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Polar Codes for Broadcast Channels

Naveen Goela†, Emmanuel Abbe♯, and Michael Gastpar†

Abstract

Polar codes are introduced for discrete memoryless broadcast channels. For m-user deterministic

broadcast channels, polarization is applied to map uniformly random message bits from m independent

messages to one codeword while satisfying broadcast constraints. The polarization-based codes achieve

rates on the boundary of the private-message capacity region. For two-user noisy broadcast channels,

polar implementations are presented for two information-theoretic schemes: i) Cover’s superposition

codes; ii) Marton’s codes. Due to the structure of polarization, constraints on the auxiliary and channel-

input distributions are identified to ensure proper alignment of polarization indices in the multi-user

setting. The codes achieve rates on the capacity boundary of a few classes of broadcast channels (e.g.,

binary-input stochastically degraded). The complexity of encoding and decoding is O(n logn) where n

is the block length. In addition, polar code sequences obtain a stretched-exponential decay of O(2−n
β

) of

the average block error probability where 0 < β < 1
2 . Reproducible experiments for finite block lengths

n = 512, 1024, 2048 corroborate the theory.

Index Terms
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I
NTRODUCED by T. M. Cover in 1972, the broadcast problem consists of a single source transmitting

m independent private messages to m receivers through a single discrete, memoryless, broadcast chan-

nel (DM-BC) [1]. The private-message capacity region is known if the channel structure is deterministic,

degraded, less-noisy, or more-capable [2]. For general classes of DM-BCs, there exist inner bounds such

as Marton’s inner bound [3] and outer bounds such as the Nair-El-Gamal outer bound [4]. One difficult

aspect of the broadcast problem is to design an encoder which maps m independent messages to a single

codeword of symbols which are transmitted simultaneously to all receivers. Several codes relying on

random binning, superposition, and Marton’s strategy have been analyzed in the literature (see e.g., the

overview in [5]).

A. Overview of Contributions

The present paper focuses on low-complexity codes for broadcast channels based on polarization

methods. Polar codes were invented originally by Arıkan and were shown to achieve the capacity of

binary-input, symmetric, point-to-point channels with O(n log n) encoding and decoding complexity

where n is the code length [6]. In this paper, we obtain the following results.

• Polar codes for deterministic, linear and non-linear, binary-output, m-user DM-BCs (cf. [7]). The

capacity-achieving broadcast codes implement low-complexity random binning, and are related to

polar codes for other multi-user scenarios such as Slepian-Wolf distributed source coding [8], [9],

and multiple-access channel (MAC) coding [10]. For deterministic DM-BCs, the polar transform is

applied to channel output variables. Polarization is useful for shaping uniformly random message

bits from m independent messages into non-equiprobable codeword symbols in the presence of hard

broadcast constraints. As discussed in Section I-B1 and referenced in [11]–[13], it is difficult to design

low-complexity parity-check (LDPC) codes or belief propagation algorithms for the deterministic

DM-BC due to multi-user broadcast constraints.

• Polar codes for general two-user DM-BCs based on superposition coding [1], [14]. In the multi-user

setting, constraints on the auxiliary and channel-input distributions are placed to ensure alignment

of polarization indices. The achievable rates lie on the boundary of the capacity region for certain

classes of DM-BCs such as binary-input stochastically degraded channels.

• Polar codes for general two-user DM-BCs based on Marton’s coding strategy. In the multi-user set-

ting, due to the structure of polarization, constraints on the auxiliary and channel-input distributions

are identified to ensure alignment of polarization indices. The achievable rates lie on the boundary of

the capacity region for certain classes of DM-BCs such as binary-input semi-deterministic channels.
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• For the above broadcast polar codes, the asymptotic decay of the average error probability under

successive cancelation decoding at the broadcast receivers is established to be O(2−nβ

) where 0 <

β < 1
2 . The error probability is analyzed by averaging over polar code ensembles. In addition,

properties such as the chain rule of the Kullback-Leibler divergence between discrete probability

measures are exploited.

• Reproducible experiments are provided for finite block lengths n = 512, 1024, 2048. The results of

the experiments corroborate the theory.

Throughout the paper, for different broadcast coding strategies, a systems-level block diagram of the

communication channel and polar transforms is provided.

B. Relation to Prior Work

1) Deterministic Broadcast Channels: The deterministic broadcast channel has received considerable

attention in the literature (e.g. due to related extensions such as secure broadcast, broadcasting with side

information, and index coding [15], [16]). Several practical codes have been designed. For example, the

authors of [11] propose sparse linear coset codes to emulate random binning and survey propagation

to enforce broadcast channel constraints. In [12], the authors propose enumerative source coding and

Luby-Transform codes for deterministic DM-BCs specialized to interference-management scenarios. Ad-

ditional research includes reinforced belief propagation with non-linear coding [13]. To our knowledge,

polarization-based codes provide provable guarantees for achieving rates on the capacity-boundary with

practical codes in the general case.

2) Polar Codes for Multi-User Settings: Subsequent to the derivation of channel polarization in [6]

and the refined rate of polarization in [17], polarization methods have been extended to analyze multi-

user information theory problems. In [10], a joint polarization method is proposed for m-user MACs

with connections to matroid theory. Polar codes were extended for several other multi-user settings:

arbitrarily-permuted parallel channels [18], degraded relay channels [19], cooperative relaying [20], and

wiretap channels [21]–[23]. In addition, several binary multi-user communication scenarios including

the Gelfand-Pinsker problem, and Wyner-Ziv problem were analyzed in [24, Chapter 4]. Polar codes

for lossless and lossy source compression were investigated respectively in [8] and [25]. In [8], source

polarization was extended to the Slepian-Wolf problem involving distributed sources. The approach is

based on an “onion-peeling” encoding of sources, whereas a joint encoding is proposed in [26]. In [9],

a unified approach is provided for the Slepian-Wolf problem based on generalized monotone chain rules

of entropy. To our knowledge, the design of polarization-based broadcast codes is relatively new.
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Fig. 1. Blackwell Channel: An example of a deterministic broadcast channel with m = 2 broadcast users. The channel is

defined as Y1 = f1(X) and Y2 = f2(X) where the non-linear functions f1(x) = max(x− 1, 0) and f2(x) = min(x, 1). The

private-message capacity region of the Blackwell channel is drawn. For different input distributions PX(x), the achievable rate

points are contained within corresponding polyhedrons in R
m
+ .

3) Binary vs. q-ary Polarization: The broadcast codes constructed in the present paper for DM-BCs

are based on polarization for binary random variables. However, in extending to arbitrary alphabet sizes,

a large body of prior work exists and has focused on generalized constructions and kernels [27], and

generalized polarization for q-ary random variables and q-ary channels [28]–[31]. The reader is also

referred to the monograph in [32] containing a clear overview of polarization methods.

C. Notation

An index set {1, 2, . . . ,m} is abbreviated as [m]. An m × n matrix array of random variables is

comprised of variables Yi(j) where i ∈ [m] represents the row and j ∈ [n] the column. The notation

Y k:ℓ
i , {Yi(k), Yi(k + 1), . . . , Yi(ℓ)} for k ≤ ℓ. When clear by context, the term Y n

i represents Y 1:n
i .

In addition, the notation for the random variable Yi(j) is used interchangeably with Y j
i . The notation

f(n) = O(g(n)) means that there exists a constant κ such that f(n) ≤ κg(n) for sufficiently large n.

For a set S , cl(S) represents set closure, conv(S) indicates the convex hull operation over set S , and S∁

denotes the complement of S with respect to a universal set. Let hb(x) = −x log2(x)−(1−x) log2(1−x)

denote the binary entropy function. Let a ∗ b , (1− a)b+ a(1− b).

II. MODEL

Definition 1 (Discrete, Memoryless Broadcast Channel): The discrete memoryless broadcast channel

(DM-BC) with m broadcast receivers consists of a discrete input alphabet X , discrete output alphabets
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Yi for i ∈ [m], and a conditional distribution PY1,Y2,...,Ym|X(y1, y2, . . . , ym|x) where x ∈ X and yi ∈ Yi.

Definition 2 (Private Messages): For a DM-BC with m broadcast receivers, there exist m private

messages {Wi}i∈[m] such that each message Wi is composed of nRi bits and (W1,W2, . . . ,Wm) is

uniformly distributed over [2nR1 ]× [2nR2 ]× · · · × [2nRm ].

Definition 3 (Channel Encoding and Decoding): For the DM-BC with independent messages, let the

vector of rates ~R ,

[

R1 R2 . . . Rm

]T
. An (~R, n) code for the DM-BC consists of one encoder

xn : [2nR1 ]× [2nR2 ]× · · · × [2nRm ] → X n,

and m decoders specified by Ŵi : Y
n
i → [2nRi ] for i ∈ [m]. Based on received observations {Yi(j)}j∈[n],

each decoder outputs a decoded message Ŵi.

Definition 4 (Average Probability of Error): The average probability of error P
(n)
e for a DM-BC code

is defined to be the probability that the decoded message at all receivers is not equal to the transmitted

message,

P (n)
e = P

(

m
⋃

i=1

{

Ŵi

(

{Yi(j)}j∈[n]
)

6=Wi

}

)

.

Definition 5 (Private-Message Capacity Region): If there exists a sequence of (~R, n) codes with P
(n)
e →

0, then the rates ~R ∈ R
m
+ are achievable. The private-message capacity region is the closure of the set

of achievable rates.

III. DETERMINISTIC BROADCAST CHANNELS

Definition 6 (Deterministic DM-BC): Define m deterministic functions fi(x) : X → Yi for i ∈ [m].

The deterministic DM-BC with m receivers is defined by the following conditional distribution

PY1,Y2,...,Ym|X(y1, y2, . . . , ym|x) =
m
∏

i=1

1{yi = fi(x)}. (1)

A. Capacity Region

Proposition 1 (Marton [33], Pinsker [34]): The capacity region of the deterministic DM-BC includes

those rate-tuples ~R ∈ R
m
+ in the region

CDET−BC , conv
(

cl
(

⋃

X,{Yi}i∈[m]

R
(

X, {Yi}i∈[m]

)

))

, (2)
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where the polyhedral region R(X, {Yi}i∈[m]) is given by

R ,

{

~R ∈ R
m
+

∣

∣

∣

∑

i∈S

Ri < H({Yi}i∈S), ∀S ⊆ [m]
}

. (3)

The union in Eqn. (2) is over all random variables X,Y1, Y2, . . . , Ym with joint distribution induced by

PX(x) and Yi = fi(X). The notations conv(·) and cl(·) were defined in Section I-C.

Example 1 (Blackwell Channel): In Figure 1, the Blackwell channel is depicted with X = {0, 1, 2}

and Yi = {0, 1}. For any fixed distribution PX(x), it is seen that PY1Y2
(y1, y2) has zero mass for the

pair (1, 0). Let α ∈ [12 ,
2
3 ]. Due to the symmetry of this channel, the capacity region is the union of two

regions,

{(R1, R2) ∈ R
2
+ : R1 ≤ hb(α), R2 ≤ hb(

α

2
), R1 +R2 ≤ hb(α) + α},

{(R1, R2) ∈ R
2
+ : R1 ≤ hb(

α

2
), R2 ≤ hb(α), R1 +R2 ≤ hb(α) + α},

where the first region is achieved with input distribution PX(0) = PX(1) = α
2 , and the second region is

achieved with PX(1) = PX(2) = α
2 [2, Lec. 9]. The sum rate is maximized for a uniform input distribution

which yields a pentagonal achievable rate region: R1 ≤ hb(
1
3 ), R2 ≤ hb(

1
3 ), R1 +R2 ≤ log2 3. Figure 1

illustrates the capacity region.

B. Main Result

Theorem 1 (Polar Code for Deterministic DM-BC): Consider an m-user deterministic DM-BC with

arbitrary discrete input alphabet X , and binary output alphabets Yi ∈ {0, 1}. Fix input distribution

PX(x) where x ∈ X and constant 0 < β < 1
2 . Let π : [m] → [m] be a permutation on the index set of

receivers. Let Ri for i ∈ [m] be the rate for each receiver. Define rate-vector

~R ,

[

R1 R2 . . . Rm

]T
.

There exists a sequence of polar broadcast codes over n channel uses which achieves rate-vectors ~R

where the rate Rπ(i) is bounded as

0 ≤ Rπ(i) < H
(

Yπ(i)|{Yπ(k)}k=1:i−1

)

.

The average error probability of this code sequence decays as P
(n)
e = O(2−nβ

). The complexity of

encoding and decoding is O(n log n).
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Fig. 2. Polar Code for Blackwell Channel: Broadcast code approaching the capacity boundary point of (R1, R2) = (hb(
2
3
), 2

3
).

Remark 1: To prove the existence of low-complexity broadcast codes, a successive randomized protocol

is introduced in Section V-A which utilizes o(n) bits of randomness at the encoder. A deterministic

encoding protocol is also presented.

Remark 2: The achievable rates for a fixed input distribution PX(x) are the vertex points of the

polyhedral rate region defined in (3). To achieve non-vertex points, the following coding strategies could

be applied: time-sharing; rate-splitting for the deterministic DM-BC [35]; polarization by Arıkan utilizing

generalized chain rules of entropy [9]. For certain input distributions PX(x), as illustrated in Figure 1

for the Blackwell channel, a subset of the achievable vertex points lie on the capacity boundary.

Remark 3: Polarization of channels and sources extends to q-ary alphabets (see e.g. [28]). Similarly,

it is entirely possible to extend Theorem 1 to include DM-BCs with q-ary output alphabets.
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TABLE I

P
(n)
e FOR DIFFERENT RATE PAIRS ACHIEVED FOR THE BLACKWELL CHANNEL

n n n n

(R1, R2) 512 1024 2048 4096

(0.73, 0.53) 0.106 0.0518 0.0195 0.0051

(0.76, 0.55) 0.201 0.1356 0.0631 0.0194

(0.79, 0.57) 0.3799 0.3177 0.2246 0.1188

(0.82, 0.59) 0.5657 0.5606 0.5079 0.4070

(0.85, 0.61) 0.7849 0.8181 0.8286 0.8133

(0.87, 0.63) 0.9454 0.9757 0.9866 0.9936

(0.90, 0.65) 0.9986 1.0000 1.0000 1.0000

C. Experimental Results For The Blackwell Channel

As an experiment for the Blackwell channel described in Example 1, the target rate pair on the capacity

boundary is selected to be (R1, R2) = (hb(
2
3),

2
3). Note that R1 + R2 = log2 3 which is the maximum

sum rate possible for any input distribution. To achieve the target rate pair, the input distribution PX(x)

is uniform. The output distribution is then PY1Y2
(0, 0) = PY1Y2

(0, 1) = PY1Y2
(1, 1) = 1

3 . For the output

distribution, H(Y1) = hb(
2
3) and H(Y2|Y1) =

2
3 . According to Theorem 1, these distributions permit polar

codes approaching the target boundary rate pair. Figure 2 shows the average probability of error P
(n)
e for

block length n = 2048 with selected rate pairs approaching the capacity boundary. The broadcast code

employs a deterministic rule as opposed to a randomized rule at the encoder as described in Section V-A.

Table I provides results of experiments for different block lengths for a randomized rule at the encoder.

While the randomized rule is important for the proof, the deterministic rule provides better error results

in practice. All data points for error probabilities were generated using 104 codeword transmissions.

Remark 4 (Zero Error vs. Average Error): A zero-error coding scheme is trivial for rate pairs (R1, R2)

within the triangle: (0, 0), (0, 1), (1, 0). Beyond the triangular region, it is possible to achieve zero-error

throughout the whole capacity region by purging the polar code-book of any codewords causing error at

the encoder. However, unless there exists an efficient method to enumerate the code-book, the purging

process is not feasible with low-complexity since there exist an exponential number of codewords.

