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Abstract

As central as concentration of measure is to statistics and machine learning, this thesis
aims to motivate anti-concentration as a promising and under-utilized toolkit for the design
and analysis of statistical learning algorithms. This thesis focuses on learning incoherent
dictionaries A∗ from observations y = A∗x, where x is a sparse coefficient vector drawn
from a generative model. We impose an exceedingly simple anti-concentration property on
the entries of x, which we call (C, ρ)-smoothness. Leveraging this assumption, we present
the first computationally efficient, provably correct algorithms to approximately recover
A∗ even in the setting where neither the non-zero coordinates of x are guaranteed to be
Ω (1) in magnitude, nor are the supports x chosen in a uniform fashion. As an application
of our analytical framework, we present an algorithm which learns a class of randomly
generated non-negative matrix factorization instances with run-time and sample complexity
polynomial in the dimension and logarithmic in the desired precision.
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Chapter 1

Introduction

1.1 Anti-Concentration in Machine Learning

Both machine learning and theoretical computer science are in great debt to the concentra-
tion of measure phenomenom, which roughly states:

“If X1, . . . , Xn are independent (or weakly dependent) random variables, then the ran-
dom variable f(X1, . . . , Xn) is ‘close’ to its mean E[f(X1, ,̇Xn)], provided that f(x1, . . . , xn)
is not too ‘sensitive’ to any of its coordinates” - Chapter 1, van Handel (2014)

In statistics, concentration guarantees that the average x̄ := 1
n

∑n
i=1 x

(i) of light-tailed,

i.i.d. random vectors x(i) does not deviate too far from its mean. As an example from the
analysis of algorithms, consider a procedure P which succeeds with probability p: e.g. P
rounds a solution to a linear program, or balances tasks across many servers. If we repeat P
for n trials, Chernoff concentration ensures that, despite the uncertainty of the procedure,
P will succeed Ω(pn) times with high probabilty (Proposition C.1.6).

When we appeal to concentration of measure, we view randomness as a deviation; a
source of error to be controlled. However, there are settings in which randomness can be
regarded as more benign than adversarial. The quintessential example of a more favorable
attitude towards randomness is the smoothed analysis of algorithms. In smoothed analysis,
an algorithm A is fed a random perturbation Ĩ of a deterministic, and possibly adversarially
chosen input I. Even if A runs in worst case exponential time, many algorithms run
polynomially on suitably perturbed instances, with high probability. Spielman and Teng
(2001) establishes that the popular Simplex Algorithm for linear programming runs in
smoothed polynomial time, despite its worst case exponential complexity. More recently,
Bhaskara et al. (2014) shows that a class of worst-case intractable tensor decompositions
can be recovered in polynomial time in the smoothed analysis framework.

Whereas smoothed analysis introduces extrinsic noise to “smooth out” particularly dif-
ficult instances, recently, Mendelson (2014) leverages intrinsic randomness in statistical
learning problems to vastly improve known bounds on empirical risk minimization (ERM).
In Mendelson’s setup, we have a distribution D over data-label pairs (x, y) ∈ X × Y , and
aim approximate the function f∗ : X → Y which minimizes the expected l2 loss, or risk,
R(f) := E(x,y)∼D[(f(x)− y)2], over all f in some hypothesis class F .
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1.1. ANTI-CONCENTRATION IN MACHINE LEARNING Max Simchowitz

Mendelson’s strategy is to lower bound the “small-ball probability”

Q(u) := Pr(|f(x)| ≥ u
√
E[f(x)2]) (1.1)

uniformly over all f ∈ F . Hence, if a particular f has large risk in expectation, then
the small-ball probability estimates ensure that f has a large empirical risk ER(f) :=
1
n

∑n
i=1(f(x(i)) − y(i))2 over the samples (x(i), y(i)) as well. Consequently, an estimation

procedure can determine that f lies far from the true risk minimizer, f∗.
Fundamentally, small-ball probability measures the tendency of random quantities to

disperse across their range, a phenenomon known more generally as anti-concentration
Vershynin and Rudelson (2007). For an even simpler example, consider a standard normal
random variable X ∼ N (0, 1). Then

√
E[X2] = 1, and X’s density function (with respect

to the Lebesgue measure) is bounded above 1√
2π

. Integrating, we can conclude

Pr(|X| ≥ u
√
E[X2]) ≥ 1−

√
2

π
u (1.2)

In fact, we can say something much more generally about any continuously distributed real-
valued random variable X with density p(u) that is bounded uniformly above by a constant
ρ > 0:

If sup
u∈R

p(u) ≤ ρ then Pr(X ∈ S) ≤ ρ vol(S) (1.3)

where vol(S) denotes the volume, or Lebesgue measure, of the set S (assuming S is Lebesgue
measurable). We call the property defined by Equation 1.3 ρ-smoothness, and it will play a
central role in the remainder of this report. Like small-ball probability, ρ-smoothness aims
to capture the tendency of a random variable to anti-concentrate on sets of small volume.

Further References for Anti-Concentration

ρ-smoothness is the only small-ball style assumption to which we will appeal in this thesis.
It is at best an extreme simplification, and possibly even a trivialization of the rich the-
ory of small-ball estimates to which we have been unable to do justice in this very short
introduction. Both small-ball probability and anti-concentration are deeply connected to
the fields of geometric functional analysis and convex geometry, and we point the curious
reader to Vershynin and Rudelson (2007) and Nguyen and Vu (2013) for a more thorough
treatment. As another example of the power of anti-concentration in learning theory, we
direct the reader to Bresler (2014) which uses Erdos’ anti-concentration bounds for the
Littlewood-Offord problem to efficiently learn Ising models on graphs.

1.1.1 The Dictionary Learning Problem

In the present work, we leverage anti-concentration to improve the analyses of algorithms for
the sparse coding, or dictionary learning problem. In dictionary learning, the goal is to find
a collection of often overcomplete basis vectors, collectively referred to as the dictionary,
for which any input data vector can be represented, or encoded, as a linear combination of
only a few vectors from that basis. We call the coefficients of the input vector’s encoding
its sparse representation.
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1.1. ANTI-CONCENTRATION IN MACHINE LEARNING Max Simchowitz

Sparse coding has been broadly applied in statistical signal processing Bruckstein et al.
(2009), modeling brain states Olshausen and Field (1997), and in extracting meaningful
features for a wide range of image processing applications Elad (2010). Beyond its domain-
specific merits, the sparsity assumption can help to extract low dimensional, hidden struc-
ture from otherwise very high dimensional data. Furthermore, sparsity restrictions can help
offset overfitting and ensure a degree of robustness to noise.

Sparse coding was first formalized by Olshausen and Field in Olshausen and Field (1997),
and we adopt their notational conventions in the present work. Given p data vectors
y(1), . . . , y(p) ∈ Rn, the task is to extract a collection of m dictionary vectors A1, . . . , Am ∈
Rn and sparse coefficient vectors x(1), . . . , x(p) such that

y(j) ≈ Ax(j) for all j ∈ {1, . . . , p} (1.4)

where A ∈ Rn×m is the dictionary matrix whose i-th column is Ai. Olshausen and Field
propose an alternating gradient descent heuristic to learn the non-convex objective

F (A,X) :=

p∑
j=1

‖y(j) −Ax(j)‖2 +

p∑
j=1

λ(x(j)) (1.5)

where the regularization function λ encourages the x(j) to be sparse, and X is the matrix
whose j-th column is x(j). Despite the problem’s non-convexity, alternating minimizing
procedures like the algorithm proposed by Olshausen and Field (1997), and similar heuristics
procedures in Aharon et al. (2006) and Kreutz-Delgado et al. (2003), have been found to
work remarkably well in practice.

Towards Provable Algorithms for Dictionary Learning

Recent research in sparse coding has sought to design provably correct algorithms for recov-
ering a hidden dictionary A∗ by specifying a generative model for the sparse representations
x(j). In the under-complete (n ≤ m) setting, Spielman et al. (2013) recovers A∗ as long as
the sparsity of x is no more than approximately

√
n. The independent works Arora et al.

(2014) and Agarwal et al. (2013a) provide polynomial time algorithms to recover µ/
√
n-

incoherent dictionaries (defined in Section 1.2) based on overlapping community detection,
but shed little light on the startling efficacy of gradient descent procedures. Barak et al.
(2014) proposes a sum-of-squares approach which succeeds for a sparsity up to n1−γ for
some fixed γ, but their algorithm runs exponentially in the desired precision. Furthermore,
Luh and Vu (2015) introduce an efficient convex problem to recover square-dictionaries
A∗ ∈ Rn×n using an almost information-theoretically optimal number of samples. However,
their algorithm succeeds only in the very limited setting where the supports of the sparse
representation x are i.d.d. Bernoulli, in the sense that Pr(xi 6= 0) ∼ Bernoulli(p).

Recently, Arora et al. (2015) introduce a simple gradient descent procedure which learns
the true dictionary A∗ up a columwise error of

√
k/n using Õ(mk) samples per round, once

initialized with an estimate A for which ‖A−A∗‖ ≤ 2, and each column of A has distance
less than 1/C log n from a corresponding column of A∗, where C is a suitably large constant.
The algorithm assumes that A∗ is µ/

√
n, and succeeds as long as the sparsity is no more

than roughly µ/
√
n. Furthermore, Arora et al. (2015) provide a descent algorithm that

Page 7 of 99



1.1. ANTI-CONCENTRATION IN MACHINE LEARNING Max Simchowitz

learn A∗ up to an arbitrary inverse polynomial columnwise error, using only polynomially
many samples. Both algorithms converge at geometric rates. The descent algorithms are
complemented by a provably correct initialization procedure requiring Õ(m2/k2) samples.

1.1.2 Dictionary Learning and ρ-Smoothness

Both the community detection algorithms in Agarwal et al. (2013b) and Arora et al. (2014),
and the coordinate descent scheme in Agarwal et al. (2013a) and Arora et al. (2015) require
that the nonnegative entries of the coefficient vectors x satisfy what we will refer to as the
Lower Boundedness Asumption1:

Definition 1.1.1. We say that a real valued random variable Z is C-lower bounded if there
exists some constant C for |Z| ≥ C almost surely whenever Z 6= 0. We say that a random
vector x is C-lower bounded if |xi| > C for all i ∈ supp(x), almost surely.

We can think of imposing the lower boundedness assumption on the sparse latent sam-
ples x in y = A∗x as postulating some minimal signal strength necessary to “activate”
a given column of A∗. This assumption holds some weight in, say, modeling a biological
neural network, where neurons only respond to electrical impulses above a certain threshold
voltage. However, in the many other applications to which Dictionary Learning has been
applied, it is unclear that we can demand that our data satisfy such a restrictive condi-
tion. Indeed, the Lower Boundedness Assumption would rule out sparse vectors for which
nonzero entries are independent, identically distributed, and Gaussian.

In this thesis, we present a framework for gradient-like algorithms which can make
progress even when the lower boundedness assumption fails to hold. Rather than assuming
that the entries of x are bounded below in magnitude, we will instead assume that there is
some constant C below which the xi have a smooth distribution, in the following sense:

Definition 1.1.2 ((C, ρ)-smoothly distributed). Given C > 0 and ρ > 0, we say that a real
valued random variable Z is (C, ρ) smoothly-distributed if there exists a constant C such
that

Pr(Z ∈ S − {0}) ≤ ρ · vol(S) ∀S ∈ F([−C,C]) (1.6)

where F([−C,C]) denotes the set of all Borel sets supported on the interval [−C,C]. We say
that Z is ρ-smoothly distributed if it is (C, ρ)-smoothly distributed for any C. We say that
a vector x is (C, ρ)-(resp. ρ-)smoothly distributed if its entries are (C, ρ)-(rep. ρ-)smoothly
distributed conditioned on their support.

It is easy to see that if the entries of x satisfy the Lower Boundedness assumption with
constant C, then then are (C, 0)-smoothly distributed. On the other hand, if the entries of x
have a continuous density p(x) conditioned on their support, with say supx∈R p(x) = ρ, then
the entries of x are ρ-smoothly distributed. Hence, the class of (C, ρ) smoothly distributed
random variables strictly and substantially generalizes the class of those which satisfy the
lower boundedness assumption.

1While Luh and Vu (2015) and Spielman et al. (2013) do not impose such a restriction, their require that
the supports of x be uniform or Bernoulli. In the present work, we can handle a more general distribution
on the support of x, specified in Assumption 2
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1.2. NOTATION AND ASSUMPTIONS Max Simchowitz

1.2 Notation and Assumptions

1.2.1 General Notation

Throughout this report, we will adopt the following notational conventions.

• For m ∈ N, let [m] denote the set {1, . . . ,m}. We let
(

[m]
i

)
be the set of all subsets

consisting of i distinct elements of [m], and 2[m] be the set of all subsets of [m].

• For a vector v ∈ Rd, we use ‖v‖ and ‖v‖2 to refer to the standard l2 norm, ‖v‖p to
denote lp norm. Given two vectors v, w ∈ Rd, we will denote their inner product by
either 〈v, w〉 or vTw.

• For a matrix M ∈ Rn×m, we denote its spectral norm by ‖M‖, its Frobenius norm
‖M‖F , and let ‖M‖lp denote its lp norm viewed as a vector in Rnm. We denote Mi

to be the i-th column of M , and for a set S ⊂ [m], we let MS be the submatrix
M formed by the columns of M which are indexed by the elements of S. Note that
‖MS‖ ≤ ‖M‖. Where ambiguous, we will interpret MT

S as (MS)T .

• We denote the Moore-Penrose pseudoinverse of M by M † (cite), and the orthogonal
projection onto the column space of M by ProjM .

• Given a set of elements {xj}j∈[n], we set vec(xj) to be the vector in Rn whose j-th
element is xj , and diag(xj) to be the diagonal matrix in Rn×n whose (j, j)-th element
is xj .

• Given a random event A, Pr(A) denotes the probability of A, and Pr(·
∣∣A) and E[·

∣∣A)
denote the probability and expectation operators, conditional on A. For two events
A and B, we let A ∧B be their disjunction, and A ∨B denote their union.

• For a convex set K ⊂ Rn, we denote ProjK(z) = minw∈K ‖z − w‖

There are also define the following functions which we will use throughout the present work:

• 1(·) denotes the indicator function

• signτ (u) := sign(u)1(|u| > τ), where τ is nonnegative and u ∈ R

• For v ∈ Rn, Normalize(v) = v
‖v‖ . For M ∈ Rn×m, Normalize(M) = Mdiag( 1

‖Mi‖).

• thresτ (u) := 1(|u| > τ), where τ is nonnegative and u ∈ R

• Thresτ (u) := u1(|u| > τ), where τ is nonnegative and u ∈ R

Asymptotic Notation

We adopt the standard conventions in computer science for asymptotic notation:

• We say that f(n) = O (g(n)) if f(n) ≤ Cg(n) for some constant C > 0, that f(n) =
Ω (g(n)) if f(n) ≥ Cg(n) for some constant C > 0, f(n) = Θ (g(n)) if there are
C1g(n) ≤ f(n) ≤ C2g(n) for constant C1, C2 ≥ 0.

Page 9 of 99
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• We write f(n) = o (g(n)) if limn→∞
f(n)
g(n) = 0, and f(n) = ω (g(n)) if limn→∞

f(n)
g(n) =∞

• We also use soft asymptotic notation: f(n) = Õ (g(n)) if f(n) ≤ C logc(n)g(n) for
some constants C > 0 and c ∈ R, and f(n) = Ω̃ (g(n)) if f(n) ≥ C logc(n)g(n) for
some constants C > 0 and c ∈ R.

• Following Arora et al. (2015), we let f(n) = O∗(n) if f(n) ≤ Cg(n) for a sufficiently
small constant C > 0, and f(n) = Ω∗(n) if f(n) ≥ Cg(n) for a sufficiently large
constant C > 0. Morover, we see that f(n) = Θ∗(g(n)) if, for two specific constants
C1 and C2, it holds that c1g(n) ≤ f(n) ≤ c2g(n)

Occasionally, the conventional CS asymptotic notation will prove burdensome and visually
clumsy. Consequently, we introduce the following notation for approximate inequalities:

• We say that f(n) . g(n) if f(n) = O(g(n) + n−ω(1)).

• We say that f(n) � g(n) if f(n) = Θ(g(n) + n−ω(1)).

