] The following paper established that the random process associated to Gallager's reliability function is a submartingale: M. Alsan and E. Telatar, Polarization improves $\boldsymbol{E}_{\mathbf{0}}$, IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2714--2719, May 2014.
[3] The second moment of information density is related to the concept of channel dispersion, or varentropy as introduced generally in: E. Arikan, Varentropy decreases under the polar transform, IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3390--3400, June 2016.