IV. OVERVIEW OF POLARIZATION METHOD
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FOR DETERMINISTIC DM-BCS

For the proof of Theorem 1, we utilize binary polarization theorems. In contrast to polar codes for

point-to-point channels, our polar codes for deterministic DM-BCs apply the polar transform to the output

random variables of the channel.

A. Polar Transform

Consider an input distribution PX(x) to the deterministic DM-BC. Over n channel uses, the input

random variables to the channel are given by

X1:n = {X1,X2, . . . ,Xn},

where Xj ∼ PX are independent and identically distributed (i.i.d.) random variables. The channel output

variables are given by Yi(j) = fi(X(j)) where fi(·) are the deterministic functions to each broadcast

receiver. Denote the random matrix of channel output variables by

Y ,

















Y 1
1 Y 2

1 Y 3
1 . . . Y n

1

Y 1
2 Y 2

2 Y 3
2 . . . Y n

2

...
...

... . . .
...

Y 1
m Y 2

m Y 3
m . . . Y n

m

















, (4)

where Y ∈ F
m×n
2 . For n = 2ℓ and ℓ ≥ 1, the polar transform is defined as the following invertible linear

transformation,

U = YGn (5)

where Gn ,





1 0

1 1





⊗
log2 n

Bn.

The matrix Gn ∈ F
n×n
2 is formed by multiplying a matrix of successive Kronecker matrix-products

(denoted by
⊗

) with a bit-reversal matrix Bn introduced by Arıkan [8]. The polarized random matrix

U ∈ F
m×n
2 is indexed as

U ,

















U1
1 U2

1 U3
1 . . . Un

1

U1
2 U2

2 U3
2 . . . Un

2

...
...

... . . .
...

U1
m U2

m U3
m . . . Un

m

















. (6)
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B. Joint Distribution of Polarized Variables

Consider the channel output distribution PY1Y2···Ym
of the deterministic DM-BC induced by input

distribution PX(x). The j-th column of the random matrix Y is distributed as (Y j
1 , Y

j
2 , · · ·, Y

j
m) ∼

PY1Y2···Ym
. Due to the memoryless property of the channel, the joint distribution of all output variables

is

PY n
1 Y n

2 ···Y n
m

(

yn1 , y
n
2 , · · ·, y

n
m

)

=

n
∏

j=1

PY1Y2···Ym

(

yj1, y
j
2, . . . , y

j
m

)

. (7)

The joint distribution of the matrix variables in Y is characterized easily due to the i.i.d. structure.

The polarized random matrix U does not have an i.i.d. structure. However, one way to define the joint

distribution of the variables in U is via the polar transform equation (5). An alternate representation is

via a decomposition into conditional distributions as follows1.

PUn
1 Un

2 ···Un
m

(

un1 , u
n
2 , · · ·u

n
m

)

=

m
∏

i=1

n
∏

j=1

P
(

ui(j)
∣

∣

∣
u1:j−1
i , {u1:nk }k∈[1:i−1]

)

. (8)

As derived by Arıkan in [8] and summarized in Section IV-E, the conditional probabilities in (8) and

associated likelihoods may be computed using a dynamic programming method which “divides-and-

conquers” the computations efficiently.

C. Polarization of Conditional Entropies

Proposition 2 (Source Polarization [8]): Following the statement of [8, Theorem 1], consider the pair

of random matrices (Y,U) related through the polar transformation in (5). For i ∈ [m] and any ǫ ∈ (0, 1),

define the set of indices

A
(n)
i ,

{

j ∈ [n] : H
(

Ui(j)
∣

∣

∣
U1:j−1
i , {Y 1:n

k }k∈[1:i−1]

)

≥ 1− ǫ
}

. (9)

Then for n = 2ℓ, in the limit as ℓ→ ∞,

1

n

∣

∣

∣
A

(n)
i

∣

∣

∣
→ H(Yi|Y1Y2 · · · Yi−1). (10)

For sufficiently large n, Proposition 2 establishes that there exist approximately nH (Yi|Y1Y2 · · · Yi−1)

indices per row i ∈ [m] of random matrix U for which the conditional entropy is close to 1. The

total number of indices in U for which the conditional entropy terms polarize to 1 is approximately

nH(Y1Y2 · · · Ym). The polarization phenomenon is illustrated in Figure 3.

1The abbreviated notation of the form P (a|b) which appears in (8) indicates PA|B(a|b), i.e. the conditional probability

P{A = a|B = b} where A and B are random variables.
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H

(
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∣

∣
U

1:j−1
i , {U1:n
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)
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m

m
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n

Fig. 3. The polar transform applied to random matrix Y with i.i.d. structure results in a polarized random matrix U.

Remark 5: Since the polar transform Gn is invertible, {U1:n
k }k∈[1:i−1] are in one-to-one correspondence

with {Y 1:n
k }k∈[1:i−1]. Therefore the conditional entropies H

(

Ui(j)
∣

∣U1:j−1
i , {U1:n

k }k∈[1:i−1]

)

also polarize

to 0 or 1.

D. Rate of Polarization

The Bhattacharyya parameter of random variables is closely related to the conditional entropy. The

parameter is useful for characterizing the rate of polarization.

Definition 7 (Bhattacharyya Parameter): Let (T, V ) ∼ PT,V where T ∈ {0, 1} and V ∈ V where V

is an arbitrary discrete alphabet. The Bhattacharyya parameter Z(T |V ) ∈ [0, 1] is defined

Z(T |V ) = 2
∑

v∈V

PV (v)
√

PT |V (0|v)PT |V (1|v). (11)

As shown in Lemma 16 of Appendix A, Z(T |V ) → 1 implies H(T |V ) → 1, and similarly Z(T |V ) → 0

implies H(T |V ) → 0 for T a binary random variable. Based on the Bhattacharyya parameter, the

following theorem specifies sets M
(n)
i ⊂ [n] that will be called message sets.

Proposition 3 (Rate of Polarization [17]): Consider the pair of random matrices (Y,U) related through

the polar transformation in (5). Fix constants i ∈ [m], τ > 0, and 0 < β < 1
2 . Let δn = 2−nβ

be the rate
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of polarization. Define the set

M
(n)
i ,

{

j ∈ [n] : Z
(

Ui(j)
∣

∣

∣
U1:j−1
i , {Y 1:n

k }k∈[1:i−1]

)

≥ 1− δn

}

. (12)

Then there exists an N0 = N0(β, τ) such that

1

n

∣

∣

∣
M

(n)
i

∣

∣

∣
≥ H(Yi|Y1Y2 · · · Yi−1)− τ, (13)

for all n > N0 where n = 2ℓ is a power of two.

Proposition 3 is established by defining a super-martingale with respect to the Bhattacharyya parameters

and applying the Martingale Convergence Theorem (see e.g., [8, Theorem 1 and 2] for sources and [6]

for channel polarization). The rate of polarization was characterized by Arıkan and Telatar for channel

polarization in [17, Theorem 1]. A similar statement for asymmetric channels and sources may be found

in [36, Theorem 1].

Remark 6: The message sets M
(n)
i are computed “offline” only once during a code construction phase.

The sets do not depend on the realization of random variables. In the following Section IV-E, a Monte

Carlo sampling approach for estimating Bhattacharyya parameters is reviewed. Other highly efficient

algorithms are known in the literature for finding the message indices (see e.g. Tal and Vardy [37]).

E. Estimating Bhattacharyya Parameters

As shown in Lemma 11 in Appendix A, one way to estimate the Bhattacharyya parameter Z(T |V ) is

to sample from the distribution PT,V (t, v) and evaluate ET,V

√

ϕ(T, V ). The function ϕ(t, v) is defined

based on likelihood ratios

L(v) ,
PT |V (0|v)

PT |V (1|v)
,

L−1(v) ,
PT |V (1|v)

PT |V (0|v)
.

Similarly, to determine the indices in the message sets M
(n)
i defined in Proposition 3, the Bhat-

tacharyya parameters Z
(

Ui(j)
∣

∣

∣
U1:j−1
i , {Y 1:n

k }k∈[i−1]

)

must be estimated efficiently. For n ≥ 2, define

the likelihood ratio

L(i,j)
n

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

,
P

(

Ui(j) = 0
∣

∣

∣
U1:j−1
i = u1:j−1

i , {Y 1:n
k = y1:nk }k∈[1:i−1]

)

P

(

Ui(j) = 1
∣

∣

∣
U1:j−1
i = u1:j−1

i , {Y 1:n
k = y1:nk }k∈[1:i−1]

) . (14)
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Fig. 4. Polarization Curves: (a) Bernoulli source polarization; (b) Polarization of conditional entropies.

The dynamic programming method given in [8] allows for a recursive computation of the likelihood ratio.

Define the following sub-problems

Ξ1 = L
(i,j)
n

2

(

u1:2j−2
i,o ⊕ u1:2j−2

i,e , {y
1:n

2

k }k∈[1:i−1]

)

,

Ξ2 = L
(i,j)
n

2

(

u1:2j−2
i,e , {y

n

2
+1:n

k }k∈[1:i−1]

)

,

where the notation u1:2j−2
i,o and u1:2j−2

i,e represents the odd and even indices respectively of the sequence

u1:2j−2
i . The recursive computation of the likelihoods is characterized by

L(i,2j−1)
n

(

u1:2j−2
i , {y1:nk }k∈[1:i−1]

)

=
Ξ1Ξ2 + 1

Ξ1 + Ξ2
.

L(i,2j)
n

(

u1:2j−1
i , {y1:nk }k∈[1:i−1]

)

= (Ξ1)
γ Ξ2,

where γ = 1 if ui(2j − 1) = 0 and γ = −1 if ui(2j − 1) = 1. In the above recursive computations, the

base case is for sequences of length n = 2.

The dynamic programming technique may be modified to estimate target probabilities, Bhattacharyya

parameters, and also conditional entropies directly. Figure 4 shows the results of polarizing a joint

distribution PY1Y2
(y1, y2) when PY1Y2

(0, 0) = PY1Y2
(0, 1) = PY1Y2

(1, 1) = 1
3 . In the plot to the left, a

single-source polarization result is shown for an i.i.d. Bernoulli source PY1
(0) = 2

3 . In the plot to the right,

a conditional polarization result is given for PY1Y2
(y1, y2). The block lengths are n = 512, 1024, 2048.
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V. PROOF OF THEOREM 1

The proof of Theorem 1 is based on binary polarization theorems as discussed in Section IV. The

random coding arguments of C. E. Shannon prove the existence of capacity-achieving codes for point-to-

point channels. Furthermore, random binning and joint-typicality arguments suffice to prove the existence

of capacity-achieving codes for the deterministic DM-BC. However, it is shown in this section that there

exist capacity-achieving polar codes for the binary-output deterministic DM-BC.

A. Broadcast Code Based on Polarization

The ordering of the receivers’ rates in ~R is arbitrary due to symmetry. Therefore, let π(i) = i be the

identity permutation which denotes the successive order in which the message bits are allocated for each

receiver. The encoder must map m independent messages (W1,W2, . . . ,Wm) uniformly distributed over

[2nR1 ] × [2nR2 ] × · · · × [2nRm ] to a codeword xn ∈ X n. To construct a codeword for broadcasting m

independent messages, the following binary sequences are formed at the encoder: u1:n1 , u1:n2 , . . . , u1:nm .

To determine a particular bit ui(j) in the binary sequence u1:ni , if j ∈ M
(n)
i , the bit is selected as a

uniformly distributed message bit intended for receiver i ∈ [m]. As defined in (12) of Proposition 3, the

message set M
(n)
i represents those indices for bits transmitted to receiver i. The remaining non-message

indices in the binary sequence u1:ni for each user i ∈ [m] are computed either according to a deterministic

or random mapping.

1) Deterministic Mapping: Consider a class of deterministic boolean functions indexed by i ∈ [m]

and j ∈ [n]:

ψ(i,j) : {0, 1}n(max{0,i−1})+j−1 → {0, 1}. (15)

As an example, consider the deterministic boolean function based on the maximum a posteriori polar

coding rule.

ψ
(i,j)
MAP

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

, argmax
u∈{0,1}

{

P

(

Ui(j) = u
∣

∣

∣
U1:j−1
i = u1:j−1

i , {Y 1:n
k = y1:nk }k∈[1:i−1]

)}

.

(16)

2) Random Mapping: Consider a class of random boolean functions indexed by i ∈ [m] and j ∈ [n]:

Ψ(i,j) : {0, 1}n(max{0,i−1})+j−1 → {0, 1}. (17)
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As an example, consider the random boolean function

Ψ
(i,j)
RAND

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

,











0, w. p. λ0

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

,

1, w. p. 1− λ0

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

,

(18)

where

λ0

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

, P

(

Ui(j) = 0
∣

∣

∣
U1:j−1
i = u1:j−1

i , {Y 1:n
k = y1:nk }k∈[1:i−1]

)

.

For a fixed i and j, the random boolean function Ψ
(i,j)
RAND may be thought of as a vector of independent

Bernoulli random variables. Each Bernoulli random variable of the vector has a fixed probability of being

one or zero that is well-defined.

3) Mapping From Messages To Codeword: The binary sequences u1:ni for i ∈ [m] are formed

successively bit by bit. If j ∈ M
(n)
i , then the bit ui(j) is one message bit from the uniformly distributed

message Wi intended for user i. If j /∈ M
(n)
i , ui(j) = ψ

(i,j)
MAP

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

in the case of a

deterministic mapping, or ui(j) = Ψ
(i,j)
RAND

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

in the case of a random mapping.

The encoder then applies the inverse polar transform for each sequence: y1:ni = u1:ni G
−1
n . The codeword

xn is formed symbol-by-symbol as follows:

x(j) ∈
m
⋂

i=1

f−1
i (yi(j)) .

If the intersection set is empty, the encoder declares a block error. A block error only occurs at the

encoder.

4) Decoding at Receivers: If the encoder succeeds in transmitting a codeword xn, each receiver

obtains the sequence y1:ni noiselessly and applies the polar transform Gn to recover u1:ni exactly. Since

the message indices M
(n)
i are known to each receiver, the message bits in u1:ni are decoded correctly by

receiver i.

B. Total Variation Bound

While the deterministic mapping ψ
(i,j)
MAP performs well in practice, the average probability of error P

(n)
e

of the coding scheme is more difficult to analyze in theory. The random mapping Ψ
(i,j)
RAND at the encoder

is more amenable to analysis via the probabilistic method. Towards that goal, consider the following
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probability measure defined on the space of tuples of binary sequences2.

Q
(

un1 , u
n
2 , · · ·, u

n
m

)

,

m
∏

i=1

n
∏

j=1

Q
(

ui(j)
∣

∣

∣
u1:j−1
i , {u1:nk }k∈[1:i−1]

)

. (19)

where the conditional probability measure

Q
(

ui(j)
∣

∣

∣
u1:j−1
i , {u1:nk }k∈[1:i−1]

)

,











1
2 , if j ∈ M

(n)
i ,

P
(

ui(j)
∣

∣

∣
u1:j−1
i , {u1:nk }k∈[1:i−1]

)

, otherwise.

The probability measure Q defined in (19) is a perturbation of the joint probability measure P defined

in (8) for the random variables Ui(j). The only difference in definition between P and Q is due to those

indices in message set M
(n)
i . The following lemma provides a bound on the total variation distance

between P and Q.

Lemma 1: (Total Variation Bound) Let probability measures P and Q be defined as in (8) and (19)

respectively. Let 0 < β < 1. The total variation distance between P and Q is bounded as

∑

{u1:n
k }k∈[m]

∣

∣

∣
P
(

{u1:nk }k∈[m]

)

−Q
(

{u1:nk }k∈[m]

)

∣

∣

∣
= O(2−nβ

).

Proof: See Section B of the Appendices.