1.2.2 The Dictionary Learning Setup

Unless otherwise specified, we assume that we have access to random variables y = A∗x,
where x ∈ Rm is a sparse coefficient vector, A∗ ∈ Rm×n is the true dictionary, and y ∈ Rn
are our observations. We will frequently denote S = supp(x). We now place the following
assumptions on x:

Assumption 1 (Properties of Sparse Coefficients). We assume that pi := E[|xi|
∣∣i ∈ S] =

Θ(1) for all i ∈ [m] and that S = supp(x) satifies |S| ≤ k almost surely. We also require

that, for any S ∈
([m]
k

)
containing i, xi

∣∣supp(x) = S is O(1)-subgaussian.

Remark. The assumption |S| ≤ k can easily be relaxed to the assumption |S| ≤ k with
probability at least 1 − n−ω(1). For example, if k = Ω

(
log2 n

)
, entries of S are chosen

independently with probability p ≤ k
m(1+c) for any constant c > 0, then a multiplicative

Chernoff Bound ensures that |S| ≤ k with 1− n−ω(1) probability.

Unlike Luh and Vu (2015), Agarwal et al. (2013a) and Spielman et al. (2013), we shall
not require that the supports of x be chosen exactly uniformly. Instead, we require only
that the supports on x are sufficiently even, in the following sense:

Assumption 2. We assume qi := Pr (i ∈ S) = Θ (k/m). Furthermore, we require that
threewise correlations are bounded, in the the sence that for all {i, j, r} ∈

(
[m]
3

)
, that qi,j,r :=

Pr ({i, j, r} ⊂ S) = O
(
k3/m3

)
. By marginalizing, it follows that qi,j := Pr ({i, j} ⊂ S) =

O
(
k2/m2

)
.

For the sake of brevity, we all results in this paper will be stated in the absence of noise.
Where possible, we will remark how to extend some of the results to isotropic, subgaussian
noise vectors which are independent of the coefficient vectors x. We will also impose an-
other relatively strong assumption, and again, where possible, we will remark on when this
assumption can be removed or adjusted:
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Assumption 3. We assume that the entries of x are symmetrically distributed, and inde-
pendent conditioned on S = supp(x). Moreover, the distribution of xi

∣∣i ∈ S is independent
for any S containing i.

We will also assume that A∗ is an incoherent dictionary, which we define below.

Definition 1.2.1. We say that a dictionary A∗ is µ-incoherent if | cos(A∗i , A
∗
j )| ≤ µ/

√
n for

all i 6= j ∈ [m]. Note that if the columns of A∗ have unit norm, then A∗ is µ-incoherent
precisely when |〈A∗i , A∗j 〉| ≤ µ/

√
n.

Incoherence is quite reasonable to impose, since it is satisfied by many common signal
processing filters (see Elad (2010)), and by random dictionaries with high probability Candès
and Wakin (2008). From the standpoint of algorithm analysis, incoherence works in tandem
with sparsity to show that our model is identifiable. Indeed, if µ√

n
≤ 1

2k , then an application

of the Gershgorin Circle Theorem esures that any k-columns submatrix of A∗ are well
conditioned, and that any subset of 2k column-submatrix of A∗ are linearly independent

(see Lemma D.1.1). Consequently, if y = A∗x for a k ≤ 2
√
n

µ -sparse x, one can show that
x is the unique k-sparse for which y = A∗x. This is observation serves as the cornerstone
of Compressed Sensing and Sparse Recovery, and we direct the curious reader to Candes
(2008) and Candes and Tao (2006) for further reading.

In the present work, we will assume that the columns of A∗ are normalized to unit norm
(this can be imposed without loss of generality by rescaling the distributions of the entryies
of the coefficient vectors x). With the exception of Chapter 4, we will establish most of our
results in the overcomplete case, where n ≤ m ≤ n2. We summarize the key properties of
A∗ below:

Assumption 4 (Properties of an Overcomplete A∗). The columns of A∗ have unit norm

and A∗ is µ-incoherent. Furthermore, ‖A∗‖ = O
(√

m/n
)

, where n ≤ m ≤ n2. We also

assume that k = ω (1), k = o (
√
n), and that k = O∗ (µ/

√
n)

Remark. We remark that the assumptions in the present work are only slightly stronger
than those in Arora et al. (2015), in that Assumption 2 requires controls on the 3-wise
correlations in the distribution of the support, whereas Arora et al. (2015) only imposes
assumptions on first- and second- order correlations. We also note that, while Arora et al.
(2015) only states the assumption that the entries of x are pairwise independent conditioned
on their support, the analysis appeals to concentration arguments which necessitate that
the entries of x are jointly independent as well (again, after conditioning on the support).

A Measure of Closeness

Finally, we will measure the distance between two dictionaries by the distance between their
columns, up to suitable permutations. We recall Definition 8 in Arora et al. (2015):

Definition 1.2.2. [(δ, κ)−near] We say that A is δ-close to A∗ if there is a permutation
π : [m]→ [m] and assignment of signs σ : [m]→ {−1, 1} for which ‖σ(i)Aπ(i)−A∗i ‖ ≤ δ for
all i ∈ [m]. We say that A is (δ, κ)-near to A∗ if, in addition, ‖A−A∗‖ ≤ κ.
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Throughout the paper, we will assume that δ = O∗(1/ log n). Hence, the incoherence
of A∗ and the fact that its columns have unit norm will ensure that there is a unique
permutation π and sign-assigment σ for which ‖σ(i)Aπ(i) −A∗i ‖ ≤ δ for all i ∈ [m]. Hence,
we can unambiguously reindex the columns of A, and flip the signs of A∗ if necessary to
ensure that ‖A∗i −Ai‖ ≤ δ for all i ∈ [m].

1.2.3 γ-Notation and High Probability Events

Assumption 3 requires that the entries xi of the coefficient vectors to be O(1) sub-gaussian.
By Lemma C.1.1, this implies that the tails of xi decay super-polynomially, in the sense
that there exists some σ2 = O(1) for which

Pr
(
|xi| ≥ σ

√
log(1/δ)

)
1− δ for all δ > 0 (2.7)

As a consequence, it is straightforward to demonstrate that vector y = Ax will also satisfy
some sort of super-polynomial decay: that is, there will exist an R = O(poly(‖A‖,m, n, k))
which is a low-degree polynomial in n, and a constant c > 0 for which

Pr(‖y‖ ≥ R(log(1/δ))c) ≥ 1− δ for all δ > 0 (2.8)

In fact, it is routine to verify that essentially every random quanity Z encountered in
this report will satisfy a tail bound similar to Equation 2.8 for some constant c > 0 and
R = O(poly(n)). Hence, we will liberally use the following property of random variables
with super-polynomial decay, proved formally in Proposition C.1.4:

Claim 1.2.1. Let C,C ′, c > 0 be constants. If Z is a random variable for which

Pr(‖Z‖ ≥ R(log(1/δ))c) ≥ 1− δ for all δ > 0 (2.9)

for R ≤ nC , then for any any variables X1 and X2 bounded above by n(C′) almost surely
such that X1 = X2 with probability n−ω(1),

‖E[Z ·X1]− E[Z ·X2]‖ ≤ O(n−ω(1)) (2.10)

In light of the above claim, we will follow Arora et al. (2015), in using the letter γ to
denote quantities of norm no more than n−ω(1).Hence, if Z,X1, X2 satisfy the conditions of
Claim 1.2.1, and X1 = X2 with probability n−ω(1), then we will write

E[Z ·X1] = E[Z ·X2] + γ (2.11)

without comment. We will also use the phrase with high probability to refer to any event
which occurs with probability at least 1− n−ω(1).

1.3 Contributions

To our knowledge, this paper presents the first analysis of provably correct and computa-
tionally efficient algorithms for learning incoherent dictionaries under generative processes
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where neither the non-zero coordinates of the sparse coefficients are Ω (1) in magnitude,
nor are the supports chosen in a uniform fashion.

After reviewing the approximate coordinate descent framework presented in Arora et al.
(2015), Chapter 2 establishes a Dictionary Learning Meta-Algorithm which encapsulates a
broad class of coordinate descent rules. Chapter 3 then presents two coordinate descent
algorithms for the learning dictionaries with (C, ρ)-smooth coefficient vectors, and we sum-
marize their properties here:

Theorem 1.3.1. If the coefficient vectors are (C, ρ)-smooth for C = Ω(1), then there
is an algorithm which, when initialized with an estimate A0 that is (δ, 2)-near to A∗ for
δ = O* (1/ log n), and given Õ (mt)-samples per-step, converges at a geometric rate to A∗

until the column-wise error is O
(
1/
√
t+ ρk/n

)
, as long as t = Ω (k). The run-time is

O (mnp). Moreover, the algorithm can be parallelized in such a way that each server only
needs to store one column of A at any given time.

We call the algorithm in the above theorem the “Toy Rule”, and the algorithm in the
subsequent theorem the “Neural Rule”:

Theorem 1.3.2. If the coefficient vectors are (C, ρ)-smooth for C = Ω(1), then there
is an algorithm which, when initialized with an estimate A0 that is (δ, 2)-near to A∗ for
δ = O*

(
(ρ log nk1/4)−1

)
, converges at a geometric rate to A∗ until the column-wise error

is O (ρk/n+ µ/
√
n). The run-time is O (mnp), where the algorithm uses p = Õ

(
mk2

)
samples per step.

The second algorithm we present is a slight modification of the Neural Update rule
in Arora et al. (2015), which we believe also corrects a flaw in their analysis. We remark
that the sample complexity suffers by a factor of k when transitioning from the C-lower
bounded to the C-ρ-smooth setting. In the case where k � µ/

√
n, we can use the first

algorithm to initialize the second. This establishes that:

Theorem 1.3.3. If the coefficient vectors are (C, ρ)-smooth for C = Ω(1), then there is a
two-stage coordinate descent algorithm which, when initialized with an estimate A0 that is
(δ, 2)-near to A∗ for δ = O* (1/ log n), returns an estimate of A∗ with column-wise error
O (ρk/n+ µ/

√
n). Each step converges geometrically, has runtime O (mnp), and uses fewer

than p = Õ
(
mk2

)
samples.

It also turns out that the initialization algorithm in Arora et al. (2015) successfully
returns estimates within the radius of convergence of the Toy Algorithm described in The-
orem 1.3.1 in the (C, ρ)-smooth context as well. We will not adress this point in further
detail in the present work.

Following the analytic framework in Chapter 3, Chapter 4 introduces a projection based
update rule which has neglible bias. The projection rule was a radius of convergence

O*
(

1/
√
k
)

, and hence can be initialized using either the Neural Rule or the Toy Rule:

Theorem 1.3.4. If the coefficient vectors are C-Lower Bounded for C = Ω(1), then there
is an algorithm, which when initialized with an estimate A0 that is δ-close to A∗ for δ =

O*
(

1/
√
k
)

, and given Õ (m)-samples per-step, converges at a geometric rate to A∗ until

the column-wise error is O
(
n−ω(1)

)
.
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While reminiscent of the “unbiased-update rule” inArora et al. (2015), our Projection
Rule has far superior sample complexity, requiring only Õ (m)-samples per step in the
noiseless setting to learn A∗ up to arbitrary inverse polynomial accuracy (in the presence
of noise, the sample complexity will grow to reflect the noise level).2

As an application of the anti-concentration framework introduced in this thesis, Chap-
ter 5 analyzes algorithms for learning a class of random non-negative matrix factorization
(NMF) instances that mimic the random NMF instances commonly used to benchmark
gradient descent heuristics. While the exact NMF problem is NP-Hard general, alternating
descent algorithms like the Multiplicative Updates Rule in Lee and Seung (2001) and Hi-
erarchical Alternating Least Squares in Cichocki et al. (2007) seem to perform surprisingly
well on certain randomly generated NMF instances Vavasis (2009).

Motivated by these experiments, we consider learning a Nonnegative Offset Incoherent
Dictionary Learning or “NOID”3 - an undercomplete matrix B∗ ∈ Rn×m which decomposes
as

B∗ = A∗ + vcT where A∗ is incoherent and c is nonnegative (3.12)

from samples y = B∗x, where the coefficient vectors x are sparse, entrywise nonnegative,
ρ-smooth, and satisfy the regularity assumptions laid out in Definition 5.1.5. Appealing to
standard results about the incoherence of random matrices with mean zero, i.i.d. entries
(see Proposition C.1.10, or Candès and Wakin (2008)), it is straightforward to verify that
random matrices with non-negative i.i.d. entries are NOIDs with high probability.

Theorem 5.1.3 demonstrates a reduction from NOID Learning to Semi-Nonnegative
Dictionary Learning (S-NDL), in which one learns an incoherent, undercomplete dictionary
from nonnegative sparse coefficient vectors. Leveraging the ρ-smoothness property, Theo-
rem 5.2.1 proves that Algorithm 8 learns sufficiently incoherent dictionaries in the S-NDL
setting up to arbitrary inverse polynomial error, once suitably initialized. We complement
this result with an initialization scheme borrowed from Arora et al. (2014), and hence Theo-
rem 5.2.3 establishes that there is a polynomial time algorithm to recover dictionaries in the
S-NDL setting under suitable sparsity restrictions and distributional assumptions, starting
with only random samples. Finally, by feeding our S-NDL algorithm into the reduction
from NOID Learning, we conclude with the following theorem:

Theorem 1.3.5 (Tractability of NOID Learning, Stated Roughly). Under reasonable spar-
sity restrictions and distributional assumptions, there is an algorithm which can learning a
NOID B∗ up to a Frobenius norm error of δ‖B∗‖F with run-time and sample complexity
on the order of poly(n, log(1/δ)).

Theorem 5.1.1 states the above result in more precise language.

2It was the author’s intention to also include guarantees for projection-based algorithms in the (C, ρ)-
smooth setting. However, the analysis turned out to be quite involved, difficult to follow, and only reduces
the systematic error in the Neural Rule by a factor of roughly

√
k/n. If the reader of this present work

is curious about this sort of analysis, he or she may contact the author for a roughly edited sketch of that
result.

3See Definition 5.1.3
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Chapter 2

Approximate Gradient Descent for
Dictionary Learning

2.1 Approximate Gradient Descent

In this section, we describe a generic framework for learning the optimal solutions to possibly
non-convex problems, introduced independently in both Arora et al. (2015) and Candes et al.
(2014). This section is mostly expository in flavor, and can be skimmed once the reader is
comfortable with the main results and definitions.

As a motivating example, suppose that we wish to minimize a known convex function
f(·) over a convex set K, such that arg minz∈K f(z) = z∗. If we can evaluate the gradients
g(·) := ∇f(·), one of the most popular, and perhaps the simplest minimization strategies is
just projected gradient descent: start with an initial guess z0, and update each successive
iterate zs+1 ← ProjK(zs − ηsg(zs)) for appropriate step sizes ηs.

2.1.1 Review From Convex Analysis

Let’s now assume further that f is β-smooth and α-strongly convex: that is, f(x)− α
2x

2 is
convex, f is continuously differentiable, and, given two points x, y ∈ Rn, ‖∇f(x)−∇f(y)‖ ≤
β‖x − y‖. Then, a standard lemma in convex optimization shows that, for any z ∈ R the
gradient of f(z) points strongly in the direction of the optimal z∗

Lemma 2.1.1. Bubeck (2014) Let f be a β-smooth, α-strongly convex function. Then

〈∇f(z), z − z∗〉 ≥ α

2
‖∇f(z)‖2 +

1

2β
‖∇f(z)‖2 (1.1)

Remark. The archetypical 1-strongly convex, 1-smooth function is just f(z) = 1
2‖z − z

∗‖2.
We see that ∇f(z) = 2(z−z∗), so the gradient points exactly in the direction of the optimal
solution. In this case, it is trivial to verify that Lemma 2.1.1 holds with α = β = 1.

More generally, if f is twice continuously differentiable, then f is α-strongly convex and
β-smooth as long as αI � ∇2f � βI. By taking a Taylor Expansion, we can think of f as
locally resembling the sum of a linear function and well-conditioned quadratic form. Thus,
up to a linear term, we can think of the strong convexity and smoothness properties of f as

15
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measuring how closely f resembles a (possibly scaled) Euclidean distance. Indeed, if α = β,
then integrating twice shows that f(z) = α

2 ‖z‖
2.