C. Analysis of the Average Probability of Error

For the m-user deterministic DM-BC, an error event occurs at the encoder if a codeword xn is unable

to be constructed symbol by symbol according to the broadcast protocol described in Section V-A. Define

the following set consisting of m-tuples of binary sequences,

T ,

{

(yn1 , y
n
2 , . . . , y

n
m) : ∃j ∈ [n],

m
⋂

i=1

f−1
i (yi(j)) = ∅

}

. (20)

The set T consists of those m-tuples of binary output sequences which are inconsistent due to the

properties of the deterministic channel. In addition, due to the one-to-one correspondence between

sequences u1:ni and y1:ni , denote by T̃ the set of m-tuples (un1 , u
n
2 , . . . , u

n
m) that are inconsistent.

2A related proof technique was provided for lossy source coding based on polarization in a different context [25]. In the

present paper, a different proof is supplied that utilizes the chain rule for KL-divergence. In addition, deterministic and random

mappings were used by Honda et al. in [36] to extend Arıkan’s results on polar code ensembles to asymmetric point-to-point

channels.
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For the broadcast protocol, the rate Ri =
1
n

∣

∣M
(n)
i

∣

∣ for each receiver. Let the total sum rate for all

broadcast receivers be RΣ =
∑

i∈[m]Ri. If the encoder uses a fixed deterministic map ψ(i,j) in the

broadcast protocol, the average probability of error is

P (n)
e

[

{ψ(i,j)}
]

=
1

2nRΣ

∑

{u1:n
k }k∈[m]

[

1

{

(un1 , u
n
2 , . . . , u

n
m) ∈ T̃

}

·
∏

i∈[m]

j∈[n]:j/∈M(n)
i

1

{

ψ(i,j)
(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

= ui(j)
}

]

. (21)

In addition, if the random maps Ψ(i,j) are used at the encoder, the average probability of error is a random

quantity given by

P (n)
e

[

{Ψ(i,j)}
]

=
1

2nRΣ

∑

{u1:n
k }k∈[m]

[

1

{

(un1 , u
n
2 , . . . , u

n
m) ∈ T̃

}

·
∏

i∈[m]

j∈[n]:j/∈M(n)
i

1

{

Ψ(i,j)
(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

= ui(j)
}

]

. (22)

Instead of characterizing P
(n)
e directly for deterministic maps, the analysis of P

(n)
e [{Ψ(i,j)}] leads to the

following lemma.

Lemma 2: Consider the broadcast protocol of Section V-A. Let Ri = 1
n

∣

∣M
(n)
i

∣

∣ for i ∈ [m] be the

broadcast rates selected according to the criterion given in (12) in Proposition 3. Then for 0 < β < 1,

E{Ψ(i,j)}

[

P (n)
e [{Ψ(i,j)}]

]

= O(2−nβ

).

Proof:

E{Ψ(i,j)}

[

P (n)
e [{Ψ(i,j)}]

]

=
1

2nRΣ

∑

{u1:n
k }k∈[m]

[

1

{

(un1 , u
n
2 , . . . , u

n
m) ∈ T̃

}

·

∏

i∈[m]

j∈[n]:j/∈M(n)
i

P

{

Ψ(i,j)
(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

= ui(j)
}

]

=
∑

{u1:n
k }k∈[m]∈T̃

Q
(

{u1:nk }k∈[m]

)

(23)

=
∑

{u1:n
k }k∈[m]∈T̃

∣

∣

∣
P
(

{u1:nk }k∈[m]

)

−Q
(

{u1:nk }k∈[m]

)

∣

∣

∣
(24)

= O(2−nβ

). (25)
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Fig. 5. The special classes of noisy broadcast channels as described in Section VI-A. Class I represents stochastically degraded

DM-BCs. Class II represents broadcast channels for which V −X−(Y1, Y2) and PY2|V (y2|v) ≻ PY1|V (y1|v) for all PX|V (x|v).

Class II is equivalent to Class I . Class III represents less-noisy DM-BCs. Class IV represents broadcast channels with the

more capable property.

Step (23) follows since the probability measure Q matches the desired calculation exactly. Step (24) is

due to the fact that the probability measure P has zero mass over m-tuples of binary sequences that

are inconsistent. Step (25) follows directly from Lemma 1. Lastly, since the expectation over random

maps {Ψ(i,j)} of the average probability of error decays stretched-exponentially, there must exist a set

of deterministic maps which exhibit the same behavior.

VI. NOISY BROADCAST CHANNELS

SUPERPOSITION CODING

Coding for noisy broadcast channels is now considered using polarization methods. By contrast to

the deterministic case, a decoding error event occurs at the receivers on account of the randomness

due to noise. For the remaining sections, it is assumed that there exist m = 2 users in the DM-BC.

The private-message capacity region for the DM-BC is unknown even for binary input, binary output

two-user channels such as the skew-symmetric DM-BC. However, the private-message capacity region

is known for specific classes.

A. Special Classes of Noisy DM-BCs

Definition 8: The two-user physically degraded DM-BC is a channel PY1Y2|X(y1, y2|x) for which

X − Y1 − Y2 forms a Markov chain, i.e. one of the receivers is statistically stronger than the other:

PY1Y2|X(y1, y2|x) = PY1|X(y1|x)PY2|Y1
(y2|y1). (26)
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Definition 9: A two-user DM-BC PY1Y2|X(y1, y2|x) is stochastically degraded if its conditional marginal

distributions are the same as that of a physically degraded DM-BC, i.e., if there exists a distribution

P̃Y2|Y1
(y2|y1) such that

PY2|X(y2|x) =
∑

y1∈Y1

PY1|X(y1|x)P̃Y2|Y1
(y2|y1). (27)

If (27) holds for two conditional distributions PY1|X(y1|x) and PY2|X(y2|x) defined over the same input,

then the property is denoted as follows: PY1|X(y1|x) � PY2|X(y2|x).

Definition 10: A two-user DM-BC PY1Y2|X(y1, y2|x) for which V − X − (Y1, Y2) forms a Markov

chain is said to be less noisy if

∀PV X(v, x) : I(V ;Y1) ≥ I(V ;Y2). (28)

Definition 11: A two-user DM-BC PY1Y2|X(y1, y2|x) is said to be more capable if

∀PX(x) : I(X;Y1) ≥ I(X;Y2). (29)

The following lemma relates the properties of the special classes of noisy broadcast channels. A more

comprehensive treatment of special classes is given by C. Nair in [38].

Lemma 3: Consider a two-user DM-BC PY1Y2|X(y1, y2|x). Let V −X−(Y1, Y2) form a Markov chain,

|V| > 1, and PV (v) > 0. The following implications hold:

X − Y1 − Y2

⇒ PY1|X(y1|x) � PY2|X(y2|x) (30)

⇔ ∀PX|V (x|v) : PY1|V (y1|v) � PY2|V (y2|v) (31)

⇒ ∀PV X(v, x) : I(V ;Y1) ≥ I(V ;Y2) (32)

⇒ ∀PX(x) : I(X;Y1) ≥ I(X;Y2). (33)

The converse statements for (30), (32), and (33) do not hold in general. Figure 5 illustrates the different

types of broadcast channels as a hierarchy.

Proof: See Section E of the Appendices.

B. Superposition Region

Superposition coding involves one auxiliary random variable V which conveys a “cloud center” or

a coarse message decoded by both receivers [1], [14]. One of the receivers then decodes an additional

“satellite codeword” conveyed through X containing a fine-grain message that is superimposed upon
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Fig. 6. DM-BC with BSCs: The classic two-user broadcast channel consisting of a BSC(p1 = 1
100

) and a BSC(p2 = 1
10

). The

private-message capacity region is equivalent to the superposition coding inner bound. For a fixed auxiliary and input distribution

PV X(v, x), the superposition inner bound is plotted as a rectangle in R
2
+ for α = 1

10
and α = 1

4
as described in Example 2.

For this example, polar codes achieve all points on the capacity boundary.

the coarse information. Recent research has also uncovered distinctions between superposition coding

schemes [39]. The following superposition region is standard as given in modern textbooks [2].

Proposition 4 (Superposition Inner Bound [1], [14]): For any two-user DM-BC, the rates (R1, R2) ∈

R
2
+ are achievable in the region R(X,V, Y1, Y2) where

R(X,V, Y1, Y2) ,
{

(R1, R2) ∈ R
2
+

∣

∣

∣
R1 ≤ I(X;Y1|V ),

R2 ≤ I(V ;Y2),

R1 +R2 ≤ I(X;Y1)
}

. (34)

and where random variables X,V, Y1, Y2 obey the Markov chain V −X − (Y1, Y2).

Remark 7: The superposition inner bound is applicable for any broadcast channel. By symmetry,

the following rate region is also achievable: {R1, R2 | R2 ≤ I(X;Y2|V ), R1 ≤ I(V ;Y1), R1 + R2 ≤

I(X;Y2)} for random variables obeying the Markov chain V −X − (Y1, Y2).

Remark 8: The inner bound is the capacity region for degraded, less-noisy, and more-capable DM-BCs

(i.e. Class I through Class IV as shown in Figure 5). For the degraded and less-noisy special classes,

the capacity region is simplified to {R1, R2 | R1 ≤ I(X;Y1|V ), R2 ≤ I(V ;Y2)}. To see this, note

that I(V ;Y2) ≤ I(V ;Y1) which implies I(V ;Y2) + I(X;Y1|V ) ≤ I(V ;Y1) + I(X;Y1|V ) = I(X;Y1).

Therefore the sum-rate constraint R1+R2 ≤ I(X;Y1) of the rate-region in (34) is automatically satisfied.

Example 2 (Binary Symmetric DM-BC): The two-user binary symmetric DM-BC consists of a binary
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symmetric channel with flip probability p1 denoted as BSC(p1) and a second channel BSC(p2). Assume

that p1 < p2 <
1
2 which implies stochastic degradation as defined in (27). For α ∈ [0, 12 ], the superposition

inner bound is the region,

{

(R1, R2) ∈ R
2
+

∣

∣

∣
R1 ≤ hb(α ∗ p1)− hb(p1),

R2 ≤ 1− hb(α ∗ p2)
}

(35)

The above inner bound is determined by evaluating (34) where V is a Bernoulli random variable with

PV (v) = 1
2 , X = V ⊕ S, and S is a Bernoulli random variable with PS(1) = α. Figure 6 plots this

rectangular inner bound for two different values α = 1
10 and α = 1

4 . The corner points of this rectangle

given in (35) lie on the capacity boundary.

Example 3 (DM-BC with BEC(ǫ) and BSC(p) [38]): Consider a two-user DM-BC comprised of a

BSC(p) from X to Y1 and a BEC(ǫ) from X to Y2. Then it can be shown that the following cases hold:

• 0 < ǫ ≤ 2p: Y1 is degraded with respect to Y2.

• 2p < ǫ ≤ 4p(1− p): Y2 is less noisy than Y1 but Y1 is not degraded with respect to Y2.

• 4p(1 − p) < ǫ ≤ hb(p): Y2 is more capable than Y1 but not less noisy.

• hb(p) < ǫ < 1: The channel does not belong to the special classes.

The capacity region for all channel parameters for this example is achieved using superposition coding.

C. Main Result

Theorem 2 (Polarization-Based Superposition Code): Consider any two-user DM-BC with binary in-

put alphabet X = {0, 1} and arbitrary output alphabets Y1, Y2. There exists a sequence of polar broadcast

codes over n channel uses which achieves the following rate region

R(V,X, Y1, Y2) ,
{

(R1, R2) ∈ R
2
+

∣

∣

∣
R1 ≤ I(X;Y1|V ),

R2 ≤ I(V ;Y2)
}

, (36)

where random variables V,X, Y1, Y2 have the following listed properties:

• V is a binary random variable.

• PY1|V (y1|v) � PY2|V (y2|v).

• V −X − (Y1, Y2) forms a Markov chain.

For 0 < β < 1
2 , the average error probability of this code sequence decays as P

(n)
e = O(2−nβ

). The

complexity of encoding and decoding is O(n log n).
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Fig. 7. Block diagram of a polarization-based superposition code for a two-user noisy broadcast channel.

Remark 9: The requirement that auxiliary V is a binary random variable is due to the use of binary

polarization theorems in the proof. Indeed, the auxiliary V may need to have a larger alphabet in the case

of broadcast channels. An extension to q-ary random variables is entirely possible if q-ary polarization

theorems are utilized.

Remark 10: The requirement that V−X−(Y1, Y2) holds is standard for superposition coding over noisy

channels. However, the listed property PY1|V (y1|v) � PY2|V (y2|v) is due to the structure of polarization

and is used in the proof to guarantee that polarization indices are aligned. If both receivers are able to

decode the coarse message carried by the auxiliary random variable V , the polarization indices for the

coarse message must be nested for the two receivers’ channels.

VII. PROOF OF THEOREM 2

The block diagram for polarization-based superposition coding is given in Figure 7. Similar to random

codes in Shannon theory, polarization-based codes rely on n-length i.i.d. statistics of random variables;

however, a specific polarization structure based on the chain rule of entropy allows for efficient encoding

and decoding. The key idea of Cover and Bergmans is to superimpose two messages of information onto

one codeword [1], [14].

A. Polar Transform

Consider the i.i.d. sequence of random variables (V j ,Xj , Y j
1 , Y

j
2 ) ∼ PV (v)PX|V (x|v)PY1Y2|X(y1, y2|x)

where the index j ∈ [n]. Let the n-length sequence of auxiliary and input variables (V j ,Xj) be organized

into the random matrix

Ω ,





X1 X2 X3 . . . Xn

V 1 V 2 V 3 . . . V n



 . (37)
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Applying the polar transform to Ω results in the random matrix U , ΩGn. Let the random variables in

the random matrix U be indexed as follows:

U =





U1
1 U2

1 U3
1 . . . Un

1

U1
2 U2

2 U3
2 . . . Un

2



 . (38)

The above definitions are consistent with the block diagram given in Figure 7 (and noting that Gn = G
−1
n ).

The polar transform extracts the randomness of Ω. In the transformed domain, the joint distribution of

the random variables in U is given by

PUn
1 Un

2

(

un1 , u
n
2

)

, PXnV n

(

un1Gn, u
n
2Gn

)

. (39)

For polar coding purposes, the joint distribution is decomposed as follows,

PUn
1 Un

2

(

un1 , u
n
2

)

= PUn
2
(un2 )PUn

1 |Un
2

(

un1
∣

∣un2
)

=

n
∏

j=1

P
(

u2(j)
∣

∣u1:j−1
2

)

P
(

u1(j)
∣

∣u1:j−1
1 , un2

)

. (40)

The conditional distributions may be computed efficiently using recursive protocols as already mentioned.

The polarized variables in U are not necessarily i.i.d. random variables.

B. Polarization Theorems Revisited

Definition 12 (Polarization Sets for Superposition Coding): Let V n,Xn, Y n
1 , Y

n
2 be the sequence of

random variables as introduced in Section VII-A. In addition, let Un
1 = Xn

Gn and Un
2 = V n

Gn. Let

δn = 2−nβ

for 0 < β < 1
2 . The following polarization sets are defined:

H
(n)
X|V ,

{

j ∈ [n] : Z
(

U1(j)
∣

∣

∣
U1:j−1
1 , V n

)

≥ 1− δn

}

,

H
(n)
X|V Y1

,

{

j ∈ [n] : Z
(

U1(j)
∣

∣

∣
U1:j−1
1 , V n, Y n

1

)

≥ 1− δn

}

,

L
(n)
X|V Y1

,

{

j ∈ [n] : Z
(

U1(j)
∣

∣

∣
U1:j−1
1 , V n, Y n

1

)

≤ δn

}

,

L
(n)
V |Y1

,

{

j ∈ [n] : Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

1

)

≤ δn

}

,

H
(n)
V ,

{

j ∈ [n] : Z
(

U2(j)
∣

∣

∣
U1:j−1
2

)

≥ 1− δn

}

,

L
(n)
V |Y2

,

{

j ∈ [n] : Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

2

)

≤ δn

}

.