From Lemma 2.1.1, it is easy to prove the following guarantee for gradient descent:

Proposition 2.1.2 (Theorem 3.6 in Bubeck (2014)). Let η = 1
β . Then projected gradient

descent algorithm zs+1 ← ProjK(zs − ηg(zs)) satisfies

‖zs − z∗‖2 ≤ (1− α

β
)s‖z0 − z∗‖2 (1.2)

Proof. Using Lemma 2.1.1 and the facts that Euclidean distances are non-increasing under
projections onto convex sets, we have

‖zs − z∗‖2 = ‖ProjK(zs−1 − 1

β
∇(zs−1))− z∗‖2

≤ ‖zs−1 − 1

β
∇(zs−1)− z∗‖2

≤ ‖zs−1 − z∗‖2 − 2

β
∇f(zs−1)T (zs−1 − z∗) +

1

β2
‖∇f(zs−1)‖

≤ (1− α

β
)‖zs−1 − z∗‖2

≤ (1− α

β
)s‖z0 − z∗‖2

(1.3)

2.1.2 Generalizing Gradient Descent

Upon examining the proof of Proposition 2.1.2, we notice that we never appealed to the
convexity properties of f directly. Instead, we simply require that the gradient of f at
each iterate zs pointed roughly in the same direction as zs − z∗. Thus, if our actual goal
is to compute an accurate estimate of some vector z∗ over a convex set K, we can think of
running gradient descent a smooth and strongly convex function f as a convenient proxy
for minimizing the Euclidean Distance towards z∗ (see Remark 2.1.1 for further discussion).

However, the proof of Proposition 2.1.2 suggests that all we really need is to run gradient
descent with gradient vectors which satisfy a similar relation as the one in Lemma 2.1.1.
We generalize this relation here

Definition 2.1.1 (Definition 5 in Arora et al. (2015)). Given a gradient descent iterate zs,
we say that vector gs is (α, β, ε)-correlated with a desired solution z∗ if

〈gs, zs − z∗〉 ≥ α‖zs − z∗‖2 + β‖gs‖2 − εs (1.4)

We say that a random vector gs is (α, β, ε)-correlated-whp with a desired solution z∗ if
Equation 1.4 holds with probability 1− n−ω(1),

Remark. Note that if gs is (α, β, ε)-correlated with a desired solution z∗, then it is also
(α′, β′, ε′s)-well correlated for all α′ ≤ α, β′ ≤ β, and ε′s ≥ εs
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It is easy to see from Lemma 2.1.1 that the gradients of ∇f(zs) are (α/2, 1
2β , 0)-correlated

with z∗ = arg minz∈K f(z) if f is β-smooth, α-strongly convex.
But the power of this definition lies in versatility. Indeed, the vectors gs need not be

the gradients of any convex function, and the ε paramater allows us to analyze gradient
descent schemes in a framework that both tolerates, and makes precise the dependence of
the algorithm on a systemic error ε. Specifically, we have the following theorem:

Theorem 2.1.3 (Adaptation of Theorems 6 and 40 in Arora et al. (2015)). Let B be any
convex set containing z∗. Suppose that for steps s = 1, . . . , T , the vector gs is (α, β, εs)-
correlated with a desired solution z∗. Then given an initial vector z0, η ∈ [0, 2β], and update
rule zs+1 = ProjB(zs − ηgs), it holds that

‖zs+1 − z∗‖2 ≤ (1− 2αη)‖zs − z∗‖2 + 2ηεs (1.5)

for all s ∈ [T ]. Consequently, for all s ∈ [T ]

‖zs − z∗‖2 ≤ (1− 2αη)s‖z0 − z∗‖2 +
2

α
max
s∈[T ]

εs (1.6)

In particular, if εs ≤ α · O*
(
(1− 2αη)s‖z0 − z∗‖2

)
+ ε, then the updates converge geomet-

rically to z∗ with systemic error ε/α in the sense that

‖zs − z∗‖2 ≤ (1− αη)s‖z0 − z∗‖2 +
ε

α
(1.7)

If the vector gs is (α, β, εs)-correlated-whp with a desired solution z∗, then as long T ≤
poly(n), Equation 1.5 and Equation 1.6 hold simultaneously for all s ∈ [T ] with very high
probability. Furthermore, if εs ≤ α ·O*

(
(1− αη)s‖z0 − z∗‖2

)
+ ε with high probability, then

Equation 1.7 holds with high probability as well.

A More Intuitive Characterization of Well-Correlatedness 1

Establishing that that an arbitrary vector gs is well-correlated with a solution z∗ might
seem rather opaque and unintuitive. Forturnately, the following lemma provides a very
easy-to-grasp sufficient condition for well-correlatedness:

Lemma 2.1.4 (Lemma 15 in Arora et al. (2015)). Suppose that gs = α(zs−z∗)+vs, where
‖vs‖ ≤ α

4 ‖z
s − z∗‖+ ζ, then gsi is (α/4, 1/25α, 4ζ2/α)-correlated with z∗.

Hence, if gs satisfies the decomposition specified in Lemma 2.1.4 and the step size η is
chosen appropriately, then Theorem 2.1.3 ensures that

‖zs − z∗‖2 ≤ (1− Ω(1))s‖z0 − z∗‖2 + O
(
ζ2/α2

)
(1.8)

In other words, if gs/α points mostly in the direction of zs − z∗ - up to a systematic error
of ε := ζ/α - then the iterates zs will converge geometrically to z∗ up to a systematic error
of ε.

1This section was recently added to the present work after the oral defense, in order to make the approx-
imate coordinate descent exposition more clear.
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2.2 A Meta-Algorithm for Dictionary Learning

2.2.1 Review of Approach in Arora et al. (2015)

The high-level exposition of the sparse coding algorithms in Arora et al. (2015) draw analo-
gies between approximate gradient descent in the dictionary learning problem, stochastic
gradient descent and alternating minimization. Briefly, they imagine that that given N
samples y(1) = A∗x(1), . . . , y(N) = A∗x(N), and attempt to compute the dictionary A which
minimizes Equation 1.5.

If X∗ is the matrix whose columns are the true sparse signals x(1), . . . , x(N), then com-
puting A∗ amounts to optimizing F (A,X∗). Drawing analogies to stochastic gradient de-
scent, casts the dictionary learning problem as the optimization of an convex function
F (A,X∗), as an unkown convex function of A. Their strategy is to alternate between
moving along gradients of F (A, X̂) with respect to A, and then refining estimates of the
latent sparse signals by updating X̂. The hope is that, as X̂ gets closer to X∗, the gra-
dients ∇AF (A, X̂) will begin to resemble ∇AF (A,X∗) more closely. This strategy moti-
vates their Decode-and-Update alternating minimization approach for dictionary learning:

Algorithm 1: Alternating Minimization Framework in Arora et al. (2015)

Initialize A0;
for s = 1, 2, . . . , T do

Decode: for i = 1, 2, . . . , p, do

Find an approximate sparse solution to Asx̂(i) = y(i) ;

Set X̂s to be the matrix whose i-th columns is As ;

Update: As+1 = As − ηgs, where gs = ∇AF (As, X̂s)

2.2.2 A Meta-Algorithm Without Decoding

In this work, we still follow Arora et al. (2015) by learning A∗ by simultaneously learning
m vectors A∗1, . . . , A

∗
m in Rn by approximate gradient descent. However, we bypass both

the putative objective function and the analogy to alternating minimization entirely, and
simply focus on designing sample dependent functions f(y;As) such

gsi ≈ E[f(y;As)] ≈ α(A∗i −Ai) (2.9)

for some α > 0. In light of Lemma 2.1.4, the negative of such gradients gsi will be correlated
with A∗i , and so the updates As+1

i = Asi +ηgsi will converge geometrically to A∗i , up to some
systematic error. We remark here that it is crucial to add gsi is Asi ; Arora et al. (2015) in
fact commits a sign error by subtracting gsi from Asi .

Though this exposition foregoes making connections to the convex optimization, encoding-
decoding, alternating minimization, we believe it has three main advantages:

1. It does not require that we explicitly decode the coefficient vectors. This enables us
to consider wider variety of gradient estimation procedures which do not have a clear
interspects as the gradient of the objective function in Equation 1.5

2. It renders the analytical techniques in this paper more transparent.

Page 18 of 99



2.2. A META-ALGORITHM FOR DICTIONARY LEARNING Max Simchowitz

3. It reinforces the generality of the approximate gradient descent framework for non-
convex optimization and parameter estimation.

To compute such gradients, we introduce the sign-thresholding operation and the pro-
jector matrix. We can think of sign-thresholding as a sort of discretized decoding algorithm:
Given a sample y = A∗x, threshold τ , and estimate A of the true dictionary A∗, the sign-
thresholding operation computes estimates of the sign of the sparse representation x∗ by
regarding all coordinates xi for which |ATi y| ≤ τ as zero. Sign-thresholding is defined
formally in Algorithm 2.

Algorithm 2: SignThreshold (A, y, τ)

Input: Dictionary A, Thresholds τ , Sample Sizes y
Initialize ˆsign(x)← 0 ∈ Rm, Ŝ ← ∅ for i = 1, 2, . . . ,m do

ˆsign(x)i ← signτ (〈Ai, y〉)
Ŝ ← Ŝ ∪ 1(|〈Ai, y〉| > τ)

Return (Ŝ, ˆsign(x))

We define a projector matrix M as any collection of m matrix valued functions Mi :
Rn×m × 2[m] → Rn×m. Given an estimate A of the dictionary A∗, and a sample y with
estimated support Ŝ, we want to choose M such that Mi(Ŝ, A) to return a matrix for which

Mi(Ŝ, A) ≈ A∗i −Ai (2.10)

Indeed, if ‖A∗i ‖ = ‖Ai‖ = 1, then the projection onto the orthogonal complement of Ai
is precisely I −AiATi , and satisfies(

I −AiATi
)
A∗i = A∗i −

(
ATi A

∗
i

)
Ai = A∗i −Ai +O

(
‖Ai −A∗i ‖2

)
In general, we cannot guarantee that ‖Ai‖ = 1 and so we will not pick Mi to be an exact
orthogonal projection; this is rememdied in the Toy Rule and Neural Update Rules described
in the following section. However, we still want to preserve the intutition that M should
roughly resemble a projection; hence the title “projector matrix”.

With these definitions taken care of, we now formally define a Meta-Algorithm for
Dictionary Learning that generalizes both the Neural Update Rule and the Unbiased Update
Rule presented in Arora et al. (2015):

Algorithm 3: Meta-Algorithm (M)

Input: Projector Matrix M , Initial estimate A0, , step size η, Number of Iterations
T , Thresholds τ s, Sample Sizes p

for s = 1, 2, . . . , T do

Estimate Supports: (Ŝ(j), σ̂(j))← SignTreshold(y(j), As, τ s) for j = 1, 2, . . . , p

Update: As+1
i = Asi + ηĝsi where ĝsi = 1

p

∑p
j=1Mi(Ŝ

(j), A)y(j) · σ̂(j)
i

In section A.1.1 in the appendix, we establish that our Meta-Algorithm strictly gener-
alizes the neural update rule in Arora et al. (2015). Without diving too far into the details
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of any particular instantiation just quite yet, we provide some basic intuition for why the
Meta-Algorithm should work, at least when we can ensure that signτ ((ATi y) = sign(xi) with
high probability. To this end, let’s compute the expectation of gsi . To lighten the notation
a bit, we temporarily drop the dependence on the superscripts s:

Lemma 2.2.1. Let y = A∗x, and suppose that the sign thresholding returns a support
estimate Ŝ = S and sign estimate signτ ((ATi y) = sign(xi) with probability 1−n−ω(1). Then,
for projector matrix Mi = Mi(Ŝ) for which ‖M‖ = O(m) almost surely, then

E[Mi(Ŝ, A)ysignτ (ATi y)] = piqiE[Mi(S)
∣∣i ∈ S]A∗i + γ (2.11)

Proof. Given a y = A∗x. By assumption the random variablesMi(S)sign(xi) andMi(Ŝ)signτ (ATi y)]
differ with probability 1− n−ω(1). With our γ-notation, we can write

E[Mi(Ŝ)ysignτ (ATi y)] = E[Mi(S)ysign(xi)]± γ
= qi · E[Mi(S)ysign(xi)

∣∣i ∈ S]± γ

Next,

E[Mi(S)ysign(xi)
∣∣i ∈ S] = E[Mi(S)A∗ixisign(xi)

∣∣i ∈ S]

+ E[Mi(S)
∑
j 6=i∈S

A∗ixjsign(xi)
∣∣i ∈ S]

where the second term has mean zero since E[xjsign(xi)] = 0. Consequently,

E[Mi(Ŝ)ysignτ (ATi y)] = E[Mi(S)A∗ixisign(xi)]± γ
= pi · E[Mi(S)|xi|

∣∣i ∈ S]A∗i ± γ
= Pr(i ∈ S) · E[|xi|

∣∣i ∈ S] · E[Mi(S)
∣∣i ∈ S]A∗i ± γ

= piqiE[Mi(S)
∣∣i ∈ S]A∗i ± γ

where the last step makes use of Assumption 3 that E[|xi|
∣∣i ∈ S] = pi for any set S.

In other words, if we can estimate Ŝ and sign(xi) accurately with very high probability, the
gradients gi in the Meta Algorithm are roughly proportional E[Mi(S)]A∗i . Hence, if we can
ensure that Mi(S)A∗i ≈ A∗i −Ai, then we should expect a gradient based algorithm with a
suitable step size to converge reasonably well to A∗i .
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Chapter 3

Update Rules for (C, ρ)-Smooth
Samples

3.1 Introduction

In this section, we present and analyze two approximate gradient descent algorithms for
sparse coding in the (C, ρ)-smooth setting. After explaining precisely the difficulties that
the Meta-Algorithm from Section 3 encounters when the C-lower boundedness conditioned
is removed, we will devote the remainder of the section to demonstrating how to leverage
(C, ρ)-smoothness assumption in its place. To facilitate clarity, we proceed in order of
increasing complexity of analysis.

In Section 3.1.3,we outlike an analytical framework which will essentially automate the
convergence analyses of the update rules in the remainded of the chapter. Subsequently,
section 3.1.4, we establish a few high probability properties of the thresholding operation
that remain true for general (C, ρ)-smooth distributions.

Following these more general remarks, we analyze a variant of the Meta-Algorithm we
call the “Toy Rule”, where the projector matrix is choosen to be Mi = I − 1

‖Ai‖AiA
T
i

deterministically. The precise statement of its convergence is given in Theorem 3.2.1.
Just as imperfect sign thresholding can introduce correlations into our update rule,

imperfect estimation of Ŝ can cause the projector matrix M(Ŝ) to correlate with the entries
of x

∣∣supp(x). For an arbitrary matrix valued function M(·) : 2[m] → Rn, there is very
little we can say about how these correlations will affect our update rule. Hence, analyzing
an update with a deterministic matrix will prove much more straightforward, and serve
to crystallize the key innovations in the present works analysis. Finally, we will analyze
the expectated gradients under more sophisticated algorithms that afford stronger sample
complexity guarantees when k is very small. In particular, we describe rule similar to the
Neural Rule in Arora et al. (2015) whose convergence is described by Theorem 3.2.2

Throughout the chapter, we will take Assumptions 1, 2, 3, and 4 for granted. We also
impose the following additional assumptions:

Assumption 5. There is a C = Ω(1) for which x are (C, ρ)-smoothly distributed and
E[Pr(|xi| > C)

∣∣i ∈ S] ≥ 1/2. We assume that ρ = Ω(1). Furthermore, we require that

ρ ≤
√
k and ρk/

√
n = o(1).
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3.1. INTRODUCTION Max Simchowitz

Before continuiting, we also establish some further notation:

3.1.1 Further Notation

Conditional Expectation

First of all, we will often need to take expectations and probabilities conditioned on the
support S of x. Hence, we will denote

Ei[·] = Ei[
∣∣i ∈ supp(x)] (1.1)

and similarly Ei,j [·] = Ei[·
∣∣i, j ∈ supp(x)] and Ei,j,r[·] = Ei[·

∣∣i, j, r ∈ supp(x)]. We will
define the conditional probability operators Pri,Pri,j ,Pri,j,r similarly. We will also define

ES = E[·
∣∣supp(x) = S] (1.2)

To avoid confusion, the notation ES will only refer to the expecation conditioned on the
support. If we want to take the expectation of all supports of x, we will write

ES:S⊂[m][·] =
∑
S⊂[m]

Pr(supp(x) = S)E[·
∣∣supp(x) = S] =

∑
S⊂[m]

Pr(supp(x) = S)ES [·] (1.3)

More generally, when we want to take the expecation of all sets with a property P, we write

ES:P(S) =
∑
S:P(S)

Pr(supp(x) = S|P(supp(x)))E[·
∣∣supp(x) = S] (1.4)

=
∑
S:P(S)

Pr(supp(x) = S|P(supp(x)))ES [·] (1.5)

For example, we have

ES:i∈S [·] =
∑
S:i∈S

Pri(S)ES [·] = Ei[·] (1.6)

Gradient Notation

To lighten notation, we will drop the dependence on the iterate set As throughout the
section. In keeping with this notation, we fix a step threshold τ > 0 and define exact
gradients

gi := E[Miy signτ (ATi y)] = E[ĝi] (1.7)

where ĝi is as given in Algorithm 3. We assume that A is (δ, 2)-near to A∗, where δ =
O∗(1/ log n), but may be smaller when specified. Throughout the section, we will also let
ni = ‖Ai‖−1 (think n for “normalize”). Because ‖Ai − A∗i ‖ ≤ δ = o(1), we have that
ni = 1± 2δ. Finally, we will define the matrix Xi by

Xi := 1− niAiATi (1.8)

The key property of Xi is summarized in the following claim:
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Claim 3.1.1.

XiA
∗
i = A∗i −Ai +O(‖A∗i −Ai‖2)Ai (1.9)

Proof. We have

XiA
∗
i = (I − 1

‖Ai‖
AiA

T
i )A∗i = A∗i − 〈

Ai
‖Ai‖

, A∗i 〉Ai

Now, u := Ai
‖Ai‖ and v := A∗i are unit vectors, so 〈u, v〉 = 1 + ‖u− v‖2. Moreover, ‖u− v‖ =

‖A∗i −
Ai
‖Ai‖‖ = O(‖A∗i −Ai‖). Hence, XiA

∗
i = A∗i −Ai +O(‖Ai −A∗i ‖2)

Indexing Notation

For a sample y = A∗x, we will let y−i := y − A∗ixi. Note that y−i does not refer to the
vector consisting of all entries of y except the i-th, which was the notation we established in
the Section 1.2.1. To avoid ambiguity, the notation y−i will always denote y−i = y −A∗ixi
for the vectors y, and the −i subscript will be interpreted as in the introduction for all other
vector and matrix valued objects in the work (e.g, x, A∗, A, etc..).

3.1.2 Pitfalls for the Meta-Algorithm under Imperfect Sign Thresholding

The key hurdle to overcome for (C, ρ)-smoothly distributed vectors is that there is no clear
way to guarantee correct sign thresholding with very high probability. Following the Meta-
Algorithm, suppose that, given an estimate A of A∗ and sample y = Ax, we estimate
Ŝ := {i : |ATi y| ≥ τ} and sign(xi) = signτ (ATi y). Then

ATi y = ATi A
∗
ixi +

∑
j∈S−{i}

ATi A
∗
j

= ATi A
∗
ixi +

∑
j∈S−{i}

(Ai −A∗i )TA∗jxj +
∑

j∈S−{i}

A∗i
TA∗jxj

= ATi A
∗
ixi + (Ai −A∗i )T

∑
j∈S−{i}

A∗jxj +
∑

j∈S−{i}

A∗i
TA∗jxj

(1.10)

The first term in in the above sum is Θ(xi) (recall that ATi A
∗
i = 1 ± o(1)), but the ex-

amining the proof of Lemma 3.1.4 shows that the second term can contribute as much as

Ω̃
(
δ +
√
kµ/
√
n
)

, with non-trivial probability. Thus, if x is not C-lower bounded, then

whenever we happen to draw a coefficient vector x for which xi = o
(
δ +
√
kµ/
√
n
)

, the

sign of ATi y will be often be closer to the sign of ATi (y −A∗ixi) than to xi.
The challenge here isn’t so much that support estimation and sign thresholding are

noisy. Indeed, suppose for the sake of argument that Ŝ could be estimated perfectly, but
that ˆsign(xi) = sign(xi) + ξ, where ξ is some noise depending on xi but no other entries of
x. Then, since E[ξxj ] = 0, it would be straightforward to adapt the proof of Lemma 2.2.1
to show that, still,

E[Mi(Ŝ) ˆsign(xi)y] ∝ E[Mi(S)]A∗i + γ (1.11)
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Rather, the obstacle is that innacurate sign thresholding causes the entries of x (given
S = supp(x)) to correlate. In particular, for a set threshold τ , suppose that we happen to

draw a sample y = Ax for which xi = τ ± Ω̃
(
δ +
√
kµ/
√
n
)

. Then, whether |ATi y| makes

it over the threshold τ or not depends very heaviliy on ATi (y −A∗ixi).

3.1.3 Automating the Analysis of the Meta-Algorithm

Because we are analyzing many simultaneous update rules, we find expedient to automate
much of our analysis.

Definition 3.1.1 ((α, δ, ζ)-true and α-nearness-well-conditioned). For a set of gradient
vectors gi, let g be the matrix whose columns are gi. We say that that the gradient gi is
(αi, δ, ζ)-true if there is a positive αi = Θ(1) for which

gi / qi = αi(A
∗
i −A) + v (1.12)

where ‖v‖ ≤ ζ + O* (αi‖A∗i −A‖) + o (δ). We say g is α-nearness well-conditioned if we
can write

g diag(qi)
−1 = (A∗ −A)diag(αi) +A diag(βi) + G̃ (1.13)

where αi = Ω (1) are are positive, βi = o (1), and ‖G̃‖ = o (‖A∗‖).

We first state two trivial consequences of the above definition:

Lemma 3.1.2. If g is nearness well conditioned, then g ± o(‖A∗‖) is also nearness well
conditioned. Furthermore, if gi is (αi, δ, ζ)-true, then cgi is (cαi, δ, ζ)-true for c = Θ (1).

We can now state the theorem which automates the convergence analysis of approximate
gradient descent for true and nearness-well-conditioned gradients:

Theorem 3.1.3 (Automated Analysis for Gradient Descent). Let A0 be (δ0, 2) near to A∗,
and let (As, gs) be a sequence of iterates and gradient vectors for s ∈ {1, . . . , T} such that

1. As+1 = As + gs · diag(ηsi )

2. Whenever A∗ is (δs, 2)-near to A∗, gsi is (αsi , δ
s, ζ)-true and gs is αs-nearness-well-

conditioned.

3. αmin = mini,s α
s
i and αmax = maxi,s α

s
i are both Θ(1)

Then, as long as the step sizes satisfy

η0 ≤
ηsi
qi
≤ 2

25αmax
for all i ∈ [m], s ∈ {1, . . . , T} (1.14)

It holds that for each s ∈ {1, . . . , T} that As is (δ0, 2)-near to A∗ and

‖Asi −A∗‖2 ≤ (1− αminη0/4)s‖+ 64ζ2/α2
min (1.15)
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In fact, the theorem holds in the more general setting when we only assume that the gs are
(αsi , δ

s + es, ε)-true, whenever

e2
s ≤ (1− αminη0/4)sδ2

0 + 64ζ2/α2
min (1.16)

If the gsi and gs are true and near with high probability, and if the and ηsi satisfy Equa-
tion 1.14 with high probability, and T = poly(n), then the conclusions of the theorem re-
main true with high probability. If gsi is (αsi , δ

s, ε)-true whenever As is simply δs-close to A∗

(possibly only with high probability), then Equation 1.15 holds as well (possibly again with
high probability).

Remark. We made no attempt to be tight with constants in the above proof of the above
theorem. Constants can be improved substantially if we require more strongly that the
vectors gsi be (αi, 0, ζ)-true. Note also that the previous Theorem gives guarantees for
choosing appropriate gradient descent step sizes.

3.1.4 Sign and Support Recovery

While section 3.1.2 highlighted some of the difficulties of thresholding sparse representations
which are not C lower bounded, we will still be able to establish a few very useful properties
of the sign-thresholding operation for (C, ρ)-smooth distributions.

Definition 3.1.2. Suppose that A is δ-close to A∗. We say the threshold τ is δ-suitable if
(δ +

√
kµ/
√
n) log n ≤ τ , and that τ is (δ, C)-suitable if in addition τ ≥ C/2, where C is

given in Assumption 5. We also define the estimated support

Ŝ := {i : |signτ (ATi y)| ≥ τ} (1.17)

The following Lemma shows that Ŝ ⊂ S with high probability, and that signτ (ATi y)accurately
indentifies the signs of xi for all i ∈ Ŝ:

Lemma 3.1.4. If τ is (δ, C)-suitable, then with probability 1− n−ω(1),

1. Ŝ ⊂ S

2. For all i ∈ Ŝ we have signτ (ATi xi) = sign(xi)

3. If |xi| ≥ C, then signτ (ATi y) = sign(xi).

In other words, the only errors that the sign thresholding makes (whp) are in possibly mis-
taking the case |xi| ≤ C/2 for the case i /∈ S.

As a consequence, we can compute gsi by conditioning on the event i ∈ S. To this end, we
define the conditional gradient

Gi := Ei[Miysignτ (ATi y)] (1.18)

and state the following corrolary of Lemma 3.1.4.

Corollary (Reduction to Conditional Gradients). Suppose that τ is (δ, C)-suitable. Then gi
is (αi, δ, ζ+n−ω(1))-true if and only if Gi satisfies the decomposition given in Equation 1.12.
Similarly, g is nearness well conditioned if and only if G satisfies the right hand side of
Equation 1.13.
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Proof.

p−1gi =
1

pi
E[Miysignτ (ATi y)1(i ∈ S)] +

1

pi
E[Miysignτ (ATi y)1(i /∈ S)] (1.19)

The first term on the right is precisely Gi, and the second is O(γ) since signτ (ATi y)1(i /∈
S) = 0 whp by Lemma 3.1.4

3.2 Update Rules for (C, ρ)-Smooth Sparse Coding

In this section, we establish finite sample convergence guarantees for both the Toy Rule and
the Neural Rule. For the Toy Rule, we have

Theorem 3.2.1 (Convergence of the Toy Rule). Suppose that A∗ is (δ, 2)-near to A∗,
that η = Θ∗(m/k), and that Assumptions 1-5 hold. Then if the update step in the Meta-
Algorithm with Mi = Xi uses p = Ω̃(mt) fresh samples at each iteration, we have

‖Asi −A∗i ‖2 ≤ (1− λ)s‖A0
i −A∗‖2i + O

(
1/t+ ρ2k2/n2

)
(2.20)

for some λ ∈ (0, 1/2), and t = Ωk, and for all s = 1, 2, . . . , T . In particular, A∗ converges
geometrically until the column-wise error is O(1/

√
t+ ρk/n).

and, for the Neural Rule,

Theorem 3.2.2 (Convergence of the Neural Rule). Suppose that A∗ is (δ, 2)-near to A∗

for δ = O*
(
(ρ log nk1/4)−1

)
, the threshold τ = Θ

(
(ρk1/4)−1

)
, the step size η = Θ∗(m/k),

and Assumptions 1-5 hold. Then if the update step in the Algorithm with Mi(A, Ŝ) =
I −

∑
j∈Ŝ njAjA

T
j uses p = Ω̃(mk2) fresh samples at each iteration, we have

‖Asi −A∗i ‖2 ≤ (1− λ)s‖A0
i −A∗‖2i + O

(
ρ2k2/n2 +

µ2

n

)
(2.21)

for some λ ∈ (0, 1/2), and for any s = 1, 2, . . . , T . In particular, A∗ converges geometrically
until the column-wise error is O (ρk/n+ µ/

√
n).

In this section, we prove that the expected gradients gsi = E[ĝsi ] are (Θ(1), 0, k/n)-true,
and that the gradient matrices are Θ(1)-well conditioned. While Theorem 3.1.3 renders
these statements are sufficient for convergence in the infinite-sample regime, the complete
proofs fo Theorems 3.2.1 and 3.2.2 will have to wait till a thorough sample complexity analy-
sis in the Appendix, section A.2. We remark that the sample complexity of the Neural Rule
suffers by a factor of k when we remove the C-lower boundedness assumption (performance
of the Toy Rule, however, does not increase under C-lower bounded conditions).

3.2.1 Analysis of the Toy Rule

We will devote this section to the proof of the following theorem:
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Theorem 3.2.3. Suppose that A is (2, δ)-near to A∗ and τ is (δ, C)-suitable. Then, given
then the toy update rule

gi := E[Xiysignτ (ATi y)] (2.22)

gi are (ai, 0,O (ρk/n))-true and g is a-nearness well conditioned, where

ai := E[xisignτ (ATi y)
∣∣i ∈ S] = Θ(1) (2.23)

Recalling Theorem 3.1.3, we have the immediate corrolary

Theorem 3.2.4. Suppose that A∗ is (δ, 2)-near to A∗, that the threshold τ = Θ∗(C), the step
size η = Θ∗(m/k), and Assumptions 1-5 hold. Then, if update step in the Meta Algorithm
uses the projector matrix Mi = Xi and an infinite number of samples per iteration, we have

‖Asi −A∗i ‖2 ≤ (1− λ)s‖A0
i −A∗‖2i + O

(
ρ2k2/n2

)
(2.24)

for some λ ∈ (0, 1/2), and for any s = 1, 2, . . . , T . In particular, A∗ converges geometrically
until the column-wise error is O (ρk/n).

Because of its relative simplicity, the analysis of the toy algorithm will help elucidate the key
techniques necessary for adapting gradient descent algorithms to the (C, ρ)-smooth case.
The first step is a straightforward computation of Gi:

Claim 3.2.5.

Gi := Ei[Xiysignτ (ATi Y )] = αi(A
∗
i −Ai +O(‖A∗i −Ai‖2) + Ei (2.25)

where αi := E[xisignτ (ATi y)
∣∣i ∈ S] and

Ei := MiA
∗
−ivec(Pr(j ∈ S|i ∈ S) · E[xjsignτ (ATi y)

∣∣i, j ∈ S]) (2.26)

Proof. Since Mi = Xi deterministically, we may write

E[Xiy · signτ (ATi y)
∣∣i ∈ S] = XiE[

∑
j∈S

A∗jxj · signτ (ATi y)
∣∣i ∈ S]

+XiA
∗
iE[xisignτ (ATi y) ·

∣∣i ∈ S]

(2.27)

The first term is precisely Ei. Moreover, by the definition of αi and Claim 3.1.1,

XiA
∗
iE[xisignτ (ATi y) ·

∣∣i ∈ S] = aiXiA
∗
i = ai(A

∗
i −Ai) +O(‖A∗i −Ai‖2)Ai (2.28)

It is rather straightforward to show αi = Ω(1), so we will defer that argument to the end
of the section. The more central innovation how we control Ei. From Claim 3.2.5, we see
that bounding Ei amounts to controlling the terms

ξi,j := E[xjsignτ (ATi y)
∣∣i, j ∈ S]) (2.29)

The ξi,j are not a coincidental artificact of our algorithm or method of analysis. Instead,
the ξi,j capture how much influence xj exerts on the sign on the estimated sign of xi. In
the C-lower bounded case, we could ensure that ξi,j = n−ω(1) by thresholding at τ = C/2.
With (C, ρ) boundedness, the best we have is the following:
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Proposition 3.2.6. Let ξi,j := E[xjsignτ (ATi y)
∣∣i, j ∈ S]). Then,

ξi,j . ρ|ATi A∗j |+ γ (2.30)

Equivalently, there are real numbers si,j = O(1) for which

ξi,j = ρsi,jA
∗
j
TAi + γ (2.31)

We refer to the property in Proposition 3.2.6 as a form of non-correlation, which follows
from the anti-concentration assumption encoded in (C, ρ)-smoothness. The moral intuition
is roughly:

If X1, . . . , Xn are ρ-smooth independent (or weakly dependent) random variables, then
the random variable f(X1, . . . , Xn) is roughly independent of Xi provided that f(x1, . . . , xn)
is not too sensitive to xi, but is sufficiently sensitive to at least one of its coordinates

Proof of Proposition 3.2.6. Let’s first show that if the proposition is true for ρ smooth
distributions, then it holds for (C, ρ)-smooth distributions.