Remark 11: The polarization sets denoted by calligraphic letters H indicate “high-entropy” sets, whereas

sets denoted by L indicate “low-entropy” sets. For example, H
(n)
X|V denotes the “high-entropy” set of

indices corresponding to a conditional polarization of the variables X1:n (polarized to U1:n
1 ) given all

variables V 1:n. Similarly, L
(n)
V |Y2

denotes the “low-entropy” set of indices corresponding to a conditional

polarization of the variables V 1:n (polarized to U1:n
2 ) given all variables Y 1:n

2 .
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Definition 13 (Message Sets for Superposition Coding): In terms of the polarization sets given in Def-

inition 12, the following message sets are defined:

M
(n)
1v , H

(n)
V ∩ L

(n)
V |Y1

, (41)

M
(n)
1 , H

(n)
X|V ∩ L

(n)
X|V Y1

, (42)

M
(n)
2 , H

(n)
V ∩ L

(n)
V |Y2

. (43)

Proposition 5 (Polarization): Consider the polarization sets given in Definition 12 and the message

sets given in Definition 13 with parameter δn = 2−nβ

for 0 < β < 1
2 . Then the asymptotic cardinality of

the message sets is given by

lim
n→∞

1

n

∣

∣

∣
M

(n)
1

∣

∣

∣
= H(X|V )−H(X|V Y1), (44)

lim
n→∞

1

n

∣

∣

∣
M

(n)
2

∣

∣

∣
= H(V )−H(V |Y2). (45)

Proof: We prove Eqn. (44). Eqn. (45) is derived in an identical manner. Consider the polarization sets

given in Definition 12. Using set notation defined in Section I-C, define B
(n)
X|V Y1

,

(

H
(n)
X|V Y1

∪ L
(n)
X|V Y1

)∁

where the set complement is with respect to the universal set [n]. The cardinality of set M
(n)
1 is bounded

as follows.

1

n

∣

∣

∣
M

(n)
1

∣

∣

∣
=

1

n

∣

∣

∣
H

(n)
X|V ∩ L

(n)
X|V Y1

∣

∣

∣
(46)

=
1

n

∣

∣

∣

∣

H
(n)
X|V

∩
(

H
(n)
X|V Y1

∪ B
(n)
X|V Y1

)∁
∣

∣

∣

∣

(47)

=
1

n

∣

∣

∣

∣

H
(n)
X|V ∩

(

H
(n)
X|V Y1

)∁

∩
(

B
(n)
X|V Y1

)∁
∣

∣

∣

∣

(48)

≥
1

n

∣

∣

∣

∣

H
(n)
X|V ∩

(

H
(n)
X|V Y1

)∁
∣

∣

∣

∣

−
1

n

∣

∣

∣
B
(n)
X|V Y1

∣

∣

∣
(49)

=
1

n

∣

∣

∣
H

(n)
X|V

∣

∣

∣
−

1

n

∣

∣

∣
H

(n)
X|V Y1

∣

∣

∣
−

1

n

∣

∣

∣
B
(n)
X|V Y1

∣

∣

∣
(50)

Step (46) follows from the definition of the message set; Step (47) holds by definition of the set

complement and because the union B
(n)
X|V Y1

∪ L
(n)
X|V Y1

∪ H
(n)
X|V Y1

= [n]; Step (48) and the inequality

in (49) are due to standard set operations. The final equality in Step (50) holds due to H
(n)
X|V Y1

⊆ H
(n)
X|V

.

The inclusion H
(n)
X|V Y1

⊆ H
(n)
X|V holds due to Lemma 16 and the fact that conditioning reduces entropy,

i.e., H(U1(j)|U
1:j−1
1 , V 1:n, Y 1:n

1 ) ≤ H(U1(j)|U
1:j−1
1 , V 1:n) for j ∈ [n]. Taking the limit n→ ∞ on both

sides, one can apply Arıkan’s conditional source polarization theorems [8, Theorem 1] with the rate of

polarization given in [17, Theorem 1]. Since the set B
(n)
X|V Y1

contains o(n) indices, limn→∞
1
n

∣

∣

∣
M

(n)
1

∣

∣

∣
≥



25

H(X|V )−H(X|V Y1). Disregarding the set B
(n)
X|V Y1

provides a matching upper bound for the limit. This

concludes the proof.

Lemma 4: Consider the message sets defined in Definition 13. If the property PY1|V (y1|v) � PY2|V (y2|v)

holds for conditional distributions PY1|V (y1|v) and PY2|V (y2|v), then the Bhattacharyya parameters

Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

1

)

≤ Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

2

)

for all j ∈ [n]. As a result,

M
(n)
2 ⊆ M

(n)
1v .

Proof: The proof follows from Lemma 12 and repeated application of Lemma 13 in Appendix A.

C. Broadcast Encoding Blocks: (E1, E2)

The polarization theorems of the previous section are useful for defining a multi-user communication

system as diagrammed in Figure 7. The broadcast encoder must map two independent messages (W1,W2)

uniformly distributed over [2nR1 ] × [2nR2 ] to a codeword xn ∈ X n in such a way that the decoding at

each separate receiver is successful. The achievable rates for a particular block length n are

R1 =
1

n

∣

∣

∣
M

(n)
1

∣

∣

∣
,

R2 =
1

n

∣

∣

∣
M

(n)
2

∣

∣

∣
.

To construct a codeword, the encoder first produces two binary sequences un1 ∈ {0, 1}n and un2 ∈

{0, 1}n. To determine u1(j) for j ∈ M
(n)
1 , the bit is selected as a uniformly distributed message bit

intended for the first receiver. To determine u2(j) for j ∈ M
(n)
2 , the bit is selected as a uniformly

distributed message bit intended for the second receiver. The remaining non-message indices of un1 and

un2 are computed according to deterministic or random functions which are shared between the encoder

and decoder.

1) Deterministic Mapping: Consider the following deterministic boolean functions indexed by j ∈ [n]:

ψ
(j)
1 : {0, 1}n+j−1 → {0, 1}, (51)

ψ
(j)
2 : {0, 1}j−1 → {0, 1}. (52)
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As an example, consider deterministic boolean functions based on the maximum a posteriori polar coding

rule (with ties broken in favor of decoding to a 0 versus a 1).

ψ
(j)
1

(

u1:j−1
1 , vn

)

, argmax
u∈{0,1}

{

P

(

U1(j) = u
∣

∣

∣
U1:j−1
1 = u1:j−1

1 , V n = vn
)}

. (53)

ψ
(j)
2

(

u1:j−1
2

)

, argmax
u∈{0,1}

{

P

(

U2(j) = u
∣

∣

∣
U1:j−1
2 = u1:j−1

2

)}

. (54)

2) Random Mapping: Consider the following class of random boolean functions indexed by j ∈ [n]:

Ψ
(j)
1 : {0, 1}n+j−1 → {0, 1}, (55)

Ψ
(j)
2 : {0, 1}j−1 → {0, 1}. (56)

As an example, consider the random boolean functions

Ψ
(j)
1

(

u1:j−1
1 , vn

)

,











0, w. p. λ0
(

u1:j−1
1 , vn

)

,

1, w. p. 1− λ0
(

u1:j−1
1 , vn

)

,

(57)

Ψ
(j)
2

(

u1:j−1
2

)

,











0, w. p. λ0
(

u1:j−1
2

)

,

1, w. p. 1− λ0
(

u1:j−1
2

)

,

(58)

where

λ0
(

u1:j−1
2

)

, P
(

U2(j) = 0
∣

∣U1:j−1
2 = u1:j−1

2

)

,

λ0
(

u1:j−1
1 , vn

)

, P
(

U1(j) = 0
∣

∣U1:j−1
1 = u1:j−1

1 , V n = vn
)

.

For fixed j, the random boolean function Ψ
(j)
1 (or Ψ

(j)
2 ) may be thought of as a vector of 2n+j−1 (or

respectively 2j−1) independent Bernoulli random variables. Each Bernoulli random variable of the vector

is zero or one with a fixed probability.

3) Protocol: The encoder constructs the sequence un2 first using the message bits W2 and either (54)

or (58). Next, the sequence vn = un2Gn is created. Finally, the sequence un1 is constructed using the

message bits W1, the sequence vn, and either the deterministic maps defined in (53) or the randomized

maps in (57). The transmitted codeword is xn = un1Gn.

D. Broadcast Decoding Based on Polarization

1) Decoding At First Receiver: Decoder D1 decodes the binary sequence ûn2 first using its observations

yn1 . It then reconstructs v̂n = ûn2Gn. Using the sequence v̂n and observations yn1 , the decoder reconstructs
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ûn1 . The message W1 is located at the indices j ∈ M
(n)
1 in the sequence ûn1 . More precisely, define the

following deterministic polar decoding functions:

ξ(j)v

(

u1:j−1
2 , yn1

)

, argmax
u∈{0,1}

{

P

(

U2(j) = u
∣

∣

∣
U1:j−1
2 = u1:j−1

2 , Y n
1 = yn1

)}

. (59)

ξ(j)u1

(

u1:j−1
1 , vn, yn1

)

, argmax
u∈{0,1}

{

P

(

U1(j) = u
∣

∣

∣
U1:j−1
1 = u1:j−1

1 , V n = vn, Y n
1 = yn1

)}

. (60)

The decoder D1 reconstructs ûn2 bit-by-bit successively as follows using the identical shared random

mapping Ψ
(j)
2 (or possibly the identical shared mapping ψ

(j)
2 ) used at the encoder:

û2(j) =











ξ
(j)
v

(

û1:j−1
2 , yn1

)

, if j ∈ M
(n)
2 ,

Ψ
(j)
2

(

û1:j−1
2

)

, otherwise.

(61)

If Lemma 4 holds, note that M
(n)
2 ⊆ M

(n)
1v . With ûn2 , decoder D1 reconstructs v̂n = ûn2Gn. Then the

sequence ûn1 is constructed bit-by-bit successively as follows using the identical shared random mapping

Ψ
(j)
1 (or possibly the identical shared mapping ψ

(j)
1 ) used at the encoder:

û1(j) =











ξ
(j)
u1

(

û1:j−1
1 , v̂n, yn1

)

, if j ∈ M
(n)
1 ,

Ψ
(j)
1

(

û1:j−1
1 , v̂n

)

, otherwise.

(62)

2) Decoding At Second Receiver: The decoder D2 decodes the binary sequence ûn2 using observations

yn2 . The message W2 is located at the indices j ∈ M
(n)
2 of the sequence ûn2 . More precisely, define the

following polar decoding functions

ξ(j)v

(

u1:j−1
2 , yn2

)

, argmax
u∈{0,1}

{

P

(

U2(j) = u
∣

∣

∣
U1:j−1
2 = u1:j−1

2 , Y n
2 = yn2

)}

. (63)

The decoder D2 reconstructs ûn2 bit-by-bit successively as follows using the identical shared random

mapping Ψ
(j)
2 (or possibly the identical shared mapping ψ

(j)
2 ) used at the encoder:

û2(j) =











ξ
(j)
v

(

û1:j−1
2 , yn2

)

, if j ∈ M
(n)
2 ,

Ψ
(j)
2

(

û1:j−1
2

)

, otherwise.

(64)

Remark 12: The encoder and decoders execute the same protocol for reconstructing bits at the non-

message indices. This is achieved by applying the same deterministic maps ψ
(j)
1 and ψ

(j)
2 or randomized

maps Ψ
(j)
1 and Ψ

(j)
2 .
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E. Total Variation Bound

To analyze the average probability of error P
(n)
e via the probabilistic method, it is assumed that both

the encoder and decoder share the randomized mappings Ψ
(j)
1 and Ψ

(j)
2 . Define the following probability

measure on the space of tuples of binary sequences.

Q
(

un1 , u
n
2

)

, Q
(

un2
)

Q
(

un1
∣

∣un2
)

=

n
∏

j=1

Q
(

u2(j)
∣

∣

∣
u1:j−1
2

)

Q
(

u1(j)
∣

∣

∣
u1:j−1
1 , un2

)

. (65)

In (65), the conditional probability measures are defined as

Q
(

u2(j)
∣

∣

∣
u1:j−1
2

)

,











1
2 , if j ∈ M

(n)
2 ,

P
(

u2(j)
∣

∣

∣
u1:j−1
2

)

, otherwise.

Q
(

u1(j)
∣

∣

∣
u1:j−1
1 , un2

)

,











1
2 , if j ∈ M

(n)
1 ,

P
(

u1(j)
∣

∣

∣
u1:j−1
1 , un2

)

, otherwise.

The probability measureQ defined in (65) is a perturbation of the joint probability measure PUn
1 Un

2
(un1 , u

n
2 )

in (40). The only difference in definition between P and Q is due to those indices in message sets M
(n)
1

and M
(n)
2 . The following lemma provides a bound on the total variation distance between P and Q.

The lemma establishes the fact that inserting uniformly distributed message bits in the proper indices

M
(n)
1 and M

(n)
2 at the encoder does not perturb the statistics of the n-length random variables too much.

This occurs because M
(n)
1 and M

(n)
2 denote “high-entropy” indices for which the associated conditional

distributions are close to uniform.

Lemma 5: (Total Variation Bound) Let probability measures P and Q be defined as in (40) and (65)

respectively. Let 0 < β < 1. The total variation distance between P and Q is bounded as

∑

un
1∈{0,1}

n

un
2∈{0,1}

n

∣

∣

∣
PUn

1 Un
2

(

un1 , u
n
2

)

−Q
(

un1 , u
n
2

)

∣

∣

∣
= O(2−nβ

).

Proof: See Section C of the Appendices.

F. Error Sequences

The decoding protocols for D1 and D2 were established in Section VII-D. To analyze the probability of

error of successive cancelation (SC) decoding, consider the sequences un1 and un2 formed at the encoder,

and the resulting observations yn1 and yn2 received by the decoders. It is convenient to group the sequences

together and consider all tuples (un1 , u
n
2 , y

n
1 , y

n
2 ).
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Decoder D1 makes an SC decoding error on the j-th bit for the following tuples:

T j
1v ,

{

(

un1 , u
n
2 , y

n
1 , y

n
2

)

:

P
Uj

2

∣

∣U1:j−1
2 Y n

1

(

u2(j)
∣

∣u1:j−1
2 , yn1

)

≤

P
Uj

2

∣

∣U1:j−1
2 Y n

1

(

u2(j)⊕ 1
∣

∣u1:j−1
2 , yn1

)

}

,

T j
1 ,

{

(

un1 , u
n
2 , y

n
1 , y

n
2

)

:

P
Uj

1

∣

∣U1:j−1
1 V nY n

1

(

u1(j)
∣

∣u1:j−1
1 , un2Gn, y

n
1

)

≤

P
Uj

1

∣

∣U1:j−1
1 V nY n

1

(

u1(j) ⊕ 1
∣

∣u1:j−1
1 , un2Gn, y

n
1

)

}

. (66)

The set T j
1v represents those tuples causing an error at D1 in the case u2(j) is inconsistent with respect to

observations yn1 and the decoding rule. The set T j
1 represents those tuples causing an error at D1 in the

case u1(j) is inconsistent with respect to vn = un2Gn, observations yn1 , and the decoding rule. Similarly,

decoder D2 makes an SC decoding error on the j-th bit for the following tuples:

T j
2 ,

{

(

un1 , u
n
2 , y

n
1 , y

n
2

)

: P
U2

∣

∣U1:j−1
2 Y n

2

(

u2
∣

∣u1:j−1
2 , yn2

)

≤

P
U2

∣

∣U1:j−1
2 Y n

2

(

u2 ⊕ 1
∣

∣u1:j−1
2 , yn2

)

}

.