Reduction to ρ-Smooth-Distributions

We have that

ξi,j = Ei,j [xjsignτ (ATi y)1(xi ∈ [−C,C])] + Ei,j [xjsignτ (ATi y)1(xi ∈ [−C,C])1(|xi| > C)]

= Pr(xi ∈ [−C,C])Ei,j [xjsignτ (ATi y)
∣∣xi ∈ [−C,C]]

+ Pr(|xi| > C)Ei,j [xjsignτ (ATi y)
∣∣|xi| > C]

Note that whenever |xi| > C, then signτ (ATi y) = sign(xi) whp by Lemma 3.1.4. Hence, we
have

Pr(|xi| > C)Ei,j [xjsignτ (ATi y)
∣∣|xi| > C)] = γ + Pr(|xi| > C)Ei,j [xjsign(xi)

∣∣|xi| > C)]

= γ + Ei,j [xjsign(xi)1(|xi| > C)]

= γ

where E[sign(xi)1(|xi| > C)] = 0 follows from the fact that xi is symmetrically distributed,
and xi ⊥ xj . Letting x̃i = xi

∣∣xi ∈ [−C,C], and ỹ = y
∣∣xi ∈ [−C,C], we have

ξi,j = γ + Pr(xi ∈ [−C,C])Ei,j [xjsignτ (ATi ỹ)] (2.32)

Now, note that x̃i is ρ
Pr(xi∈[−C,C]) smooth, since for S ⊂ [−C,C]

Pr(x̃i ∈ S) =
Pr(xi ∈ S)

Pr(xi ∈ [−C,C])
≤ ρ vol(S)

Pr(xi ∈ [−C,C])
(2.33)

Moreover x̃i satisfies the same key distributional assumptions as xi (independence from the
other xj ’s, symmetrically distributed, etc.), so if the current proposition holds for the ρ
smooth case, then

ξi,j = γ + Pr(xi ∈ [−C,C])Ei,j [xjsignτ (ATi ỹ)]

= γ +O(Pr(xi ∈ [−C,C])
ρ

Pr(xi ∈ [−C,C])
|ATi A∗j |)

= γ +O(ρ|ATi A∗j |)
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Proof for ρ-Smooth Distributions

If xj is ρ-smooth, then we have

E[xjsignτ (ATi y)
∣∣i, j ∈ S]) = E[xjsignτ (ATi

∑
r 6=j

A∗rxr)
∣∣i, j ∈ S])

+ E[xj

signτ (ATi
∑
r∈S

A∗rxr)− signτ (ATi
∑
r 6=j

A∗rxr)

∣∣i, j ∈ S])

By the independence of xj and {xr}r 6=j , we have E[xjsignτ (ATi
∑

r 6=j A
∗
rxr)

∣∣i, j ∈ S]) = 0.
It therefore suffices to control the term on the second line, for which we note that:

|E[xjsignτ (ATi y)
∣∣i, j ∈ S])| = |E[xj(signτ (ATi

∑
r 6=j

A∗rxr)− signτ (ATi
∑
r∈S

A∗rxr))
∣∣i, j ∈ S])|

≤ E[|xj | · |signτ (ATi
∑
r∈S

A∗rxr)− signτ (ATi
∑
r 6=j

A∗rxr)|S])|

≤ sup
S:S⊃{i,j}

E[|xj | · |signτ (ATi
∑
r∈S

A∗rxr)− signτ (ATi
∑
r∈S

A∗rxr)|S])|

≤ E[|xj ||signτ (ATi
∑
r 6=j

A∗rxr)− signτ (ATi
∑
r∈S∗

A∗rxr)|S∗])|

where S∗ is the set that attains the supremum in the above display. Without loss of
generality, we may relabel the indices so that S∗ is supported on the first k indices of
m, and that i = 1 and j = 2, and the constants ar := AT1 A

∗
r and the random variables

Zr = xr
∣∣S∗. Because we are shifting indices around, let’s remember to keep in mind that

a2 = ATi A
∗
j in our original indexing shcheme. Switching notation, we write

|E[xjsignτ (ATi y)
∣∣i, j ∈ S])| ≤ E[xj |signτ (

∑
r 6=2

arxr)− signτ (
∑
r

arxr)|S∗])|

= E[|Yj ||signτ (
∑
r 6=2

arZr)− signτ (
∑
r

arZr)|

Concluding The Proof

The basic intuition want to use is that removing a variable of magnitude roughly a2 from the
sum of random variables with magnitude at least roughly a1 only introduces a correlation on
the order a2/a1. The following lemma, proved in the appendix, makes this “non-correlation”
precise:

Lemma 3.2.7. Let Z1, . . . , Zk be real random variables such that Z1 ⊥ (Z2, . . . , Zk), and
Z1 is ρ-smoothly distributed. Then, for any measurable function f(·) and any τ ∈ R, and
any vector a ∈ Rk, it holds that

E

|f(Z2)|

∣∣∣∣∣∣signτ (
n∑
i 6=2

arZr)− signτ (
k∑
i=1

aiZi)

∣∣∣∣∣∣
 .

∣∣∣∣ρa2

a1

∣∣∣∣E [|Z2f(Z2)|] (2.34)
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With this lemma at our disposal, we can easily conclude:

|E[xjsignτ (ATi y)
∣∣i, j ∈ S])| . ρ

|a2|
|a1|

E[Y 2
2 ] � ρ

|a2|
|a1|

� ρ|ATi A∗j |

where we used the fact that a2 = ATi A
∗
j , and a1 = ATi A

∗
i = 1± o(1).

Plugging in the just-proved lemma into the definition of Ei yields the following corollary:

Corollary.

Ei = ρMiA
∗
−idiag(Pr(j ∈ S|i ∈ S) · si,j)(A∗−i)TAi (2.35)

where the numbers si,j which are O(1) in magnitude.

We are can finally control Ei with the following claim:

Claim 3.2.8.

‖Ei‖ = O

(
ρk

m
‖A∗‖2

)
= O

(
ρk

n

)
(2.36)

Consequently,

‖E‖ = O

(
ρk√
n
‖A∗‖

)
= o (‖A∗‖) (2.37)

Proof. For the first claim, since Mi is O(1), it follows that Ei is on the same order as the
following display:

‖ρA∗−idiag(Pr(j ∈ S|i ∈ S) · sj)(A∗−i)TAi‖ ≤ ρ‖A∗−idiag(Pr(j ∈ S|i ∈ S) · sj)(A∗−i)T ‖
≤ ρ‖A∗−i‖2‖diag(Pr(j ∈ S|i ∈ S) · sj)‖
= ρ‖A∗−i‖2 max

j 6=i
sjPr(j ∈ S|i ∈ S)

.
ρk‖A∗−i‖2

m

Since ‖A∗−i‖2 = O(
√
m/n), it follows that Ei = O(ρk/n) For the second claim,

‖E‖2 ≤ ‖E‖F =

√∑
i∈[m]

‖Ei‖2 ≤
√
mmax

i∈[m]
‖Ei‖ .

ρk
√
m

m
‖A∗‖2 (2.38)

Using the fact that ‖A∗‖ = O(
√
m√
n

) and ρk√
n

= o(1), it follows that ‖E‖ = o(‖A∗‖).

Finally, we establish that ai is Θ(1):

Claim 3.2.9. ai ≥ Ei[|xi|]/2− γ = Θ(1)
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Proof. Since signτ (xi) 6= −sign(xi) whp, signτ (xi) = sign(xi) whp whenever |xi| > C, and
Pr(|xi| > C) ≥ 1

2 , it holds that

E[xisignτ (ATi y)] = E[|xi|1(signτ (ATi y) = sign(x))] + E[−|xi|1(signτ (ATi y) = −sign(x))]

= E[|xi|1(signτ (ATi y) = sign(x))]− γ
≥ E[|xi|1(|xi| > C)1(signτ (ATi y) = sign(x))]− γ
≥ E[|xi|1(|xi| > C)]− γ
≥ E[|xi|]/2− γ

Proof of Theorem 3.2.3. The Theorem now follows readily by combining Claims 3.2.5,
Claim 3.2.9, 3.2.8, and Corrolary 3.1.4.

Computational Efficiency

Since the toy rule only requires an estimate Asi to compute updates for As+1
i , iterations of

the toy rule can be parallelized columnwise, so that a server need only maintain Asi at each
step. Moreover, these serves need not even communicate after each iteration. This is useful
when the number of columns m far exceeds memory limitations. However, we will see in
the next section that simplicity and efficiency of the toy rule come at the cost of sample
complexity.

3.2.2 Analysis of Neural Update Rules

While simple to analyze and efficient to implement, the toy rule has rather poor sample
complexity in the k � n1/2 regime. We can think of this issue as a matter of signal-to-noise
ration. In this report, we will refer informally to the signal as the term XiA

∗
i ≈ A∗i−Ai =

O(δ). In the toy rule, Xi roughly projects onto the orthogonal complement of Ai, so if
‖Ai − A∗i‖ = δ, then ATi A

∗
j = O(δ + µ/

√
n) = o(1). Hence, XiA

∗
j = Ω(1) for all j 6= i.

Thus, for a sample y = A∗x with i ∈ supp(x), we will have that the noise term Xi(y−A∗ixi)
will be considerably large

‖Xi(y −A∗ixi)‖ = ‖Xi

∑
j 6=i

A∗jxj‖ ≈ ‖y‖ ≈
√
k � δ (2.39)

In the finite sample setting, this means that the signal XiA
∗
i gets drowned out by contribu-

tions from the entries j 6= i.
To build algorithms with better sample complexity, we transition to a more general class

of algorithms which projector Mi for which MiA
∗
j is small even for j 6= i. Motivated by the

neural algorithm, we will consider update rules with projector matrices that depend on the
estimate support Ŝ linearly:

Definition 3.2.1. We say that the projector Mi is an additively decomposable projector if
there exists a matrix B(i) ∈ Rm×n for which

Mi = Xi −
∑

r∈Ŝ−{i}

B(i)
r (B(i)

r )T = Xi −
∑

r∈[m]−{i}

B(i)
r (B(i)

r )T1(r ∈ Ŝ) (2.40)
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and B(i) = O(‖A∗‖). We define the neural rule as the update rule with the additively
decomposable projector Mi = I −

∑
r∈Ŝ nrArA

T
r

Remark. We remark that the neural rule is very similar to the neural rule in Arora et al.
(2015), the only difference being that the latter uses Mi =

∑
r∈ŝArA

T
r . We believe, however,

that the slight rescaling by the nr necessarily corrects a flaw in their analysis of convergence,
but we omit any further discussion here.

The following proposition gives a general analysis of additively decomposable update rules:

Proposition 3.2.10. Suppose that A is (δ, 2)-near to A∗ for an appropriately small δ, that
τ is (δ, C)-suitable, and that τ2ρ2k1/2 = O(1). Then if Mi is an additively decomposable
projector, the the expected gradients

gi := E[Miysignτ (ATi y)] (2.41)

are (ai, 0,O (ρk/n))-true and g is a-nearness well conditioned, where again.

ai := E[xisignτ (ATi y)
∣∣i ∈ S] = Θ(1) (2.42)

In particular, gi are (ai, 0,O (ρk/n))-true and g is a-nearness-well-conditioned when the
projector matrix is chosen according to the neural update rule.

Again, applying Theorem 3.1.3 gives an immediate corollary:

Theorem 3.2.11. Suppose that A∗ is (δ, 2)-near to A∗ for δ = O*
(
(ρ log nk1/4)−1

)
, the

threshold τ = Ω
(
(ρk1/4)−1

)
, the step size η = Θ∗(m/k), and Assumptions 1-5 hold. Then,

if update step in the Meta Algorithm uses the projector matrix Mi = I −
∑

j∈Ŝ njAjA
T
j and

an infinite number of samples per iteration, we have

‖Asi −A∗i ‖2 ≤ (1− λ)s‖A0
i −A∗‖2i + O

(
ρ2k2/n2

)
(2.43)

for some λ ∈ (0, 1/2), and for any s = 1, 2, . . . , T . In particular, A∗ converges geometrically
until the column-wise error is O(ρk/n). In fact, the theorem holds whenever Mi is an
additively decomposable projector.

Proof. We verify that if δ = O*
(
(ρ log nk1/4)−1

)
= o(1), then the threshold τ = Ω

(
(ρk1/4)−1

)
is (δ, C)-suitable. Moreover, under the stated scaling of τ , we have that τ2ρ2k1/2 = O(1).
The conditions of Proposition 3.2.10 are met, and the result follows immediately from The-
orem 3.1.3.

Proof of Proposition 3.2.10. Let Yi,j = xjsignτ (ATi y), and Yi = xisignτ (ATi y). As in the
proof of the toy rule, its suffices to control Gi

Gi = Ei[MiA
∗
iYi] + Ei[Mi

∑
j 6=i

Yi,jA
∗
j ] (2.44)

Lets control each term separately.

Page 32 of 99



3.2. UPDATE RULES FOR (C, ρ)-SMOOTH SPARSE CODING Max Simchowitz

Controlling the “Signal” Term

First off, since ‖A∗i ‖ = 1, we have

Ei[MiA
∗
iYi] = Ei[XiA

∗
ixisignτ (ATi y)] + Ei[A∗i

∑
j∈Ŝ

A∗ixisignτ (ATi y)]

= αiXiA
∗
i +O(‖Ei[

∑
j∈Ŝ

AjA
T
j xisignτ (ATi y)]‖)

Next, note that whenever Ŝ ⊂ S, ±
(∑

j∈Ŝ AjA
T
j xisignτ (ATi y)

)
�
∑

j∈S AjA
T
j |xi|. As

Ŝ ⊂ S whp, Lemma D.2.2 yields that∥∥∥∥∥∥Ei[
∑
j∈Ŝ

AjA
T
j xisignτ (ATi y)]

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥Ei[

∑
j∈S

AjA
T
j |xi|]

∥∥∥∥∥∥+ γ .
k‖A‖2

m
γ .

k

n
+ γ (2.45)

Controlling the “Noise” Terms E1, E2, E3

Next, up we have

Ei[Mi

∑
j 6=i

Yi,jA
∗
j ] = E1(i) + E2(i) + E3(i) (2.46)

Where we have
E1(i) = −niAiATi Ei[

∑
j 6=i

1(j /∈ Ŝ)A∗jYi,j ]Yi,j

E2(i) = Ei[
∑
j 6=i

(I −B(i)
j (B

(i)
j )T )1(j ∈ Ŝ)A∗jYi,j ]

E3(i) = −E[
∑
r 6=i

B(i)
r (B(i)

r )T
∑
j 6=i,r

A∗jYi,j1(r ∈ Ŝ)]

(2.47)

and let E1, E2, E3 be the matrices whose i-th columns are are E1(i), E2(i), E3(i). Following
the proof of Theorem 3.2.3, it is straightforward to show that

‖E1(i)‖ = O

(
‖A∗‖ρk√

nm

)
(2.48)

For E3, we have the following claim

Claim 3.2.12.

‖E3(i)‖ . k2‖A∗‖
n
√
m

(2.49)

Proof. By Lemma A.1.4 (a more sophisticated version of Claim 3.1.1), we can write

Ei[Yi,j1(r ∈ Ŝ)] .
ρk2

m2
(|ATi A∗j |+ |ATr A∗j |) (2.50)
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That is, there are real numbers s1
i,j,r and s2

i,j,r which are O(1)in magnitude for which

−E3(i) = E[
∑
r 6=i

B(i)
r (B(i)

r )T
∑
j 6=i,r

A∗jYi,j1(r ∈ Ŝ)]

=
∑
r 6=i

B(i)
r (B(i)

r )T
∑
j 6=i,r

A∗jE[Yi,j1(r ∈ Ŝ)]

=
ρk2

m2

∑
r 6=i

B(i)
r (B(i)

r )T
∑
j 6=i,r

A∗js
1
i,j,rA

∗
j
TAi +A∗js

2
i,j,rA

∗
j
TA∗r

=
ρk2

m2

∑
r 6=i

B(i)
r (B(i)

r )T
(
A∗−i,rdiag(s1

i,j,r)(A
∗
−i,r)

TAi +A∗−i,rdiag(s1
i,j,r)(A

∗
−i,r)

TA∗j
)

Now, define v(i) to be the vector

v(i)r := (B(i)
r )T

)
A∗−i,rdiag(s1

i,j,r)(A
∗
−i,r)

TAi +A∗−i,rdiag(s1
i,j,r)(A

∗
−i,r)

TA∗j
)

(2.51)

so that Ei(i) = ρk2

m2

∑
r 6=iB

(i)
r vr(i). Since s1

i,j,r, s
2
i,j,r, ‖Ai‖, ‖Bi‖ and ‖A∗j‖ are O(1) in

magntitude, using the multiplicativity of the spectral norm gives:

|v(i)r| . ‖A∗‖2 and hence ‖v(i)r‖2 .
√
m‖A∗‖2 (2.52)

Using the fact that ‖B(i)‖ = O(‖A∗‖), we have

‖E3(i)‖ ≤ ρk2

m2
‖B(i)‖‖v(i)r‖ .

ρk2

m3/2
‖A∗‖3 .

ρk2‖A∗‖
n
√
m

(2.53)

Claim 3.2.13.

‖E2(i)‖ .
ρ‖A∗j‖2k

m
+
k3/2ρ2τ2‖A∗‖√

mn
(2.54)

Proof.

E2(i) = Ei[
∑

j 6=i(I −B
(i)
j (B

(i)
j )T )1(j ∈ Ŝ)A∗jYi,j ] (2.55)

(2.56)

We write E2(i) = T1(i) + T2(i), where

T1(i) =
∑
j 6=i

A∗jEi[Yi,j1(j ∈ Ŝ)Yi,j ] (2.57)

T2(i) =
∑
j

B
(i)
j (B

(i)
j )TA∗jEi[1(j ∈ Ŝ)Yi,j ] (2.58)

We will bound T1; T2 can be conrolled using the exact same arguments after noting that

(B
(i)
j )TA∗j) = O(1) and that ‖B(i)‖ ≤ O(‖A∗‖). By Lemma A.1.5, we have

|Ei[1(j ∈ Ŝ)Yi,j ]| .
k

m

(
ρ|ATi A∗j |+ τρ|ATj A∗i|+ ρ2τ2

√
k

n

)
(2.59)
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Hence, there are O(1) real numbers s1
i,j , s

2
i,j , s

3
i,j for which

T1(i) =
k

m

∑
j 6=i

A∗jEi[Yi,j1(j ∈ Ŝ)Yi,j ]

= ρ
k

m

∑
j 6=i

A∗js
1
i,jA

∗T
j Ai + τρ

k

m

∑
j 6=i

A∗js
2
i,jA

T
j A
∗
i +

k

m

∑
j 6=i

A∗js
3
i,jρ

2τ2

√
k

n

We bound the three sums on the last line. For the first term, we have

‖ρ k
m

∑
j 6=i

A∗js
1
i,jA

∗T
j Ai‖ ≤

ρk

m
‖A∗j‖2 max

j
s1
i,j‖Ai‖ (2.60)

.
ρ‖A∗j‖2k

m
(2.61)

Similarly, the second sum on the second-to-last display is controlled by
ρ‖A∗j‖2kτ

m . Finally,

‖
∑
j 6=i

A∗js
3
i,jρ

2τ2

√
k

n
‖ =

k3/2

m
√
n
‖A∗‖‖vec(s3

i,jρ
2τ2)‖ (2.62)

=
√
m‖A∗‖max

j
(vec(s3

i,jρ
2τ2)) (2.63)

.
k3/2ρ2τ2‖A∗‖√

mn
(2.64)

Putting together the bounds on E1(i), E2(i), E3(i), we see that as long as τ2ρ2k1/2 =
O(1), we have that

E1(i) + E2(i) + E3(i) = O

(
k

n
+
k3/2ρ2τ2k

n

)
= O(k/n) (2.65)

and that

‖E1 + E2 + E3‖ ≤
√
mmax

i
‖E1(i) + E2(i) + E3(i)‖

≤ ‖A∗‖

(
k√
n

+
k3/2ρ2τ2

n

)
= o(‖A∗‖)
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Chapter 4

A Projection-Based Algorithm for
Sparse Coding

4.1 The Projection Rule

4.1.1 Motivation for Projection Rule

In the previous section, we introduced a Meta-Algorithm for dictionary learning and ana-
lyzed a two instantiations thereof. Recall that the Meta-Algorithm ran approximate gradi-
ent descent on the columns of dictionary iterates A(s), with expected gradients

gsi = E[Mi(A
(s), Ŝ)ysign(〈A(s)

i , y〉)] (1.1)

where Mi was the “projector matrix”. To facilitate a simple analysis under imperfect sign-

thresholding, we analyzed a “toy update” rule where M
(s)
i was chosen deterministically

as M
(s)
i = Xi : I − 1

‖A(s)
i ‖

A
(s)
i (A

(s)
i )T . Despite its simplicity, or in fact because of it, the

toy rule suffered from poor sample complexity guarantees. Consequently, we considered a

neural update where the marix M
(s)
i (y) dependended linearly on the estimated support Ŝ

of y. The idea was that, for all j ∈ Ŝ, M
(s)
i (A∗j) was small, so the variance of the gradient

was reduced.
In this section, we take this same intuition one step further: We design a projector

matrix Mprj
i which depends on Ŝ in a highly nonlinear way, but ensures that, for all j ∈ Ŝ,

Mprj
i Aj = Mprj

i (Ŝ)Aj = O(‖A∗j −A
(s)
j ‖) (1.2)

even when ‖A∗j − A
(s)
j ‖ is made arbitrarily small. With Mprj

i defined in this manner, we
establish the following theorem for C-Lower Bounded distributions:

Theorem 4.1.1. Suppose that A∗ is δ-close to A∗ for δ = O*
(

1/
√
k
)

, that the sparse

coeffcient vectors are C-lower bounded, the threshold τ = C/2, the step size η = Θ∗(m/k),
and Assumptions 1-4 hold. Then, if update step in the Meta Algorithm uses the projector
matrix Mprj

i and and p = Ω̃(m) samples, we have

‖Asi −A∗i ‖2 ≤ (1− λ)s‖A0
i −A∗‖2i + n−ω(1) (1.3)
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for some λ ∈ (0, 1/2), and for any s = 1, 2, . . . , T . In particular, A∗ converges geometrically
to an arbitrary inverse polynomial error.

Following the analysis the toy and neural rules, this section proves of convergence of the
projection rule in the infinite sample setting. The proof of the finite sample result is deferred
to Section A.2 We also remark that the projection rule has substantialy superior sample
complexity to the “unbiased algorithm” in Arora et al. (2015), where the sample complexity
grows quadratically in the desired precision.

4.1.2 Definition of Mprj
i

The strategy is to make Mprj
i “almost” an orthogonal projection onto the complement of

A
(s)

Ŝ
. Before defining Mprj

i , we need to establish some further notation. As in the previous
chapter, drop the superscripts s to avoid notational clutter, and restrict our attention to
one iteration of the update rule. Next, for S ⊂ [m], let

QS = ProjAS
and PS = ProjA⊥S

(1.4)

That is, QS is the projection onto the span of the columns of S, and PS is the projection
onto their complement. We will also let Qi denote the projection onto the span of Ai, and
PS denote the projection onto the span onto A⊥i . As in the previous chapter, set ni = 1

‖Ai‖ ,

Xi = I − niAiA
T
i . We now define the “Projection Update Rule”, which uses projector

matrix

Mprj
i (Ŝ) = PŜ + (n2

i − ni)AiATi (1.5)

As noted above, the first term is just the orthogonal projection onto AŜ , and the second
term is a subtle correction for when ‖Ai‖ is not exactly a unit vector. Before continuing,
lets establish some simple facts about Mi(Ŝ):

Proposition 4.1.2 (Properties of Mprj
i ). Whenever i ∈ Ŝ,

Mprj
i (Ŝ) = Xi + (QŜ −Qi) = Xi + Pi(QŜ −Qi)Pi (1.6)

Furthermore, suppose that the columns of A are δ-close to the columns of A∗. Then, for
any j ∈ Ŝ.

‖Mprj
i (Ŝ)A∗j‖ ≤ 2δ (1.7)

Proof. For the first point, write PŜ = I − QŜ = I − Qi − (QŜ − Qi). Now, I − Qi =
I − 1

‖Ai‖2AiA
T
i = I − n2

iAiA
T
i . Hence,

PŜ = I − n2
iAiA

T
i − (QŜ −Qi) + n2

iAiA
T
i − niAiATi

= I − niAiATi − (QŜ −Qi) = Xi − (QŜ −Qi)

By Lemma D.1.2 Part 4, Pi(QŜ − Qi)Pi = QŜ − Qi (the basic idea is that the kernel of
Pi, which is exactly the span of Ai, is contained in the kernel of QŜ −Qi). For the second
point, we have that

‖Mprj
i (Ŝ)A∗j‖ ≤ ‖PŜA

∗
j‖+ |n2

i − ni|‖AiATi A∗j‖
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Since Aj ∈ kerPŜ for j ∈ Ŝ, we have ‖PŜA
∗
j‖ = ‖PŜ(A∗j −Aj)‖ ≤ ‖PŜ‖‖A

∗
j −Aj‖ ≤ δ, since

‖A∗j −Aj‖ ≤ δ and ‖PŜ‖ = 1. Secondly,

|n2
i − ni|‖AiATi A∗j‖ ≤ |n2

i − ni|‖Ai‖2 since ‖A∗j‖ = 1

=

∣∣∣∣ 1

‖Ai‖2
− 1

‖Ai‖

∣∣∣∣ ‖Ai‖2
= |1− ‖Ai‖|
≤ δ

where the last step follows since ‖Ai −A∗i ‖ ≤ δ, and ‖A∗i‖ = 1.

4.1.3 Analyzing the Projection Update Rule

We now present an analysis of the Projection Rule under quite general conditions. Keep-
ing the same notational conventions of Section 3.1, we begin by examining the expected
conditional gradients

Gi := Ei[Mprj
i y signτ (ATi y)] (1.8)

Again, we break up y = A∗ixi + y−i, where y−i =
∑

j∈S−{i}A
∗
jxj , and regard G1,i :=

E[Mprj
i A∗ixisignτ (ATi y)] as the desired “signal”, whilst viewingG2,i := E[Mprj

i y−isignτ (ATi y)]
as systemic noise. Our first proposition shows that the signal G1,i is well correlated with
A∗i as long as the columns of A are sufficiently near to those of A∗:

Proposition 4.1.3. Suppose that Assumptions 1, 2, and 4 hold (but not necessarily As-

sumption 3), and that A is δ-close to A∗, where δ = O*
(

1/
√
k
)

. Then as long as Ŝ ⊂ S

with probability 1− n−ω(1), we have

Ei[Mprj
i A∗ixisignτ (ATi y)] = ai(A

∗
i −Ai) + O* (‖A∗i −Ai‖) + γ (1.9)

where again ai := Ei[xisignτ (ATi y)]. The O* (‖A∗i −Ai‖) may be replaced by o (‖A∗i −Ai‖)
when δ = o

(
1/
√
k
)

.

Proof. Define vi = PiA
∗
i . Using Proposition 4.1.2 and Claim 3.1.1 together with the defini-

tions of vi, we have

Ei[Mprj
i A∗ixisignτ (ATi y)] = Ei[XiA

∗
ixisignτ (ATi y)] + Ei[Pi(Qi)PiA∗ixisignτ (ATi )]

= ai(A
∗
i −Ai) + o (ai‖A∗i −Ai‖) + E

where E ≤ ‖PiEi[(QŜ −Qi)xisignτ (ATi y)]vi‖. Since Ai ∈ ker(Pi), we have

‖vi‖ = ‖PiA∗i ‖ = ‖Pi(A∗i −Ai)‖ ≤ ‖Pi‖‖A∗i −Ai‖ ≤ ‖A∗i −Ai‖ (1.10)

Thus, it simply suffices to show that

‖Ei[(QŜ −Qi)xisignτ (ATi y)]‖ = O* (1) (1.11)
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Computing a closed form expression for the above display is rather challenging, since QŜ
depends on the estimated support Ŝ in a highly non-linear way. However, if we can find
a PSD matrix Y for which Y � (QŜ − Qi with probability 1 − n−ω(1), then Lemma D.2.2
let’s us bound left hand side of Equation 1.11 above by ‖Ei[Y |xisignτ (ATi y)|]‖ ≤ ‖Ei[Y |xi]‖.
Hence, once we find an an appropriate Y , it will suffice to show that ‖E[Y ]‖ = O* (1). We
proceed as follows:

Removing Dependence on Ŝ

First, we replace QŜ − Qi by a matrix which depends on the true support S = supp(x)

rather than the estimated support Ŝ. Whenever Ŝ ⊂ S, then the span of the columns of AŜ
lie in the span of AS , and so QS � QŜ . Assuming that Ŝ ⊂ S with very high probability,
we have established the following claim:

Claim 4.1.4. QŜ −Qi � QS −Qi with probability 1− n−ω(1).

Controlling QS −Qi by a Sum of Rank One Terms

Since A is δ-close to A∗, it follows that σmin(A) ≤ σmin(A∗)− δ
√
k ≥ 1/2−O* (1)) ≥ 1/4,

where we have that σmin(A∗) ≥ 1/2 by the Gershgorin Circle Theorem (see Lemma D.1.1).
We now appeal to a general theorem which both makes precise and generalizes the intutition
that ASA

T
S ≈ QS for incoherent matrices AS :

Theorem 4.1.5. If σmin(AS) ≥ c,

QS −QV � c−2PV (AS−VA
T
S−V )PV (1.12)

Plugging in c = 1/4, we have

QS −QV � 16Pi(AS−iA
T
S−i)Pi � O

(
Pi(AS−iA

T
S−i)Pi

)
(1.13)

with high probability.

Completing the Proof

To wrap up, we compute

‖Ei[(QŜ −Qi)xisignτ (ATi y)]‖ . ‖Ei[PiAS−ixisignτ (ATi y)ATS−iPi]‖
≤ ‖Pi‖2‖Ei[AS−iATS−ixisignτ (ATi y)]‖
= ‖Ei[AS−iATS−ixisignτ (ATi y)]‖
= ‖Adiag(Ei[1(j ∈ S)xisignτ (ATi y)])AT ‖

.
k

m
‖A‖2
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Recall that we do not assume here that ‖A‖ = O(‖A∗‖). Instead, we have that

‖A‖ ≤ ‖A−A∗‖+ ‖A∗‖
≤ ‖A−A∗‖F + ‖A∗‖
≤
√
mmax

i
‖Ai −A∗i‖2 + ‖A∗‖

=
√
mδ + ‖A∗‖

= O*
(√

m/(k + n)
)

= O*
(√

m/k
)

Hence, k
m‖A‖

2 = O*
(
k
m ·

m
k

)
= O* (1), as needed. We note that if δ = o

(
1/
√
k
)

, then we

would have k
m‖A‖

2 = o (1).

We emphasize that Proposition 4.1.3 does not require that ‖A∗−A‖ . ‖A∗‖. Consequently,
in many settings, the convergence proofs for the Projection Update Rule will not require
us to prove (δ, 2) nearness at each step. Unfortunately, the generality of Proposition 4.1.3
comes at the cost of a small radius of convergence, as is adressed in the following remark:

Remark. The assumption that δ = o(1/
√
k) is tight, as the following example shows. Sup-

pose that A∗ ∈ Rn×n is the identity matrix, S = [k], and that AS = A∗S −
δ√
k
1k1

T
k , where

1k and 1n denote the ones vectors in Rk and Rn respectively. Then A is δ-close to A∗.
However,

‖AS(1k/
√
k)‖ = (1−

√
kδ)(1k/

√
k) (1.14)

which can be made, arbitrarily close to 0 (but nonzero) by choosing δ = (1 + ε)/
√
k for

some arbitrary ε > 0. Hence, ASA
T
S and QS have the same span, but σmin(ASA

T
S ) ≤ ε2.

Thus, QS � ASATS holds only when C is as large as ε−2.

We now state a corollary for C-lower bounded distributions:

Corollary. If Assumptions 1- 4 and are satisfied, the x is C-lower bounded, and τ = C/2,
then

Gi := Ei[Mprj
i ysignτ (ATi y)] = Ei[|xi|](A∗i −Ai) + O* (‖A∗i −Ai‖) + γ (1.15)

and hence gi is (Ei[|xi|], 0, n−ω(1))-true. The result holds more generally as long as τ is
(δ, C)-suitable.