The set T j
2 represents those tuples causing an error at D2 in the case u2(j) is inconsistent with respect

to observations yn2 and the decoding rule. Since both decoders D1 and D2 only declare errors for those

indices in the message sets, the set of tuples causing an error is

T1v ,
⋃

j∈M(n)
2 ⊆M(n)

1v

T j
1v, (67)

T1 ,
⋃

j∈M(n)
1

T j
1 , (68)

T2 ,
⋃

j∈M
(n)
2

T j
2 . (69)

The complete set of tuples causing a broadcast error is

T , T1v ∪ T1 ∪ T2. (70)

The goal is to show that the probability of choosing tuples of error sequences in the set T is small under

the distribution induced by the broadcast code.
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G. Average Error Probability

Denote the total sum rate of the broadcast protocol as RΣ = R1 +R2. Consider first the use of fixed

deterministic maps ψ
(j)
1 and ψ

(j)
2 shared between the encoder and decoders. Then the probability of error

of broadcasting the two messages at rates R1 and R2 is given by

P (n)
e

[

{ψ
(j)
1 , ψ

(j)
2 }
]

=
∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

[

P
Y n
1 Y n

2

∣

∣Un
1 Un

2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

·
1

2nR2

∏

j∈[n]:j/∈M
(n)
2

1

{

ψ
(j)
2

(

u1:j−1
2

)

= u2(j)
}

·
1

2nR1

∏

j∈[n]:j/∈M
(n)
1

1

{

ψ
(j)
1

(

u1:j−1
1 , un2Gn

)

= u1(j)
}

]

.

If the encoder and decoders share randomized maps Ψ
(j)
1 and Ψ

(j)
2 , then the average probability of

error is a random quantity determined as follows

P (n)
e

[

{Ψ
(j)
1 ,Ψ

(j)
2 }
]

=
∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

[

P
Y n
1 Y n

2

∣

∣Un
1 Un

2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

·
1

2nR2

∏

j∈[n]:j/∈M(n)
2

1

{

Ψ
(j)
2

(

u1:j−1
2

)

= u2(j)
}

·
1

2nR1

∏

j∈[n]:j/∈M
(n)
1

1

{

Ψ
(j)
1

(

u1:j−1
1 , un2Gn

)

= u1(j)
}

]

.

By averaging over the randomness in the encoders and decoders, the expected block error probability is

upper bounded in the following lemma.

Lemma 6: Consider the polarization-based superposition code described in Section VII-C and Sec-

tion VII-D. Let R1 and R2 be the broadcast rates selected according to the Bhattacharyya criterion given

in Proposition 5. Then for 0 < β < 1,

E{Ψ(j)
1 ,Ψ(j)

2 }

[

P (n)
e [{Ψ

(j)
1 ,Ψ

(j)
2 }]

]

= O(2−nβ

).

Proof: See Section C of the Appendices.

Remark 13: If the average probability of error decays to zero in expectation over the random maps

{Ψ
(j)
1 } and {Ψ

(j)
2 }, then there must exist at least one fixed set of deterministic maps for which P

(n)
e → 0.

While the result guarantees the existence of a low-complexity polar code, it does not guarantee that any

specific deterministic map chosen from the ensemble will have a low probability of decoding error. The

deterministic maps {ψ
(j)
1 } and {ψ

(j)
2 } must be tried experimentally.
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VIII. NOISY BROADCAST CHANNELS

MARTON’S CODING SCHEME

A. Marton’s Inner Bound

For general noisy broadcast channels, Marton’s inner bound involves two correlated auxiliary random

variables V1 and V2 [3]. The intuition behind the coding strategy is to identify two “virtual” channels,

one from V1 to Y1, and the other from V2 to Y2. Somewhat surprisingly, although the broadcast messages

are independent, the auxiliary random variables V1 and V2 may be correlated to increase rates to both

receivers. While there exist generalizations of Marton’s strategy, the basic version of the inner bound is

presented in this section3.

Proposition 6 (Marton’s Inner Bound): For any two-user DM-BC, the rates (R1, R2) ∈ R
2
+ in the

pentagonal region R(X,V1, V2, Y1, Y2) are achievable where

R(X,V1, V2, Y1, Y2) ,
{

(R1, R2) ∈ R
2
+

∣

∣

∣
R1 ≤ I(V1;Y1),

R2 ≤ I(V2;Y2),

R1 +R2 ≤ I(V1;Y1) + I(V2;Y2)− I(V1;V2)
}

. (71)

and whereX,V1, V2, Y1, Y2 have a joint distribution given by PV1V2
(v1, v2)PX|V1V2

(x|v1, v2)PY1Y2|X(y1, y2|x).

Remark 14: It can be shown that for Marton’s inner bound there is no loss of generality if PX|V1V2
(x|v1, v2) =

1{x = φ(v1, v2)} where φ(v1, v2) is a deterministic function [2, Section 8.3]. Thus, by allowing a larger

alphabet size for the auxiliaries, X may be a deterministic function of auxiliaries (V1, V2). Marton’s inner

bound is tight for the class of semi-deterministic DM-BCs for which one of the outputs is a deterministic

function of the input.

B. Main Result

Theorem 3 (Polarization-Based Marton Code): Consider any two-user DM-BC with arbitrary input

and output alphabets. There exist sequences of polar broadcast codes over n channel uses which achieve

3In addition, it is difficult even to evaluate Marton’s inner bound for general channels due to the need for proper cardinality

bounds on the auxiliaries [40]. These issues lie outside the scope of the present paper.
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Gn

Xn

PY1Y2|X(y1, y2|x)

D2

Y n
1

Y n
2

W1 Ŵ1

Ŵ2Gn

W2

x = φ(v1, v2)

V n
1

V n
2

D1
Un
1

Un
2

E1

E2

Fig. 8. Block diagram of a polarization-based Marton code for a two-user noisy broadcast channel.

the following rate region

R(V1, V2,X, Y1, Y2) ,
{

(R1, R2) ∈ R
2
+

∣

∣

∣
R1 ≤ I(V1;Y1),

R2 ≤ I(V2;Y2)− I(V1;V2)
}

, (72)

where random variables V1, V2,X, Y1, Y2 have the following listed properties:

• V1 and V2 are binary random variables.

• PY2|V2
(y2|v2) � PV1|V2

(v1|v2).

• For a deterministic function φ : {0, 1}2 → X , the joint distribution of all random variables is given

by

PV1V2XY1Y2
(v1, v2, x, y1, y2) = PV1V2

(v1, v2)1{x = φ(v1, v2)}PY1Y2|X(y1, y2|x).

For 0 < β < 1
2 , the average error probability of this code sequence decays as P

(n)
e = O(2−nβ

). The

complexity of encoding and decoding is O(n log n).

Remark 15: The listed property PY2|V2
(y2|v2) � PV1|V2

(v1|v2) is necessary in the proof due to polarization-

based codes requiring an alignment of polarization indices. The property is a natural restriction since it

also implies that I(Y2;V2) > I(V1;V2) so that R2 > 0. However, certain joint distributions on random

variables are not permitted using the analysis of polarization presented here. It is not clear whether there

is another approach that obviates the need for alignment of indices. The recent work of Mondelli et al.

focuses on removing the alignment restrictions for broadcast channels [41].

Remark 16: By symmetry, the rate tuple (R1, R2) = (I(V1;Y1) − I(V1;V2), I(V2, Y2)) is achievable

with low-complexity codes under similar constraints on the joint distribution of V1, V2,X, Y1, Y2. The

rate tuple is a corner point of the pentagonal rate region of Marton’s inner bound given in (71).
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IX. PROOF OF THEOREM 3

The block diagram for polarization-based Marton coding is given in Figure 8. Marton’s strategy differs

form Cover’s superposition coding with the presence of two auxiliaries and the function φ(v1, v2) which

forms the codeword symbol-by-symbol. The polar transform is applied to each n-length i.i.d. sequence

of auxiliary random variables.

A. Polar Transform

Consider the i.i.d. sequence of random variables

(V j
1 , V

j
2 ,X

j , Y j
1 , Y

j
2 ) ∼ PV1V2

(v1, v2)PX|V1V2
(x|v1, v2)PY1Y2|X(y1, y2|x),

where the index j ∈ [n]. For the particular coding strategy analyzed in this section, PX|V1V2
(x|v1, v2) =

1{x = φ(v1, v2)}. Let the n-length sequence of auxiliary variables (V j
1 , V

j
2 ) be organized into the random

matrix

Ω ,





V 1
1 V 2

1 V 3
1 . . . V n

1

V 1
2 V 2

2 V 3
2 . . . V n

2



 . (73)

Applying the polar transform to Ω results in the random matrix U , ΩGn. Index the random variables

of U as follows:

U =





U1
1 U2

1 U3
1 . . . Un

1

U1
2 U2

2 U3
2 . . . Un

2



 . (74)

The above definitions are consistent with the block diagram given in Figure 8 (and noting that Gn = G
−1
n ).

The polar transform extracts the randomness of Ω. In the transformed domain, the joint distribution of

the variables in U is given by

PUn
1 Un

2

(

un1 , u
n
2

)

, PV n
1 V n

2

(

un1Gn, u
n
2Gn

)

. (75)

However, for polar coding purposes, the joint distribution is decomposed as follows,

PUn
1 Un

2

(

un1 , u
n
2

)

= PUn
1
(un1 )PUn

2 |Un
1

(

un2
∣

∣un1
)

=

n
∏

j=1

P
(

u1(j)
∣

∣u1:j−1
1

)

P
(

u2(j)
∣

∣u1:j−1
2 , un1

)

. (76)

The above conditional distributions may be computed efficiently using recursive protocols. The polarized

random variables of U do not necessarily have an i.i.d. distribution.
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n

Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , V n

1

)

≥ 1− δn

δn < Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , V n

1

)

< 1− δn

Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , V n

1

)

≤ δn

n

δn < Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

2

)

< 1− δn

Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

2

)

≤ δn Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

2

)

≥ 1− δn

Fig. 9. The alignment of polarization indices for Marton coding over noisy broadcast channels with respect to the second

receiver. The message set M
(n)
2 is highlighted by the vertical red rectangles. At finite code length n, exact alignment is not

possible due to partially-polarized indices pictured in gray.

B. Effective Channel

Marton’s achievable strategy establishes virtual channels for the two receivers via the function φ(v1, v2).

The virtual channel is given by

P φ
Y1Y2|V1V2

(

y1, y2

∣

∣

∣
v1, v2

)

, PY1Y2|X

(

y1, y2

∣

∣

∣
φ
(

v1, v2
)

)

.

Due to the memoryless property of the DM-BC, the effective channel between auxiliaries and channel

outputs is given by

P φ
Y n
1 Y n

2 |V n
1 V n

2

(

yn1 , y
n
2

∣

∣

∣
vn1 , v

n
2

)

,

n
∏

i=1

PY1Y2|X

(

y1(i), y2(i)
∣

∣

∣
φ
(

v1(i), v2(i)
)

)

.

The polarization-based Marton code establishes a different effective channel between polar-transformed

auxiliaries and the channel outputs. The effective polarized channel is

P φ
Y n
1 Y n

2 |Un
1 Un

2

(

yn1 , y
n
2

∣

∣

∣
un1 , u

n
2

)

, P φ
Y n
1 Y n

2 |V n
1 V n

2

(

yn1 , y
n
2

∣

∣

∣
un1Gn, u

n
2Gn

)

. (77)

C. Polarization Theorems Revisited

Definition 14 (Polarization Sets for Marton Coding): Let V n
1 , V

n
2 ,X

n, Y n
1 , Y

n
2 be the sequence of ran-

dom variables as introduced in Section IX-A. In addition, let Un
1 = V n

1 Gn and Un
2 = V n

2 Gn. Let
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δn = 2−nβ

for 0 < β < 1
2 . The following polarization sets are defined:

H
(n)
V1

,

{

j ∈ [n] : Z
(

U1(j)
∣

∣

∣
U1:j−1
1

)

≥ 1− δn

}

,

L
(n)
V1|Y1

,

{

j ∈ [n] : Z
(

U1(j)
∣

∣

∣
U1:j−1
1 , Y n

1

)

≤ δn

}

,

H
(n)
V2|V1

,

{

j ∈ [n] : Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , V n

1

)

≥ 1− δn

}

,

L
(n)
V2|V1

,

{

j ∈ [n] : Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , V n

1

)

≤ δn

}

,

H
(n)
V2|Y2

,

{

j ∈ [n] : Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

2

)

≥ 1− δn

}

,

L
(n)
V2|Y2

,

{

j ∈ [n] : Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

2

)

≤ δn

}

.

Definition 15 (Message Sets for Marton Coding): In terms of the polarization sets given in Defini-

tion 14, the following message sets are defined:

M
(n)
1 , H

(n)
V1

∩ L
(n)
V1|Y1

, (78)

M
(n)
2 , H

(n)
V2|V1

∩ L
(n)
V2|Y2

. (79)

Proposition 7 (Polarization): Consider the polarization sets given in Definition 14 and the message

sets given in Definition 15 with parameter δn = 2−nβ

for 0 < β < 1
2 . Then the asymptotic cardinality of

the message sets is given by

lim
n→∞

1

n

∣

∣

∣
M

(n)
1

∣

∣

∣
= H(V1)−H(V1|Y1), (80)

lim
n→∞

1

n

∣

∣

∣
M

(n)
2

∣

∣

∣
= H(V2|V1)−H(V2|Y2). (81)

Proof: The proof of Eqn. (80) is identical to the proof of Proposition 5. To prove Eqn. (81), an

identical proof to the proof of Proposition 5 applies; however, the exception is that the set inclusion

H
(n)
V2|Y2

⊆ H
(n)
V2|V1

is required. This set inclusion for Marton coding is proven in Lemma 7.

Lemma 7: Consider the polarization sets defined in Proposition 7. If the property PY2|V2
(y2|v2) �

PV1|V2
(v1|v2) holds for conditional distributions PY2|V2

(y2|v2) and PV1|V2
(v1|v2), then I(V2;Y2) > I(V1;V2)

and the Bhattacharyya parameters

Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

2

)

≤ Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , V n

1

)

for all j ∈ [n]. As a result,

L
(n)
V2|V1

⊆ L
(n)
V2|Y2

,

H
(n)
V2|Y2

⊆ H
(n)
V2|V1

.
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Proof: The proof follows from Lemma 12 and repeated application of Lemma 13 in Appendix A.

Remark 17: The alignment of polarization indices characterized by Lemma 7 is diagrammed in Fig-

ure 9. The alignment ensures the existence of polarization indices in the set M
(n)
2 for the message W2 to

have a positive rate R2 > 0. The indices in M
(n)
2 represent those bits freely set at the broadcast encoder

and simultaneously those bits that may be decoded by D2 given its observations.

D. Partially-Polarized Indices

As shown in Figure 9, for the Marton coding scheme, exact alignment of polarization indices is not

possible. However, the alignment holds for all but o(n) indices. The sets of partially-polarized indices

shown in Figure 9 are defined as follows.

Definition 16 (Sets of Partially-Polarized Indices):

∆1 , [n] \
(

H
(n)
V2|V1

∪ L
(n)
V2|V1

)

, (82)

∆2 , [n] \
(

H
(n)
V2|Y2

∪ L
(n)
V2|Y2

)

. (83)

As implied by Arıkan’s polarization theorems, the number of partially-polarized indices is negligible

asymptotically as n→ ∞. For an arbitrarily small η > 0,
∣

∣∆1 ∪∆2

∣

∣

n
≤ η, (84)

for all n sufficiently large enough. As will be discussed, providing these o(n) bits as side-information

(“genie-given”) bits to the decoders results in a rate penalty; however, the rate penalty is negligible for

sufficiently large code lengths.

E. Broadcast Encoding Blocks: (E1, E2)

As diagrammed in Figure 8, the broadcast encoder must map two independent messages (W1,W2)

uniformly distributed over [2nR1 ] × [2nR2 ] to a codeword xn ∈ X n in such a way that the decoding at

each separate receiver is successful. The achievable rates for a particular block length n are

R1 =
1

n

∣

∣

∣
M

(n)
1

∣

∣

∣
,

R2 =
1

n

∣

∣

∣
M

(n)
2

∣

∣

∣
.

To construct a codeword, the encoder first produces two binary sequences un1 ∈ {0, 1}n and un2 ∈

{0, 1}n. To determine u1(j) for j ∈ M
(n)
1 , the bit is selected as a uniformly distributed message bit
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intended for the first receiver. To determine u2(j) for j ∈ M
(n)
2 , the bit is selected as a uniformly

distributed message bit intended for the second receiver. The remaining non-message indices of un1 and

un2 are decided randomly according to the proper statistics as will be described in this section. The

transmitted codeword is formed symbol-by-symbol via the φ function,

∀j ∈ [n] : x(j) = φ
(

v1(j), v2(j)
)

where vn1 = un1Gn and vn2 = un2Gn. A valid codeword sequence is always guaranteed to be formed

unlike in the case of coding for deterministic broadcast channels.

1) Random Mapping: To fill in the non-message indices, we define the following random mappings.

Consider the following class of random boolean functions where j ∈ [n]:

Ψ
(j)
1 : {0, 1}j−1 → {0, 1}, (85)

Ψ
(j)
2 : {0, 1}n+j−1 → {0, 1}, (86)

Γ : [n] → {0, 1}. (87)

More concretely, we consider the following specific random boolean functions based on the statistics

derived from polarization methods:

Ψ
(j)
1

(

u1:j−1
1

)

,











0, w. p. λ0

(

u1:j−1
1

)

,

1, w. p. 1− λ0

(

u1:j−1
1

)

,

(88)

Ψ
(j)
2

(

u1:j−1
2 , vn1

)

,











0, w. p. λ0

(

u1:j−1
2 , vn1

)

,

1, w. p. 1− λ0

(

u1:j−1
2 , vn1

)

(89)

Γ(j) ,











0, w. p. 1
2 ,

1, w. p. 1
2 ,

(90)

where

λ0

(

u1:j−1
1

)

, P

(

U1(j) = 0
∣

∣

∣
U1:j−1
1 = u1:j−1

1

)

.

λ0

(

u1:j−1
2 , vn1

)

, P

(

U2(j) = 0
∣

∣

∣
U1:j−1
2 = u1:j−1

2 , V n
1 = vn1

)

.

For a fixed j ∈ [n], the random boolean function Ψ
(j)
1 (or Ψ

(j)
2 ) may be thought of as a vector of 2j−1

(or respectively 2n+j−1) independent Bernoulli random variables. Each Bernoulli random variable of the

vector is zero or one with a fixed well-defined probability that is efficiently computable. The random

boolean function Γ may be thought of as an n-length vector of Bernoulli(12 ) random variables.
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2) Encoding Protocol: The broadcast encoder constructs the sequence un1 bit-by-bit successively,

u1(j) =











W1 message bit, if j ∈ M
(n)
1 ,

Ψ
(j)
1

(

u1:j−1
1

)

, otherwise.

(91)

The encoder then computes the sequence vn1 = un1Gn. To generate vn2 , the encoder constructs the sequence

un2 (given vn1 ) as follows,

u2(j) =



























W2 message bit, if j ∈ M
(n)
2 ,

Γ(j), if j ∈ H
(n)
V2|V1

\ M
(n)
2 ,

Ψ
(j)
2

(

u1:j−1
2 , vn1

)

, otherwise.

(92)

Then the sequence vn2 = un2Gn. The randomness in the above encoding protocol over non-message

indices ensures that the pair of sequences (un1 , u
n
2 ) approximately has the correct statistics as if drawn

from the joint distribution of (Un
1 , U

n
2 ). In the last step, the encoder transmits a codeword xn formed

symbol-by-symbol: x(j) = φ
(

v1(j), v2(j)
)

for all j ∈ [n].

Remark 18: Figure 9 illustrates the partial polarization and alignment of indices for Marton’s coding

scheme. For j ∈ ∆2, where ∆2 is the set of partially-polarized indices defined in (83), the encoder

records the realization of u2(j). These o(n) indices are provided to the second receiver’s decoder D2 as

side-information or “genie-given” bits. The o(n) indices do not affect the achieved rates significantly as

explained further in Sec. IX-J.

Remark 19: Marton’s coding scheme also motivates the reason for the function Γ : [n] → {0, 1} at

the encoder. The second receiver only observes yn2 . The second receiver does not have access to vn1 nor

does it reconstruct v̂n1 . Since the second receiver cannot utilize the map Ψ
(j)
2

(

u1:j−1
2 , vn1

)

, the Γ function

is necessary for a subset of the indices defined in Eqn. (92) at the encoder. The overall alignment of

indices is drawn in Figure 9 for both the encoder and the second receiver’s decoder.

F. Broadcast Decoding Based on Polarization

1) Decoding At First Receiver: Decoder D1 decodes the binary sequence ûn1 using its observations

yn1 . The message W1 is located at the indices j ∈ M
(n)
1 in the sequence ûn1 . More precisely, we define

the following deterministic polar decoding function for the j-th bit:

ξ(j)u1

(

u1:j−1
1 , yn1

)

, argmax
u∈{0,1}

{

P

(

U1(j) = u
∣

∣

∣
U1:j−1
1 = u1:j−1

1 , Y n
1 = yn1

)}

. (93)
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Decoder D1 reconstructs ûn1 bit-by-bit successively as follows using the identical random mapping Ψ
(j)
1

at the encoder:

û1(j) =











ξ
(j)
u1

(

û1:j−1
1 , yn1

)

, if j ∈ M
(n)
1 ,

Ψ
(j)
1

(

û1:j−1
1

)

, otherwise.

(94)

Given that all previous bits û1:j−1
1 have been decoded correctly, decoder D1 makes a mistake on the j-th

bit û1(j) only if j ∈ M
(n)
1 . For the remaining indices, the decoder produces the same bit produced at

the encoder due to the shared random maps.

2) Decoding At Second Receiver: The decoder D2 decodes the binary sequence ûn2 using observations

yn2 . The message W2 is located at the indices j ∈ M
(n)
2 of the sequence ûn2 . Define the following

deterministic polar decoding functions

ξ(j)u2

(

u1:j−1
2 , yn2

)

, argmax
u∈{0,1}

{

P

(

U2(j) = u
∣

∣

∣
U1:j−1
2 = u1:j−1

2 , Y n
2 = yn2

)}

. (95)

Decoder D2 reconstructs ûn2 bit-by-bit successively as follows using the identical shared random mapping

Γ used at the encoder. Including all but o(n) of the indices,

û2(j) =











ξ
(j)
u2

(

û1:j−1
2 , yn2

)

, if j ∈ L
(n)
V2|Y2

,

Γ(j), if j ∈ H
(n)
V2|Y2

.

(96)

For those indices j ∈ ∆2 where ∆2 is the set of partially-polarized indices defined in (83), the decoder

D2 is provided with side-information (“genie-given”) bits from the encoder. Thus, all bits are decoded,

and D2 only makes a successive cancelation error for those indices j ∈ L
(n)
V2|Y2

. Communicating the

side-information bits from the encoder to decoder results in a rate penalty. However, since the number

of side-information bits scales asymptotically as o(n), the rate penalty can be made arbitrarily small.

Remark 20: It is notable that decoder D2 reconstructs ûn2 using only the observations yn2 . At the

encoder, the sequence un2 was generated with the realization of a sequence vn1 as given in (92). However,

decoder D2 does not reconstruct the sequence v̂n1 . From this operational perspective, Marton’s scheme

differs crucially from Cover’s superposition scheme because there does not exist the notion of a “stronger”

receiver which reconstructs all the sequences decoded at the “weaker” receiver.

G. Total Variation Bound

To analyze the average probability of error P
(n)
e , it is assumed that both the encoder and decoder

share the randomized mappings Ψ
(j)
1 , Ψ

(j)
2 , and Γ (where Ψ

(j)
2 is not utilized at decoder D2). Define the
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following probability measure on the space of tuples of binary sequences.

Q
(

un1 , u
n
2

)

, Q
(

un1
)

Q
(

un1
∣

∣un2
)

=

n
∏

j=1

Q
(

u1(j)
∣

∣u1:j−1
1

)

Q
(

u2(j)
∣

∣u1:j−1
2 , un1

)

, (97)

where the conditional probability measures are defined as

Q
(

u1(j)
∣

∣

∣
u1:j−1
1

)

,











1
2 , if j ∈ M

(n)
1 ,

P
(

u1(j)
∣

∣

∣
u1:j−1
1

)

, otherwise.

Q
(

u2(j)
∣

∣

∣
u1:j−1
2 , un1

)

,











1
2 , if j ∈ H

(n)
V2|V1

,

P
(

u2(j)
∣

∣

∣
u1:j−1
2 , un1

)

, otherwise.

The probability measureQ defined in (97) is a perturbation of the joint probability measure PUn
1 Un

2
(un1 , u

n
2 )

in (76). The only difference in definition between P and Q is due to those indices in message sets M
(n)
1

and H
(n)
V2|V1

(note: M
(n)
2 ⊆ H

(n)
V2|V1

). The following lemma provides a bound on the total variation distance

between P and Q. The lemma establishes the fact that inserting uniformly distributed message bits in

the proper indices M
(n)
1 and M

(n)
2 (or the entire set H

(n)
V2|V1

) at the encoder does not perturb the statistics

of the n-length random variables too much.

Lemma 8: (Total Variation Bound) Let probability measures P and Q be defined as in (76) and (97)

respectively. Let 0 < β < 1. The total variation distance between P and Q is bounded as

∑

un
1∈{0,1}

n

un
2∈{0,1}

n

∣

∣

∣
PUn

1 Un
2

(

un1 , u
n
2

)

−Q
(

un1 , u
n
2

)

∣

∣

∣
= O(2−nβ

).

Proof: Omitted. The proof follows via the chain rule for KL-divergence and is identical to the

previous proofs of Lemma 1 and Lemma 5.

H. Error Sequences

The decoding protocols for D1 and D2 were established in Section IX-F. To analyze the probability of

error of successive cancelation (SC) decoding, consider the sequences un1 and un2 formed at the encoder,

and the resulting observations yn1 and yn2 received by the decoders. The effective polarized channel

P φ
Y n
1 Y n

2 |Un
1 Un

2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

was defined in (77) for a fixed φ function. It is convenient to group the

sequences together and consider all tuples (un1 , u
n
2 , y

n
1 , y

n
2 ).
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Decoder D1 makes an SC decoding error on the j-th bit for the following tuples:

T j
1 ,

{

(

un1 , u
n
2 , y

n
1 , y

n
2

)

:

P
Uj

1

∣

∣U1:j−1
1 Y n

1

(

u1(j)
∣

∣u1:j−1
1 , yn1

)

≤

PUj
1 |U

1:j−1
1 Y n

1

(

u1(j) ⊕ 1
∣

∣u1:j−1
1 , yn1

)

}

. (98)

The set T j
1 represents those tuples causing an error at D1 in the case u1(j) is inconsistent with respect

to observations yn1 and the decoding rule. Similarly, decoder D2 makes an SC decoding error on the j-th

bit for the following tuples:

T j
2 ,

{

(

un1 , u
n
2 , y

n
1 , y

n
2

)

:

P
U2

∣

∣U1:j−1
2 Y n

2

(

u2
∣

∣u1:j−1
2 , yn2

)

≤

P
U2

∣

∣U1:j−1
2 Y n

2

(

u2 ⊕ 1
∣

∣u1:j−1
2 , yn2

)

}

.

The set T j
2 represents those tuples causing an error at D2 in the case u2(j) is inconsistent with respect

to observations yn2 and the decoding rule. The set of tuples causing an error is

T1 ,
⋃

j∈M(n)
1

T j
1 , (99)

T2 ,
⋃

j∈L(n)

V2|Y2

T j
2 , (100)

T , T1 ∪ T2. (101)

The goal is to show that the probability of choosing tuples of error sequences in the set T is small under

the distribution induced by the broadcast code.
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I. Average Error Probability

If the encoder and decoders share randomized maps Ψ
(j)
1 , Ψ

(j)
2 , and Γ, then the average probability of

error is a random quantity determined as follows

P (n)
e

[

{Ψ
(j)
1 ,Ψ

(j)
2 ,Γ}

]

=
∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

[

P φ

Y n
1 Y n

2

∣

∣Un
1 Un

2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

·
1

2nR1

∏

j∈[n]:j/∈M(n)
1

1

{

Ψ
(j)
1

(

u1:j−1
1

)

= u1(j)
}

·
1

2nR2

∏

j∈H(n)

V2|V1
\M(n)

2

1{Γ(j) = u2(j)}

·
∏

j∈[n]:j/∈H(n)

V2|V1

1

{

Ψ
(j)
2

(

u1:j−1
2 , un1Gn

)

= u2(j)
}

]

.

By averaging over the randomness in the encoders and decoders, the expected block error probability is

upper bounded in the following lemma.

Lemma 9: Consider the polarization-based Marton code described in Section IX-E and Section IX-F.

Let R1 and R2 be the broadcast rates selected according to the Bhattacharyya criterion given in Propo-

sition 7. Then for 0 < β < 1,

E
{Ψ

(j)
1 ,Ψ

(j)
2 ,Γ}

[

P (n)
e [{Ψ

(j)
1 ,Ψ

(j)
2 ,Γ}]

]

= O(2−nβ

).

Proof: See Section D of the Appendices.

If the average probability of block error decays to zero in expectation over the random maps {Ψ
(j)
1 },

{Ψ
(j)
2 }, and Γ, then there must exist at least one fixed set of maps for which P

(n)
e → 0. Hence, polar

codes for Marton’s inner bound exist under suitable restrictions on distributions and they achieve reliable

transmission according to the advertised rates (except for a small set of o(n) polarization indices as is

discussed next).

J. Rate Penalty Due to Partial Polarization

Lemma 9 is true assuming that decoder D2 obtains side-information (“genie-given”) bits for the set

of indices ∆2 defined in (83). The set ∆2 represents those indices that are partially-polarized and which

cause a slight misalignment of polarization indices in the Marton scheme. Fortunately, the set ∆2 contains

a vanishing fraction of indices: 1
n

∣

∣∆2

∣

∣≤ η for η > 0 arbitrarily small and n sufficiently large. Therefore,

a two-phase strategy suffices for sending the side-information bits. In the first phase of communication,
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the encoder sends several n-length blocks while decoder D2 waits to decode. After accumulating several

blocks of output sequences, the encoder transmits all the known bits in the set ∆2 for all the first-phase

transmissions. The encoder and decoder can use any reliable point-to-point polar code with non-vanishing

rate for communication. Having received the “genie-aided” bits in the second-phase, the second receiver

then decodes all the first-phase blocks. The number of blocks sent in the first-phase is O( 1η ). The rate

penalty is O(η) where η can be made arbitrarily small. A similar argument was provided in [25] for

designing polar codes for the Gelfand-Pinsker problem.

X. CONCLUSION

Coding for broadcast channels is fundamental to our understanding of communication systems. Broad-

cast codes based on polarization methods achieve rates on the capacity boundary for several classes

of DM-BCs. In the case of m-user deterministic DM-BCs, polarization of random variables from the

channel output provides the ability to extract uniformly random message bits while maintaining broadcast

constraints at the encoder. As referenced in the literature, maintaining multi-user constraints for the DM-

BC is a difficult task for traditional belief propagation algorithms and LDPC codes.

For two-user noisy DM-BCs, polar codes were designed based on Marton’s coding strategy and Cover’s

superposition strategy. Constraints on auxiliary and input distributions were placed in both cases to ensure

alignment of polarization indices in the multi-user setting. The asymptotic behavior of the average error

probability was shown to be P
(n)
e = O(2−nβ

) with an encoding and decoding complexity of O(n log n).

The next step is to supplement the theory with experimental evidence of the error-correcting capability

of polar codes over simulated channels for finite code lengths. The results demonstrate that polar codes

have a potential for use in several network communication scenarios.

APPENDIX A

POLAR CODING LEMMAS

The following lemmas provide a basis for proving polar coding theorems. A subset of the lemmas

were proven in different contexts, e.g., channel vs. source coding, and contain citations to references.