Proof. When τ is (δ, C)-suitable the Lemma 3.1.4 ensures that signτ (ATi y) = signC/2(ATi y) =

sign(xi) with probability 1 − γ and Ŝ = S with probability 1 − γ (even when conditioned
on i ∈ S, since i ∈ S occurs).

Now, write Gi = Gi,1 +Gi,2. From Proposition 4.1.3, we have

Gi,1 = αi(A
∗
i −Ai) + o(‖A∗i −Ai‖) + γ (1.16)
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where αi = Ei[xisignC/2(ATi y)] = Ei[xisign(xi)]+Ei[xi(sign(xi)−signC/2(ATi y)|] = Ei[|xi|]+
γ. By the same token,

G2,i = E[Mprj
i (Ŝ)y−isignτ (ATi y)]

= E[Mprj
i (S)y−isign(xi)] + E[

(
Mprj
i (Ŝ)signτ (ATi y)−Mprj

i (S)sign(xi)
)
y−i]

= E[
(
Mprj
i (Ŝ)signτ (ATi y)−Mprj

i (S)sign(xi)
)
y−i]

= γ

where the second to last line follows since y−i ⊥ xi conditioned on supp(x), the last from
the fact that yi is O(k)-subgaussian, while ‖Mprj

i (Ŝ)signτ (ATi y)−Mprj
i (S)sign(xi)‖ is O(1)

almost surely, and is 0 with probability 1− n−ω(1).

Applying Theorem 3.1.3, we immediately establish infinite sample convergence of the pro-
jection rule:

Theorem 4.1.6. Suppose that A∗ is δ-close to A∗ for δ = O*
(

1/
√
k
)

, that the sparse

coefficients x are C lower bounded, that the threshold τ = C/2, the step size η = Θ∗(m/k),
and Assumptions 1-4 hold. Then, if update step in the Meta Algorithm uses the projector
matrix Mi = Xi and an infinite number of samples per iteration, we have

‖Asi −A∗i ‖2 ≤ (1− λ)s‖A0
i −A∗‖2i + n−ω(1) (1.17)

for some λ ∈ (0, 1/2), and for any s = 1, 2, . . . , T . In particular, A∗ converges geometrically
to an arbitrary inverse polynomial error.

Page 41 of 99



Chapter 5

Learning Random NMF Instances
with Dictionary Learning

5.1 NMF and NOID Learning

5.1.1 Motivation

In this section, we leverage the analytical and algorithmic machinery presented thus far
to explain an experimentally well-documented, though hitherto theoretically unnaccounted
for phenomenom: that coordinate descent algorithms perform surprisingly well on certain
randomly generated instances of Nonnegative Matrix Factorization, or NMF.

The rank-m NMF problem consists of expressing an entrywise nonnegative matrix Y ∈
Rn×p≥0 as the product of two low rank, entrywise nonegative matrices B ∈ Rm×n≥0 and X ∈
Rm×p≥0 . In contrast to dictionary learning, NMF is an undercomplete factorization in which
m� p, n. NMF has been applied in numerous disciplines, ranging from image segmentation
(Lee and Seung (2001)), to neuroscientific research (Cichocki et al. (2009)), to the famous
“Netflix Problem” in recommendation systems (Koren et al. (2009)).

In its most general setting, Vavasis (2009) establishes that computing an exact Non-
Negative Matrix Factorization is NP-Hard in general. Briefly, the proof consists is showing
that NMF is equivalent to the “Intermediate Simplex” in polynomial combinatorics for
which there is a polynomial time reduction from MAX 3-SAT.

One common complaint with Intermediate Simplex reduction is that it is exceedingly
brittle. In practice, we do not expect NMF instances to be drawn adversarially. Indeed,
there are many settings in which an NMF instance Y = BX which is drawn from certain
generative process, or that satisfies other favorable, structural assumptions, can be learned
in polynomial time.

For example, Anandkumar et al. (2014) present a tensor spectral algorithm learning
community structure in the Mixed Membership Stochastic Block Model can be intepreted
as learning a symmetric factorizationXTX from noisy observations Yi,j ∼ Bernoulli(XT

i Xj),
where the columns of X are drawn from a Dirichlet distribution. Unfortunately, the spectral
algorithm relies heavily on properties of Dirichlet moments, and is less robust when applied
to real-world data.

If B satisfies the so-called separability condition from Donoho and Stodden (2003), Arora

42



5.1. NMF AND NOID LEARNING Max Simchowitz

et al. (2012b) and Recht et al. (2012) provide efficient and provably correct algorithms for
recovering non-negative factorizations exactly in the noiseless setting, an approximately in
the presence of noise. Arora et al. (2012a) and Bansal et al. (2014) extend the separable
NMF literature to the “topic modeling” setting, where X is drawn from a suitable generative
process, and Yi is drawn a sparse discrete distribution whose expectation is BXi.

Despite the recent advances in provably correct factorization algorithms, many of today’s
practioners still learn NMF instance with alternating descent algorithms like the Multiplica-
tive Update Rule (MU) (Lee and Seung (2001)) and Hierachical Alternating Least Squares
(HALS) (Cichocki et al. (2007)). Though these methods lack theoretical guarantees, nu-
merical experiments find that coordinate descent algorithms converge to rapidly to local
optima (Lin (2007)), and in one particular case, tend to learn exact factorizations when the
components B and X are randomly generated (Vandaele et al. (2014)).

5.1.2 Our Contribution

While our ultimate goal would be to present rigorous guarantees for both the MU and HALS
on a large class of NMF instances (note that demonstrating convergence for all instances is
unlikely, as it would entail that P = NP), this chapter contents itself with a baby step in
that general direction. We demonstrate conditions under which randomly generated NMF
instances can be learned by the sorts of sparse coding gradient descent algorithms studied
in this report. The hope is to establish that certain randomly generated NMF instances are
“easy to factor”, in the sense that the true factorization can be recovered approximately in
polynomial time, with high probability. Furthermore, the approximate gradient approach
in this chapter bears a much stronger resemblence to the MU and HALS procedures than
the combinatorially and geometrically flavored algorithms introduced for learning separable
factorizations.

The setting for our analysis is motivated by the numerical experiments in Vandaele et al.
(2014), which generate both factor matrices B and X with sparse, random entries. Hence,
we will treat X as a matrix whose columns correspond to samples from some favorable
sparse distribution:

Definition 5.1.1. We say that the samples x are drawn from a (C, k)-favorable distribution
if

1. x is entrywise nonnegative and C-lower bounded

2. x is k-sparse with probability 1− n−ω(1)

3. The entries of x are independent conditioned on their support, and xi
∣∣supp(x) = S

has the same distribution for any S ⊂ [m].

4. The support of S satisfies Assumption 2

We say that the samples are drawn from a (C, k, ρ)-favorable distribution if, in addition,
the samples are ρ-smoothly distributed.

The full strength of our results will only hold for a more restricted class of distributions:
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Definition 5.1.2 (Uniformly Favorable Distributions). 1 We say that the samples x are
drawn from a uniformly (C, k)-favorable (uniformly (C, k, ρ)-favorable)distribution if x is
drawn from a (C, k) (resp. (C, k, ρ)) favorable distribution, xi

∣∣S has the same distribution
for any S ⊂ [m] containing i, if qi,j − qiqj ≤ O(k2/m), if qi,j,r − qirqij ≤ O

(
qik

2/m
)
.

We say that the samples x are drawn from a uniformly (C, k)-favorable (resp (C, k, ρ)-
favorable), well-conditioned distribution if, in addition, the covariance matrix Σ := E[(x −
E[x])(x − E[x])T ] is well conditioned, in the sense that σmin(Σ) and σmax(Σ) are both
Θ(k/m).

Example 5.1.1 (Uniform Supports yield Uniformly Favorable Distributions). 2 Suppose
that supp(x) is chosen uniformly. Then it is straightforward to verify that x are (C, k)-
uniformly favorable. Moreover, if all xi

∣∣i ∈ S ∼ Unif([1, 2]), then the diagonals of Σ are

Σii = E[x2
i ]− E[xi]

2 = (1− o (1))E[xi]
2 (1.1)

where

E[x2
i ] = Pr(i ∈ S) · EZ∼Unif([1,2])[Z

2] =
7k

3m
(1.2)

The off diagonals Σij are given by

E[xixj ]− E[xi]E[xj ] = {Pr(i ∈ S)− Pr(i, j ∈ S)}EZ∼Unif([1,2])[Z]2 =
9k

4m
(
k

m
− k − 1

m− 1
)(1.3)

which have absolute value no more than 9k
4m2 . Hence,

∑
ij |Σij | ≤ (1 − Ω(1))Σii, so by the

Gershgorin Circle Theorem, we can conclude that Σ is well conditioned. Hence, x come
from a uniformly (C, k)-favorable, well-conditioned distribution.

It is straightforward to show that the result holds more generally when the support of
x is uniformly, and all of xi

∣∣i ∈ S satisfy E[x2
i

∣∣i ∈ S] ≥ (1 + Ω(1))E[xixj
∣∣i, j ∈ S], e.g.

example E[xi
∣∣i ∈ S] is identically distributed for i ∈ [m], and is not a point mass.

Remark. We remark that we can prove many modified versions of Theorems 5.1.1 and 5.1.3
under under various modified assumptions. While we will not discuss such other settings
at length,

We will now deviate from Vandaele et al. (2014) by considering the case where B is non-
sparse and non-negative, but nevertheless satisfies a sort of “hidden” incoherence property,
called Nonnegative Offset Incoherence, defined in the following section. The reason is two
fold: first, leveraging a modified version of incoherence makes it more straightforward to
directly map ideas from sparse coding onto the NMF setting. Second, many alternating
descent algorithms report rapid convergence to good local optima on dense factor matrices,
and we hope to provide some insight into why this is possible. Hence, our setting can be
viewed as sort of hybrid between Vandaele et al. (2014) and Lin (2007), where one factor
matrix B is dense, and the other factor X is sparse. While we can establish a range of
partial results for NMF instance with (C, k)-favorable distributions, we were only able to
verify a complete polynomial time algorithm for learning generative NMF instances in the
setting where the latent samples are uniformly (C, k, ρ)-favorable:

1This definition was recently modified since the May 4th draft to adress some errors in the earlier version
of that work.

2This example was added after the May 4th draft was submitted
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Theorem 5.1.1 (Provable Algorithm for Random NMF Instances). Given samples y =
B∗x, where x∗ has uniformly (C, k, ρ)-favorable, well-conditioned distribution, B∗ ∈ Rn×m
is a µ-incoherent NOID (see section 5.1.3) for which µ√

n
= O*

(
k2 + k log n

)
, and k =

O*
(
min{m2/5,m/ log n}

)
, then there is an algorithm with runtime and sample complexity

O(poly(m,n, k, log(1/ε)) which learns a non-negative matrix B such that ‖B∗ − B‖F ≤
ε‖B∗‖F for any inverse polynomial error ε.

The intutition here is that, even though the problem superficially resembles an NMF, it is
actually a disguised dictionary learning problem, which can be extracted by Algorithm 4,
and then learned by the algorithm in Theorem 5.2.3.

Proof of Theorem 5.1.1. By Theorem 5.1.3, we may reduce to S-NDL where the matrix A∗

is
√
n/m + µ-incoherent and our desired tolerance is δ = ε/

√
m(k + log n). It is straight-

forward to check that, under the assumptions of the present theorem, A∗ is sufficiently
incoherent, and x∗ are sufficiently sparse to satisfy the assumptions of Theorem 5.2.3. The
latter theorem yields a polynomial time algorithm to learn A∗ up to arbitrary inverse poly-
nomial precision, and the geometric convergence ensured thereby guarantees that the run
time and sample complexity is logarithmic in the desired precision.

Remark. An analogue of the above theorem can be demonstrated in the case where the
samples are not uniformly (C, k, ρ), but are far more sparse. In fact, the scalings in the
above theorem depend on the expected norms of various covariance matrices, and it would
be possible (in, say a later work) to provide a statement of Theorem 5.1.1 which interpolates
between the norm of these covariance matrices and the required sparsity k/m. Moreover,
we could also relax some assumptions on the covariance matrix Σ (for example, our reduc-
tion can achieve polynomial complexity and run-time if σmin(Σ) = Ω(n−C) for some fixed
constant C > 0).

For example, if one modifies Algorithm 7 to not subtract off sample means, and sacrifices
a factor of k in the sample complexity and precision, one can prove recovery guarantees in
the setting where the second moment matrix rather than the covaraince matrix satisfies

Ω (k/m) · I � E[xxT ] � O
(
k2/m

)
I (1.4)

Such bounds are easy to establish when the x’s have a (C, k)-favorable distribution, and the
off-diagonal co-ocurence matrix Q with Qij = qij if i 6= j and Qii = 0 otherwise is rank one.
In particular, this holds when the x’s have a (C, k)-favorable distribution, k2 = O* (m), and
the supports are chosen uniformly at random (or just that qij is the same for all i 6= j).

We also mention that the author of this report was able to establish some results for
the case where both factors are sparse, but the tools are slightly different and not included
in this report in the interest of concision. The setting where B and X are dense seems
far less promising to analyze, since the absence of sparsity and non-convexity of the NMF
objective lead to issues of identifiability in both theory (see Donoho and Stodden (2003))
and in practice (Lin (2007)).

Differences Between Dictionary Learning and Conventional NMF Algorithms

Although MU, HALS, and the approximate gradient descent algorithms for sparse coding
all can be viewed as forms of gradient descent, we emphasize MU and HALS updates differ
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substantially from the algorithms in this report. For one, MU and HALS iterate over
the rows of B, and while sparse coding moves column-wise. But there is a more general
difference. Because general matrix factorizations of the form Y = BX are non-unique,
the common motivation behind both sparse coding and and NMF is to impose meaningful
structural contraints which can ensure uniqueness. In sparse coding, the update rules apply
thresholds signτ (u) = sign(u)1(|u| > τ) to leverage the knowledge that the latent samples
are sparse; in MU and HALS, the update rules instead leverages the structural knowledge
that the entries of B and X are nonzero.

5.1.3 Offset Incoherent Dictionaries

In general, we should not expect non-negative matrices to have incoherent columns. In-
deed, consider a matrix B ∈ Rn×2, where Bpq ∼ Bernoulli(1/2). Then E[〈Bi, Bj〉] = n

4 ,
while E[‖Ai‖2] = E[‖Aj‖2] = n/2. With a couple Chernoff bounds, we can conclude that
cos(Bi, Bj) = Θ(1) with e−Θ(n) probability.

On the other hand, it is well know that dictionaries with light-tailed, independent mean
- zero entries are Õ(1) incoherent with high probability Candès and Wakin (2008). Con-
sequently, if B has indepedent subgaussian entries, A := B − E[B] should be sufficiently
incoherent with high probability. If the entries of B are iid, or more generally if the ex-
pectations of the columns E[Bi] are scalar multiples of one another, then E[B] is rank one.
With these sorts of generative processes in mind, we introduce consider a generalization of
dictionary learning where we learn dictionaries which are rank-one perturbation away from
being incoherent:

Definition 5.1.3 (Offset Incoherent Dictionaries). We say that a matrix B ∈ Rn×m is an
Offset Incoherent Dictionary (OID) with parameter µ if B can be written in the form A+vcT

for any columns Ai, Aj of A, | cos(Ai, Aj)| ≤ µ/
√
n and |cos(Ai, v)| ≤ µ/

√
n. We say that

B is an Nonnegative-Offset Incoherent Dictionary (NOID) if c is entrywise nonnegative.

Because we want to reconstruct non-negative factors, we shall require a sign-sensitive notion
of closeness: We shall also need the notion of signed-closeness:

Definition 5.1.4. [δ-signed-close] We say that A is δ-signed-close to A∗ if there is a per-
mutation π : [m]→ [m] for which ‖Aπ(i)−A∗i ‖ ≤ δ for all i ∈ [m]. We note that we do now
allow ourselves to flip the signs of Ai.