Lemma 10: Consider two random variables X taking values in {0, 1} and Y taking values in Y .

Denote the joint distribution by PXY (x, y). Let Q(x|y) = 1
2 denote a uniform conditional distribution

for x ∈ {0, 1} and y ∈ Y . Then the following identity holds.

D
(

PX|Y (x|y)
∥

∥

∥
Q(x|y)

)

= 1−H(X|Y ). (102)
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Proof: The identity follows from standard definitions of entropy and Kullback-Leibler distance.

H(X|Y ) =
∑

y∈Y

PY (y)
∑

x∈{0,1}

PX|Y (x|y) log2
1

PX|Y (x|y)

=
∑

y∈Y

PY (y)
∑

x∈{0,1}

PX|Y (x|y) log2
1

Q(x|y)

−
∑

y∈Y

PY (y)
∑

x∈{0,1}

PX|Y (x|y) log2
PX|Y (x|y)

Q(x|y)

=
∑

y∈Y

PY (y)



1−
∑

x∈{0,1}

PX|Y (x|y) log2
PX|Y (x|y)

Q(x|y)





= 1−D
(

PX|Y (x|y)
∥

∥

∥
Q(x|y)

)

.

Lemma 11 (Estimating The Bhattacharyya Parameter): Let (T, V ) ∼ PT,V (t, v) where T ∈ {0, 1}

and V ∈ V where V is an arbitrary discrete alphabet. Define a likelihood function L(v) and inverse

likelihood function L−1(v) as follows.

L(v) ,
PT |V (0|v)

PT |V (1|v)
, L−1(v) ,

PT |V (1|v)

PT |V (0|v)

To account for degenerate cases in which PT |V (t|v) = 0, define the following function,

ϕ(t, v) ,



















0 if 1
{

PT |V (t|v) = 0
}

L(v) if 1
{

PT |V (t|v) > 0
}

and 1{t = 1}

L−1(v) if 1
{

PT |V (t|v) > 0
}

and 1{t = 0}

In order to estimate Z(T |V ) ∈ [0, 1], it is convenient to sample from PTV (t, v) and express Z(T |V ) as

an expectation over random variables T and V ,

Z(T |V ) = ET,V

√

ϕ(T, V ). (104)
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Proof: The following forms of the Bhattacharyya parameter are equivalent.

Z(T |V ) , 2
∑

v∈V

PV (v)
√

PT |V (0|v)PT |V (1|v)

= 2
∑

v∈V

√

PTV (0, v)PTV (1, v)

=
∑

v∈V

PV (v)
∑

t∈{0,1}

√

PT |V (t|v)(1 − PT |V (t|v))

=
∑

t∈{0,1}

∑

v:PT |V (t|v)>0
v∈V

PTV (t, v)

√

1− PT |V (t|v)

PT |V (t|v)

= ET,V

√

ϕ(T, V ).

Lemma 12 (Stochastic Degradation (cf. [24])): Consider discrete random variables V , Y1, and Y2.

Assume that |V| = 2 and that discrete alphabets Y1 and Y2 have an arbitrary size. Then

PY1|V (y1|v) � PY2|V (y2|v) ⇒ Z(V |Y2) ≥ Z(V |Y1). (105)

Proof: Beginning with the definition of the Bhattacharyya parameter leads to the following derivation:

Z(V |Y2) , 2
∑

y2

√

PV Y2
(0, y2)PV Y2

(1, y2)

= 2
∑

y2

√

PV (0)PV (1)
√

PY2|V (y2|0)PY2|V (y2|1)

= 2
√

PV (0)PV (1)
∑

y2

[

√

∑

y1

PY1|V (y1|0)P̃Y2|Y1
(y2|y1) ·

√

∑

y1

PY1|V (y1|1)P̃Y2|Y1
(y2|y1)

]

.

Then applying the Cauchy–Schwarz inequality yields

Z(V |Y2) ≥ 2
√

PV (0)PV (1)
∑

y2

[

∑

y1

√

PY1|V (y1|0)P̃Y2|Y1
(y2|y1) ·

√

PY1|V (y1|1)P̃Y2|Y1
(y2|y1)

]

= 2
√

PV (0)PV (1)
∑

y2

[

∑

y1

P̃Y2|Y1
(y2|y1) ·

√

PY1|V (y1|0)PY1|V (y1|1)

]

.

Interchanging the order of summations yields

Z(V |Y2) ≥ 2
√

PV (0)PV (1)

[

∑

y1

√

PY1|V (y1|0)PY1|V (y1|1) ·
∑

y2

P̃Y2|Y1
(y2|y1)

]

= Z(V |Y1).
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Lemma 13 (Successive Stochastic Degradation (cf. [24])): Consider a binary random variable V , and

discrete random variables Y1 with alphabet Y1, and Y2 with alphabet Y2. Assume that the joint distribution

PV Y1Y2
obeys the constraint PY1|V (y1|v) � PY2|V (y2|v). Consider two i.i.d. random copies (V 1, Y 1

1 , Y
1
2 )

and (V 2, Y 2
1 , Y

2
2 ) distributed according to PV Y1Y2

. Define two binary random variables U1 , V 1 ⊕ V 2

and U2 , V 2. Then the following holds

Z
(

U1
∣

∣Y 1:2
2

)

≥ Z
(

U1
∣

∣Y 1:2
1

)

, (106)

Z
(

U2
∣

∣U1, Y 1:2
2

)

≥ Z
(

U2
∣

∣U1, Y 1:2
1

)

. (107)

Proof: Given the assumptions, the following stochastic degradation conditions hold:

PY 1
1 |V 1(y11|v

1) � PY 1
2 |V 1(y12 |v

1), (108)

PY 2
1 |V 2(y21|v

2) � PY 2
2 |V 2(y22 |v

2). (109)

The goal is to derive new stochastic degradation conditions for the polarized conditional distributions.

The binary random variables U1 and U2 are not necessarily independent Bernoulli(12 ) variables. Taking

this into account,

PY 1
2 Y 2

2 |U1

(

y12, y
2
2

∣

∣u1
)

=
1

PU1(u1)

∑

u2∈{0,1}

PV 1Y 1
2

(

u1 ⊕ u2, y12
)

PV 2Y 2
2

(

u2, y22
)

=
1

PU1(u1)

∑

u2∈{0,1}

[

PY 1
2 |V 1

(

y12
∣

∣u1 ⊕ u2
)

PV 1

(

u1 ⊕ u2
)

·PY 2
2 |V 2

(

y22
∣

∣u2
)

PV 2(u2)

]

.

Applying the property due to the assumption in (108),

PY 1
2 Y 2

2 |U1

(

y12 , y
2
2

∣

∣u1
)

=
1

PU1(u1)

∑

u2∈{0,1}

[

PV 1

(

u1 ⊕ u2
)

PV 2(u2)

·
∑

a∈Y1

PY 1
1 |V 1

(

a
∣

∣u1 ⊕ u2
)

P̃Y 1
2 |Y 1

1

(

y12
∣

∣a)

·
∑

b∈Y1

PY 2
1 |V 2

(

b
∣

∣u2
)

P̃Y 2
2 |Y 2

1

(

y22
∣

∣b
)

]

.

Interchanging the order of summations and grouping the terms representing PY 1
1 Y 2

1 |U1

(

y11, y
2
1

∣

∣u1
)

yields

the following

PY 1
2 Y 2

2 |U1

(

y12 , y
2
2

∣

∣u1
)

=
∑

a∈Y1,b∈Y1

PY 1
1 Y 2

1 |U1

(

a, b
∣

∣u1
)

P̃Y 1
2 |Y 1

1

(

y12
∣

∣a)P̃Y 2
2 |Y 2

1

(

y22
∣

∣b
)

.

The above derivation proves that

PY 1
1 Y 2

1 |U1

(

y11, y
2
1

∣

∣u1
)

� PY 1
2 Y 2

2 |U1

(

y12, y
2
2

∣

∣u1
)

.
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Combined with Lemma 12, this concludes the proof for the ordering of the Bhattacharyya parameters

given in (106).

In a similar way, it is possible to show that

PY 1
2 Y 2

2 U1|U2

(

y12, y
2
2 , u

1
∣

∣u2
)

=
1

PU2(u2)
PV 1Y 1

2

(

u1 ⊕ u2, y12
)

PV 2Y 2
2

(

u2, y22
)

=
1

PU2(u2)

[

PY 1
2 |V 1

(

y12
∣

∣u1 ⊕ u2
)

PV 1

(

u1 ⊕ u2
)

·PY 2
2 |V 2

(

y22
∣

∣u2
)

PV 2(u2)

]

.

Applying the property due to the assumption in (109),

PY 1
2 Y 2

2 U1|U2

(

y12, y
2
2 , u

1
∣

∣u2
)

=
1

PU2(u2)

[

PV 1

(

u1 ⊕ u2
)

PV 2(u2)

·
∑

a∈Y1

PY 1
1 |V 1

(

a
∣

∣u1 ⊕ u2
)

P̃Y 1
2 |Y 1

1

(

y12
∣

∣a)

·
∑

b∈Y1

PY 2
1 |V 2

(

b
∣

∣u2
)

P̃Y 2
2 |Y 2

1

(

y22
∣

∣b
)

]

.

Interchanging the order of the terms and grouping the terms representing PY 1
1 Y 2

1 U1|U2

(

y11 , y
2
1, u

1
∣

∣u2
)

yields the following

PY 1
2 Y 2

2 U1|U2

(

y12 , y
2
2, u

1
∣

∣u2
)

=
∑

a∈Y1,b∈Y1

[

PY 1
1 Y 2

1 U1|U2

(

a, b, u1
∣

∣u2
)

P̃Y 1
2 |Y 1

1

(

y12
∣

∣a)P̃Y 2
2 |Y 2

1

(

y22
∣

∣b
)

]

,

=
∑

a∈Y1,b∈Y1,c∈{0,1}

[

PY 1
1 Y 2

1 U1|U2

(

a, b, c
∣

∣u2
)

P̃Y 1
2 |Y 1

1

(

y12
∣

∣a)P̃Y 2
2 |Y 2

1

(

y22
∣

∣b
)

1
{

u1 = c
}

]

.

The above derivation proves that

PY 1
1 Y 2

1 U1|U2

(

y11, y
2
1 , u

1
∣

∣u2
)

� PY 1
2 Y 2

2 U1|U2

(

y12 , y
2
2, u

1
∣

∣u2
)

.

Combined with Lemma 12, this concludes the proof for the ordering of the Bhattacharyya parameters

given in (107).

Lemma 14 (Pinsker’s Inequality): Consider two discrete probability measures P (y) and Q(y) for y ∈

Y . The following inequality holds for a constant κ , 2 ln 2,

∑

y∈Y

∣

∣

∣
P (y)−Q(y)

∣

∣

∣
≤
√

κD
(

P
∥

∥Q
)

,

where D(P‖Q) is the Kullback-Leibler divergence defined with logarithm log2(·).
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Lemma 15 (Arıkan [8]): Consider two discrete random variables X ∈ {0, 1} and Y ∈ Y . The Bhat-

tacharyya parameter and conditional entropy are related as follows.

Z(X|Y )2 ≤ H(X|Y )

H(X|Y ) ≤ log2(1 + Z(X|Y ))

Lemma 16 (Bhattacharyya vs. Entropy Parameters): Consider two discrete random variablesX ∈ {0, 1}

and Y ∈ Y . For any 0 < δ < 1
2 ,

Z(X|Y ) ≥ 1− δ ⇒ H(X|Y ) ≥ 1− 2δ.

Z(X|Y ) ≤ δ ⇒ H(X|Y ) ≤
δ

ln 2
.

Proof: Due to Lemma 15, H(X|Y ) ≥ Z(X|Y )2 ≥ (1 − δ)2 ≥ 1 − 2δ + δ2 ≥ 1 − 2δ. It follows

that if Z(X|Y ) ≥ 1 − δ and δ → 0, then H(X|Y ) → 1 as well. Similarly, due to Lemma 15, if

Z(X|Y ) ≤ δ then H(X|Y ) ≤ log2(1+ δ) =
(

1
ln 2

)

ln(1+ δ) ≤ δ
ln 2 . To establish the last inequality, note

that the function f(x) , ln(1 + x) is concave for x ≥ 0 and thus upper bounded by its tangent at point

(x, f(x)) = (0, 0). It follows that if Z(X|Y ) ≤ δ and δ → 0, then H(X|Y ) → 0 as well.

APPENDIX B

PROOF OF LEMMA 1

The total variation bound of Lemma 1 is decomposed in a simple way due to the chain rule for Kullback-

Leibler distance between discrete probability measures. The joint probability measures P and Q were

defined in (8) and (19) respectively. According to definition, if P
(

{u1:ni }i∈[m]

)

> 0 then Q
(

{u1:ni }i∈[m]

)

>
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0. Therefore the Kullback-Leibler divergence D(P‖Q) is well-defined and upper bounded as follows.

D
(

P{U1:n
i }i∈[m]

∥

∥

∥
Q{U1:n

i }i∈[m]

)

=

m
∑

i=1

n
∑

j=1

[

D
(

P
Ui(j)

∣

∣U1:j−1
i ,{U1:n

k }k∈[1:i−1]

∥

∥

∥
Q

Ui(j)
∣

∣U1:j−1
i ,{U1:n

k }k∈[1:i−1]

)

]

(110)

=

m
∑

i=1

∑

j∈M(n)
i

[

D
(

P
Ui(j)

∣

∣U1:j−1
i ,{U1:n

k }k∈[1:i−1]

∥

∥

∥
Q

Ui(j)
∣

∣U1:j−1
i ,{U1:n

k }k∈[1:i−1]

)

]

(111)

=

m
∑

i=1

∑

j∈M(n)
i

1−H
(

Ui(j)
∣

∣

∣
U1:j−1
i , {U1:n

k }k∈[1:i−1]

)

(112)

=

m
∑

i=1

∑

j∈M
(n)
i

1−H
(

Ui(j)
∣

∣

∣
U1:j−1
i , {Y 1:n

k }k∈[1:i−1]

)

(113)

≤
m
∑

i=1

2δn

∣

∣

∣
M

(n)
i

∣

∣

∣
. (114)

The equality in (110) is due to the chain rule for Kullback-Leibler distance. The equality in (111) is valid

because for indices j /∈ M
(n)
i , P

(

ui(j)
∣

∣u1:j−1
i , {u1:nk }k∈[1:i−1]

)

= Q
(

ui(j)
∣

∣u1:j−1
i , {u1:nk }k∈[1:i−1]

)

.

The equality in (112) is valid due to Lemma 10 and the fact that Q
(

ui(j)
∣

∣u1:j−1
i , {u1:nk }k∈[1:i−1]

)

= 1
2

for indices j ∈ M
(n)
i . The equality in (113) follows due to the one-to-one correspondence between

variables {U1:n
k }k∈[1:i−1] and {Y 1:n

k }k∈[1:i−1]. The last inequality (114) follows from Lemma 16 due to

the fact that Z
(

Ui(j)
∣

∣U1:j−1
i , {Y 1:n

k }k∈[1:i−1]

)

≥ 1− δn for indices j ∈ M
(n)
i .

To finish the proof of Lemma 1,

∑

{u1:n
k }k∈[m]

∣

∣

∣
P
(

{u1:nk }k∈[m]

)

−Q
(

{u1:nk }k∈[m]

)

∣

∣

∣

≤

√

κD
(

P{U1:n
k }k∈[m]

∥

∥

∥
Q{U1:n

k }k∈[m]

)

(115)

≤

√

√

√

√κ

m
∑

i=1

2δn

∣

∣

∣
M

(n)
i

∣

∣

∣
(116)

≤
√

(2κ)(m · n)(2−nβ′

).

The inequality in (115) is due to Pinsker’s inequality given in Lemma 14. The inequality in (116) was

proven in (114). Finally for β′ ∈ (β, 12),
√

(2κ)(m · n)(2−nβ′

) < 2−nβ

for sufficiently large n. Hence

the total variation distance is bounded by O(2−nβ

) for any 0 < β < 1
2 .
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APPENDIX C

SUPERPOSITION CODING

The total variation bound of Lemma 5 is decomposed in a simple way due to the chain rule for Kullback-

Leibler distance between discrete probability measures. The joint probability measures P and Q were

defined in (40) and (65) respectively. According to definition, if PUn
1 Un

2

(

un1 , u
n
2

)

> 0 then Q
(

un1 , u
n
2

)

> 0.

Therefore the Kullback-Leibler divergence D(P‖Q) is well-defined. Applying the chain rule,

D
(

PUn
1 Un

2

∥

∥

∥
QUn

1 Un
2

)

=

n
∑

j=1

D
(

P
U1(j)

∣

∣U1:j−1
1

∥

∥

∥
Q

U1(j)
∣

∣U1:j−1
1

)

+

n
∑

j=1

D
(

P
U2(j)

∣

∣U1:j−1
2 ,U1:n

1

∥

∥

∥
Q

U2(j)
∣

∣U1:j−1
2 ,U1:n

1

)

=
∑

j∈M(n)
1

D
(

P
U1(j)

∣

∣U1:j−1
1

∥

∥

∥
Q

U1(j)
∣

∣U1:j−1
1

)

+
∑

j∈M(n)
2

D
(

P
U2(j)

∣

∣U1:j−1
2 ,U1:n

1

∥

∥

∥
Q

U2(j)
∣

∣U1:j−1
2 ,U1:n

1

)

.

Applying Lemma 10, the one-to-one relation between Un
1 and V n, and Lemma 16 leads to the following

result.

D
(

PUn
1 Un

2

∥

∥

∥
QUn

1 Un
2

)

=
∑

j∈M(n)
1

[

1−H
(

U1(j)
∣

∣

∣
U1:j−1
1

)]

+
∑

j∈M(n)
2

[

1−H
(

U2(j)
∣

∣

∣
U1:j−1
2 Un

1

)]

=
∑

j∈M(n)
1

[

1−H
(

U1(j)
∣

∣

∣
U1:j−1
1

)]

+
∑

j∈M(n)
2

[

1−H
(

U2(j)
∣

∣

∣
U1:j−1
2 V n

)]

≤ 2δn

[∣

∣

∣
M

(n)
1

∣

∣

∣
+
∣

∣

∣
M

(n)
2

∣

∣

∣

]

.

Using identical arguments as applied in the proof of Lemma 1, the total variation distance between P

and Q is bounded as O(2−nβ

).

To prove Lemma 6, the expectation of the average probability of error of the polarization-based
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superposition code is written as

E{Ψ(j)
1 ,Ψ(j)

2 }

[

P (n)
e [{Ψ

(j)
1 ,Ψ

(j)
2 }]

]

=

∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

[

P
Y n
1 Y n

2

∣

∣Un
1 Un

2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

·
1

2nR2

∏

j∈[n]:j/∈M(n)
2

P

{

Ψ
(j)
2

(

u1:j−1
2

)

= u2(j)
}

·
1

2nR1

∏

j∈[n]:j/∈M(n)
1

P

{

Ψ
(j)
1

(

u1:j−1
1 , un2Gn

)

= u1(j)
}

]

.

From the definitions of the random boolean functions Ψ
(j)
1 in (57) and Ψ

(j)
2 in (58), it follows that

P

{

Ψ
(j)
1

(

u1:j−1
1 , un2Gn

)

= u1(j)
}

= P

{

U1(j) = u1(j)
∣

∣U1:j−1
1 = u1:j−1

1 , V n = un2Gn

}

= P

{

U1(j) = u1(j)
∣

∣U1:j−1
1 = u1:j−1

1 , Un
2 = un2

}

,

P

{

Ψ
(j)
2

(

u1:j−1
2

)

= u2(j)
}

= P

{

U2(j) = u2(j)
∣

∣U1:j−1
2 = u1:j−1

2

}

.

The expression for the expected average probability of error is then simplified by substituting the definition

for Q(un1 , u
n
2 ) provided in (65) as follows,

E
{Ψ

(j)
1 ,Ψ

(j)
2 }

[

P (n)
e [{Ψ

(j)
1 ,Ψ

(j)
2 }]

]

=
∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

[

P
Y n
1 Y n

2

∣

∣Un
1 Un

2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

Q(un1 , u
n
2 )

]

.

The next step in the proof is to split the error term E{Ψ(j)
1 ,Ψ(j)

2 }

[

P
(n)
e [{Ψ

(j)
1 ,Ψ

(j)
2 }]

]

into two main parts,

one part due to the error caused by polar decoding functions, and the other part due to the total variation
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distance between probability measures.

E{Ψ(j)
1 ,Ψ(j)

2 }

[

P (n)
e [{Ψ

(j)
1 ,Ψ

(j)
2 }]

]

=
∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

[

P
Y n
1 Y n

2

∣

∣Un
1 Un

2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

·

(

Q
(

un1 , u
n
2

)

−PUn
1 Un

2

(

un1 , u
n
2

)

+PUn
1 Un

2

(

un1 , u
n
2

)

)

]

≤
∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

PUn
1 Un

2 Y n
1 Y n

2

(

un1 , u
n
2 , y

n
1 , y

n
2

)

+
∑

un
1∈{0,1}

n

un
2∈{0,1}

n

∣

∣

∣
PUn

1 Un
2

(

un1 , u
n
2

)

−Q
(

un1 , u
n
2

)

∣

∣

∣
. (117)

Lemma 5 established that the error term due to the total variation distance is upper bounded as O(2−nβ

).

Therefore, it remains to upper bound the error term due to the polar decoding functions. Towards this

end, note first that T = T1v ∪ T1 ∪ T2, T1v = ∪jT
j
1v for j ∈ M

(n)
2 ⊆ M

(n)
1v , T1 = ∪jT

j
1 for j ∈ M

(n)
1 ,

and T2 = ∪jT
j
2 for j ∈ M

(n)
2 . It is convenient to bound each type of error bit by bit successively at both

decoder D1 and D2 as follows.

Ej
1v ,

∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

j
1v

PUn
1 Un

2 Y n
1 Y n

2

(

un1 , u
n
2 , y

n
1 , y

n
2

)

=
∑

(u1:j
2 ,yn

1 )∈{0,1}
j×Yn

1

PU1:j
2 Y n

1

(

u1:j2 , yn1
)

· 1

{

P
Uj

2

∣

∣U1:j−1
2 Y n

1

(

u2(j)
∣

∣u1:j−1
2 , yn1

)

≤

P
Uj

2

∣

∣U1:j−1
2 Y n

1

(

u2(j)⊕ 1
∣

∣u1:j−1
2 , yn1

)

}

.

In this form, it is possible to upper bound the error term Ej
1v with the corresponding Bhattacharyya
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parameter as follows,

Ej
1v =

∑

u1:j
2 ∈{0,1}j

yn
1 ∈Y

n
1

P
(

u1:j−1
2 , yn1

)

P
(

uj2
∣

∣u1:j−1
2 , yn1

)

· 1

{

P
Uj

2

∣

∣U1:j−1
2 Y n

1

(

u2(j)
∣

∣u1:j−1
2 , yn1

)

≤

P
Uj

2

∣

∣U1:j−1
2 Y n

1

(

u2(j)⊕ 1
∣

∣u1:j−1
2 , yn1

)

}

,

≤
∑

u1:j
2 ∈{0,1}j

yn
1 ∈Y

n
1

P
(

u1:j−1
2 , yn1

)

P
(

uj2
∣

∣u1:j−1
2 , yn1

)

·

√

√

√

√

√

P
Uj

2

∣

∣U1:j−1
2 Y n

1

(

u2(j)⊕ 1
∣

∣u1:j−1
2 , yn1

)

P
Uj

2

∣

∣U1:j−1
2 Y n

1

(

u2(j)
∣

∣u1:j−1
2 , yn1

)

= Z
(

U j
2

∣

∣U1:j−1
2 , Y n

1

)

.

Using identical arguments, the following upper bounds apply for the individual bit-by-bit error terms

caused by successive decoding at both D1 and D2.

Ej
1v ≤ Z

(

U j
2

∣

∣U1:j−1
2 , Y n

1

)

, (118)

Ej
1 ≤ Z

(

U j
1

∣

∣U1:j−1
1 , V n, Y n

1

)

, (119)

Ej
2 ≤ Z

(

U j
2

∣

∣Y n
2

)

. (120)

Therefore, the total error due to decoding at the receivers is upper bounded as

E ,
∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

PUn
1 Un

2 Y n
1 Y n

2

(

un1 , u
n
2 , y

n
1 , y

n
2

)

≤
∑

j∈M
(n)
2 ⊆M

(n)
1v

Z
(

U j
2

∣

∣U1:j−1
2 , Y n

1

)

+
∑

j∈M(n)
1

Z
(

U j
1

∣

∣U1:j−1
1 , V n, Y n

1

)

+
∑

j∈M(n)
2

Z
(

U j
2

∣

∣Y n
2

)

≤ δn

[

∣

∣

∣
M

(n)
1v

∣

∣

∣
+
∣

∣

∣
M

(n)
1

∣

∣

∣
+
∣

∣

∣
M

(n)
2

∣

∣

∣

]

≤ 3nδn.
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This concludes the proof demonstrating that the expected average probability of error is upper bounded

as O(2−nβ

).

APPENDIX D

MARTON CODING

To prove Lemma 9, the expectation of the average probability of error of the polarization-based Marton

code is written as

E{Ψ(j)
1 ,Ψ(j)

2 ,Γ}

[

P (n)
e [{Ψ

(j)
1 ,Ψ

(j)
2 ,Γ}]

]

=

∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

[

P φ

Y n
1 Y n

2

∣

∣Un
1 Un

2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

·
1

2nR1

∏

j∈[n]:j /∈M(n)
1

P

{

Ψ
(j)
1

(

u1:j−1
1

)

= u1(j)
}

·
1

2nR2

∏

j∈H(n)

V2|V1
\M(n)

2

P

{

Γ(j) = u2(j)
}

·
∏

j∈[n]:j /∈H(n)

V2|V1

P

{

Ψ
(j)
2

(

u1:j−1
2 , un1Gn

)

= u2(j)
}

]

.

The expression is then simplified by substituting the definition of Q(un1 , u
n
2 ) provided in (97), and then

splitting the error term into two parts:

E{Ψ
(j)
1 ,Ψ

(j)
2 ,Γ}

[

P (n)
e [{Ψ

(j)
1 ,Ψ

(j)
2 ,Γ}]

]

=

∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

P φ

Y n
1 Y n

2

∣

∣Un
1 Un

2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

Q(un1 , u
n
2 )

≤
∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

PUn
1 Un

2 Y n
1 Y n

2

(

un1 , u
n
2 , y

n
1 , y

n
2

)

+
∑

un
1∈{0,1}

n

un
2∈{0,1}

n

∣

∣

∣
PUn

1 Un
2

(

un1 , u
n
2

)

−Q
(

un1 , u
n
2

)

∣

∣

∣
.
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The error term pertaining to the total variation distance was already upper bounded as in Lemma 8. The

error due to successive cancelation decoding at the receivers is upper bounded as follows.

E ,
∑

{un
1 ,u

n
2 ,y

n
1 ,y

n
2 }∈T

PUn
1 Un

2 Y n
1 Y n

2

(

un1 , u
n
2 , y

n
1 , y

n
2

)

≤
∑

j∈M(n)
1

Z
(

U j
1

∣

∣U1:j−1
1 , Y n

1

)

+
∑

j∈L(n)

V2|Y2

Z
(

U j
2

∣

∣U1:j−1
2 , Y n

2

)

,

≤ δn

[
∣

∣

∣
M

(n)
1

∣

∣

∣
+
∣

∣

∣
L
(n)
V2|Y2

∣

∣

∣

]

≤ 2nδn.

This concludes the proof demonstrating that the expectation of the average probability of block error is

upper bounded as O(2−nβ

).

APPENDIX E

PROOF OF LEMMA 3

The implication in (30) follows sinceX−Y1−Y2 means that PY2|X(y2|x) =
∑

y1
PY1|X(y1|x)PY2|Y1

(y2|y1).

The implication in (31) follows by observing that

PY2|V (y2|v) =
∑

y1∈Y1

PY1Y2|V (y1, y2|v)

=
∑

x∈X

∑

y1∈Y1

PX|V (x|v)PY1Y2|X(y1, y2|x)

=
∑

x∈X

PX|V (x|v)
∑

y1∈Y1

PY1Y2|X(y1, y2|x)

=
∑

x∈X

PX|V (x|v)PY2|X(y2|x)

=
∑

x∈X

PX|V (x|v)
∑

y1∈Y1

PY1|X(y1|x)P̃Y2|Y1
(y2|y1) (121)

=
∑

y1∈Y1

∑

x∈X

PX|V (x|v)PY1|X(y1|x)P̃Y2|Y1
(y2|y1)

=
∑

y1∈Y1

PY1|V (y1|v)P̃Y2|Y1
(y2|y1).

In step (121), the assumed stochastic degraded condition PY1|X(y1|x) � PY2|X(y2|x) ensures the existence

of the distribution P̃Y2|Y1
(y2|y1). The converse to (31) follows since it is possible to select PX|V (x|v) =
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1{x = v} where the alphabet V = X . In this case, for any v ∈ X ,

PY2|V (y2|v) =
∑

x∈X

PX|V (x|v)PY2|X(y2|x)

=
∑

x∈X

1{x = v}PY2|X(y2|x)

= PY2|X(y2|v).

Similarly, PY1|V (y1|v) = PY1|X(y1|v) for any v ∈ X . Due to the assumed stochastic degradedness

condition PY2|V (y2|v) =
∑

y1
PY1|V (y1|v)P̃Y2|Y1

(y2|y1), for any v ∈ X ,

PY2|X(y2|v) = PY2|V (y2|v)

=
∑

y1

PY1|V (y1|v)P̃Y2|Y1
(y2|y1)

=
∑

y1

PY1|X(y1|v)P̃Y2|Y1
(y2|y1).

Therefore the stochastic degradedness property PY1|X(y1|x) � PY2|X(y2|x) must hold as well. The state-

ment of (31) means that Class I and Class II are equivalent as shown in Figure 5. The implication in (32)

follows because assuming the stochastic degradedness property PY1|V (y1|v) � PY2|V (y2|v) holds for all

PX|V (x|v), there exists a Ỹ1 such that V − Ỹ1−Y2 forms a Markov chain and PỸ1|V
(ỹ1|v) = PY1|V (ỹ1|v)

for all PX|V (x|v). By the data processing inequality, I(V ; Ỹ1) ≥ I(V ;Y2). If PỸ1|V
(ỹ1|v) = PY1|V (ỹ1|v),

then PV Ỹ1
(v, ỹ1) = PV Y1

(v, ỹ1) for all PV (v). It follows that for all PV X(v, x), the mutual information

I(V ; Ỹ1) = I(V ;Y1). The implication in (33) follows by setting PV X(v, x) = 1{v = x}PX(x) and

letting V = X . Then for any v ∈ X ,

PV Y1
(v, y1) =

∑

x∈X

PV X(v, x)PY1 |X(y1|x)

=
∑

x∈X

1{v = x}PX(x)PY1|X(y1|x)

= PX(v)PY1|X(y1|v)

= PXY1
(v, y1).

Similarly for any v ∈ X , PV Y2
(v, y2) = PXY2

(v, y2). Therefore for the particular choice of PV X(v, x) =

1{v = x}PX(x), I(V ;Y1) = I(X;Y1) and I(V ;Y2) = I(X;Y2). The converse statements for (30), (32),

and (33) do not hold due to a counterexample involving a DM-BC comprised of a binary erasure channel

BEC(ǫ) and a binary symmetric channel BSC(p) as described in Example 3.
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