With these two definition in place, we set up the Offset-Incoherent Nonnegative Dictionary
Learning problem accordingly:

Problem 5.1.1. δ-Nonnegative-Offset-Incoherent-Dictionary Learning (δ-NOIDL):
Learn an estimate B which is δ-signed-close to a NOID B∗ = A∗ + cvT ∈ Rn×m with in-
coherence parameter µ, given samples y = B∗x, where x are drawn from a (C, k)-favorable
nonnegative distribution.

As we shall soon see, the decomposition B = A + cvT for offset incoherent matrices is
not unique in general, and different decomposition parameters yield different incoherence
paramters. Nevertheless, if we compute a naive average v̂ of samples y = B∗x, then with
high probability

Ã∗ := Normalize(Projv̂⊥B
∗) is O

(√
n

m
+ µ

)
incoherent (1.5)
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Hence, learning Ã∗ from samples ỹ := Projv̂⊥y will amount to an instance of what we call
Semi-Nonnegative Dictionary Learning (δ-S-NDL):

Problem 5.1.2. Semi-Nonnegative Dictionary Learning (δ-S-NDL) Learn an esti-
mate A which is δ-signed-close to a µ′ incoherent dictionary A∗ for which ‖A∗‖ = O(1)
given samples y = Ax, where x are drawn from a (C, k)-favorable nonnegative distribution.

Once we have an accurate columwise estimate of A∗, then we can decode random samples
y = B∗x by feeding in Projv̂⊥y Algorithm 6, and effectively “invert” those decodings to learn
the original dictionary using Algorithm 7. The precise reduction is described in Algorithm 4.
In sum, we will be able to demonstrate a reduction from OI-NDL reduces to S-NDL, which
we state informally as follows, which we formalize in section 5.1.4

Non-Uniqueness of the NOID Decomposition

Proposition 5.1.2. Let 1d ∈ Rd denote the vector of all ones, draw a matrix B∗ ∈ Rn×m

be B∗
iid∼ N (1, 1/n), set A∗ = B∗ − 1n1Tm. Then with high probability, A∗ is 10 log(n)

incoherent and B∗ is entrywise nonnegative. Moreover, with probability at least 3/16, there
exists another vector v such that

‖v − 1n‖2 ≥
1

2048m
and B∗ − v1Tm is 10 log(n) incoherent (1.6)

Proof. This proposition is really just a statement about estimating the means of m Gaussian
vectors in Rn. To make this more precise, fix an α > 0 to be chosen later, and let Θ0 =
Θ0(α) = {w ∈ Rn : 0 ≤ wi ≤ α√

4n
∀1 ≤ i ≤ n}, and let Θ = 1n + Θ0 = {1n + w : w ∈ Θ0}.

Let A ∈ Rn×m be a random matrix with entries Ai,j ∼ N (0, 1/n), and for all θ ∈ Θ and let
Bθ := A+ θ1Tm. Note that the matrix B∗ correspond simply to B1n .

Now let P be the statistical procedure which exhaustively searches over all v ∈ Rn, and
returns any v for which the following decomposition is satisfied:

Bθ = Ã+ v1Tm

s.t. Ã is 10 log n− incoherent
(1.7)

Furthermore, let pθ(C1) denote the probability that Equation 1.7 is satified for θ, and is
only for vectors v : ‖v− θ‖2 ≤ 1

C1m
. Since Bθ depends linearly in θ, we can see that pθ(C1)

is independent of θ, so we will write p(C1). Then if p(C1) ≥ p∗, P successfully returns a
vector θ̂ : ‖θ̂ − θ‖2 ≤ 1

C1m
.

In other words, P estimates the mean of m Gaussian random vectors in Rn with variance
σ2 = 1/n. However, it is shown in Rigollet (2014) that for for any α > 0 and any estimator
θ̂ of θ.

sup
θ∈Θ0(α)

Prθ

(
‖θ − θ̂‖ ≥ α

256
· σ

2n

m

)
≥ 1

2
− 2α (1.8)

Translating Θ0 by Θ and plugging in α = 1/8 and σ2 = 1/n gives that

sup
θ∈Θ0(1/8)

Prθ

(
‖θ − θ̂‖ ≥ 1

2048m

)
≥ 1

4
(1.9)
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Hence, it follows that with probability at least 1
4 , then P fails. Thus, either θ does not satisfy

the decomposition in Equation 1.7, or there is another vector v satisfying the decomposition
in Equation 1.7 such that ‖v−θ‖ ≥ 1

2048m . However, A is 10 log n incoherent with very high
probability by Proposition C.1.10, so θ satisfies the decomposition given by Equation 1.7
with probability at least, say 1/16. Hence, with probability at least 3/16, the decomposition

in Equation 1.7 holds for any v of distance at least
√

1
2048m away from θ. To conclude the

proof, note that the entries of A are bounded by n−1/4 with very high probability, and hence
Bθ is nonnegative for all θ ∈ Θ with very high probability.

5.1.4 Formalizing The Reduction

To formalize the reduction, we need to introduce a bit more notation:

Definition 5.1.5 ((C, k)-Favorable Distribution). We say that O is (C, k)-favorable (resp
(C, k, ρ)-favorable) nonnegative sample oracle for a matrix A if O can be queried for samples
y = Ax, where x is are drawn independently from a (C, k) favorable distribution D. We
define uniformly (C, k)-favorable and uniformly (C, k, ρ)-favorable oracles similarly. We
write y ∼ O denote that y is drawn from the oracle O. We will use the notation Õ = f(O)
to denote that the Õ is the oracle which returns samples f(y).

Moreover, we give the definition of an approximate S-NDL algorithm:

Definition 5.1.6 (Uniformly (C, k)-Favorable Distribution). We say that an algorithm A is
an (µ, δ0)-approximate S-NDL algorithm if, given a (C, ρ, k)-favorable nonnegative sample
oracle O for a µ incoherent matrix A∗ and an δ ≤ δ0, then there is a constant C for which
A(O, δ) returns a dictionary Ã whose columns are δ-signed-close to those of A∗ with high
probability, with run time and sample complexity on the order of O

(
nCpolylog(δ)

)
.

We now present the reduction which formalizes the steps in section 5.1.3 It precise guar-

Algorithm 4: Reduction from NOIDL to S-NDL

Data: (C, k)-favorable oracle O for µ-NOID Dictionary B∗ = A∗ + vcT ; Tolerance δ;
(δ0, O

∗(µ+
√
m/n)-Approximate S-NDL Algorithm A

Result: Nonnegative matrix B which is O(δ)-close to B∗ up to a Θ(1) re-scaling of
columns

Get the S-NDL oracle (Õ, v̂)← AverageInit(O, p1)
for dictionary Ã∗ : Normalize(Projv̂⊥(B∗)), with p1 = Ω̃ (m/k)

Learn approximate dictionary A← A(Õ, δ)
(Y, X̂)← Decode(A,O, .8C, p2) for p2 = Ω̃ (m)
return B ← InvertAndThreshold(Y, X̂)

antees are given by the following theorem:

Theorem 5.1.3 (Analysis of Reduction from NOIDL to S-NDL). Given an (µ/
√
n, δ0)-

approximate S-NDL algorithm, then for all δ ≤ δ0 for which δ = o
(

1/k + 1/
√
k log n

)
,

then, given a sample y = B∗x ∼ Õ, the decoding step in Algorithm 3 can recover x up to
an error of δ(k +

√
k log n) with high probability.
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Furthermore, if the spectrum of the empirical covariance matrix Σ∗ := E[(x−E[x])(x−
E[x])T is Θ(k/m), and δ = o

(
1/m+

√
k/m log n

)
, then Algorithm 4 returns an estimate

B of B∗ which is non-negative, and satisfies

‖B −B∗D‖F . δ
√
m(k + log n)‖B∗‖F (1.10)

where D is a diagonal matrix with Θ(1) entries along its diagonal.

The proof follows straightforwardly from combining the guarantees for the three subroutines
AverageInit, Decode, and InvertSample provided in Theorems 5.1.4, 5.1.7, 5.1.8 respectively.
We remark that learning B∗ up to a Θ(1) rescaling of its columns is an artificact of our
proof, but makes little difference due to the non-identifiability of the model up to scalings
of the samples entries/dictionary columns by constants.

5.1.5 Analysis of the Averaging Step

This section presents an analysis of the Averaging Algorithm: The exact guarantees are

Algorithm 5: AverageInit(O, p)
Data: (C, k)-favorable oracle O for µ/

√
n-NOID B∗; Sample Number p

Average: Estimate rank one component by v̂ = 1
p

∑p
j=1 y

(j), where y(j) ∼ Õ
Project: Return an S-NDL sample oracle Õ := Projv̂⊥(O)
return (Õ, v̂)

as follows:

Theorem 5.1.4. Suppose that B∗ is a µ/
√
n is a NOID with decomposition B∗ = A∗+vcT ,

and that O is a (C, k)-favorable nonnegative oracle for B∗, where all ci = Θ(1). Let v̂ =
1
p

∑p
j=1 y

(j). Then then

Ã∗ := Normalize(Projv̂⊥B
∗) is an O

(√
n

m
+ µ

)
incoherent dictionary (1.11)

and the oracle Õ := Projv̂⊥O is a (.9C, ρ, k)-favorable nonnegative oracle for Ã∗. Further-
more, ‖Ã∗‖ ≤ 1.2‖A∗‖.

The proof of Theorem 5.1.4 hinges on a more fundamental, though later elementary proposi-
tion about the average of columns of a NOID. We state a simplified version of the proposition
here; the proposition is expressed in its more precise form in Proposition B.1.1.

Proposition 5.1.5. Suppose that B is a nonnegative offset incoherent dictionary with
decomposition B = A + vcT and incoherence parameter µ for which ‖A‖i = Θ(1) adn
ci = Θ(1). for all i ∈ [m], and ‖v‖ = Θ(1). Define v̂ =

∑
iBi and P := Projv̂⊥. Then if

1
m + µ√

n
= O* (1), then

cos(PBi, PBj) ≤ O

(
µ√
n

+
1

m

)
(1.12)

and ‖PBi‖2 ≥ (9/10)‖Ai‖2.
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The next lemma leverages Proposition 5.1.5 to prove Theorem 5.1.4 for deterministic,
weighted averages of the columns of B∗:

Lemma 5.1.6. Suppose that B∗ is a µ− is a NOID with decomposition B∗ = A∗ + vcT ,
and that O is a (C, k)-favorable nonnegative oracle for B∗. Then if v̂ = 1

m

∑m
i=1wiB

∗
i + ε.

Then if ‖ε‖ = o (1/m), ci = Θ(1), wi = Θ(1), and max( 1
m , µ/

√
n) is bounded above by some

universal constant, then

Ã∗ := Normalize(Projv̂⊥B
∗) is an O

(
µ+
√
n/m

)
incoherent dictionary (1.13)

and the oracle Õ := Projv̂⊥O is a (.9C, k)-favorable nonnegative oracle for Ã∗. Furthermore,
‖Ã∗‖ ≤ 1.2‖A∗‖

Proof. We prove the result for when ε = 0; elementary computation extend to the case with
error. We write

B′ = B∗diag(wi) = A∗diag(wi) + (c ◦ w)vTi (1.14)

and note that
∑

iB
′
i = v̂. Then, since ‖A∗‖ = 1, and both ci = Θ(1) and wi = Θ(1), then,

B′ is (Θ(1),Θ(1))−well conditioned. Consequently, if max( 1
m , µ/

√
n) is sufficently small, it

follows from Proposition B.1.1 that the columns of A′ := Projv̂⊥C are at least
√

9/10wi in
magnitude, and that cos(A′i, A

′
j) = O( 1

m + µ√
n

). Hence, Ã = Normalize(Ai) is a O( 1
m + µ√

n
)

dictionary. Furthermore, the samples ỹ := Projv̂⊥Õ can be expressed as

ỹ = Projv̂⊥B
∗x

= Projv̂⊥B
′diag(wi)x

= A′diag(wi)x

= Ãdiag(‖A′‖−1
i wi)x

= Ãx̃

where x̃ = diag(‖A′‖−1
i wi)x. Since ‖A′i‖ ∈ [

√
9/10wi, wi], ‖A′‖−1

i wi ∈ [
√

9/10, 1] ⊂ [.9, 1],
so x̃ has a (.9C, k)-favorable nonnegative distribution.

We are now ready to complete the proof of Theorem 5.1.4

Proof of Theorem 5.1.4. Projecting onto v̂ is equivalent to projecting onto a rescaling 1
k v̂ =

1
kp

∑p
j=1 y

(j) = 1
m

∑m
i=1B

∗
i (mkp

∑p
j=1 x

(j)
i ). In light of Lemma 5.1.6, it suffices to show that,

with high probability, m
kp

∑p
j=1 x

(j)
i = Θ(1) for all i ∈ [m]. To this end, fix an i in m, and

let W = {j : x
(j)
i 6= 0}.

By a Chernoff bound, pqi/2 ≤ |W | ≤ 2pqi with high probability given p = Ω̃(k/m) sam-
ples, where we recall that qi = Pr(i ∈ supp(x)). Moreover, if |W | = Ω̃(1), then Subgaussian

concentration yields that
∑

i∈W x
(j)
i ∈ [|W |Ei[xi]/2, 2|W |Ei[xi]] with high probability. Con-

sequently,

m

kp

p∑
j=1

x
(j)
i =

m

kp

W∑
j=1

x
(j)
i ∈

(
m

kp
pqiEi[Xi]

)
· [1/4, 4] =

(mqi
k

Ei[Xi]
)
· [1/4, 4] (1.15)
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The result now follows since mqi
k Ei[Xi] = Θ(1). We also remark that, by increasing the

number of log factors in the sample size if necessary, we can even ensure that

m

kp

p∑
j=1

x
(j)
i ∈

(mqi
k

Ei[Xi]
)
· [1− o(1), 1 + o(1)] (1.16)

with high probability.

5.1.6 Analysis of Decoding Step

This section uses standard results from perturbation analysis to establish the efficacy of the
decoding step:

Algorithm 6: Decode(O, A,C, p)
Data: (C, k)-favorable oracle O for Incoherent Dictionary A∗; Estimate A which is

δ-close to A∗, Sample Number p
Initialize Y ∈ Rn×p, X ∈ Rm×p;
for j = 1, 2, . . . , p do

Sample y(j) = A∗x(j) ∼ O, and set Yj = y(j)

Estimate supp(x(j)) by Ŝ = {i : |ATi y(j)| > C/2}
Estimate x(j) by first letting x̂ = ((AŜ)†y(j)), then setting all the entries of x̂

which not in Ŝ to zero, and letting X̂j = x̂

return (X̂, Y )

Theorem 5.1.7 (Decoding). Let O be (C, k)-favorable oracle for Ã∗, and suppose that A

is δ-(signed)-close to A∗ for δ = o
(

1/
√
k
)

. If x ∼ O and x̂ as computed in Algorithm 6,

then

‖x̂− x‖ = O
(√

k‖xi‖δ
)

= O
(

(k +
√
k log n)δ

)
(1.17)

and supp(x̂) ⊂ supp(x) with high probability. Hence, if Algorithm 6 returns the decoding
pair (X̂, Y ), where Y = A∗X, then X̂ is (k +

√
k log n)δ-(signed)-close to X̂. We remark

here that the scalings of the entries of x and x̂ are as to ensure that the columns of Ã∗ have
unit norm.

Proof. First we show that ‖A†S − (Ã∗S)†‖ ≤
√
kδ. Using a standard matrix perturbation

analysis (see Lemma 2.7.1 in Golub and Van Loan (2012)) , and the fact that κ(Ã∗S) =
σmax(A∗S)/σmin(A∗S) = Θ(1) by Lemma D.1.1, it holds that

‖‖A†S − (A∗S)†‖ ≤ O (‖AS −A∗S‖) (1.18)

whenever ‖AS − Ã∗S‖ = o (1). Since A is δ-close to Ã∗, then ‖AS − Ã∗S‖ ≤
√
kδ = o(1) for

δ = o(1/
√
k). To conclude, note that with high probability S = Ŝ. Furthermore, let set S

of all vectors in Rm whose support is S is convex, and so

‖ProjŜ x̂‖
whp
= ‖ProjS x̂− x‖ ≤ ‖x̂− x‖ (1.19)
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But ‖ProjŜ x̂‖ is precisely the operation which sets to zero all entries of x̂ which are not in

Ŝ. The bound on ‖xS‖ follows from B.3.1.

Remark. 3 Since we are working in the under complete setting, we could also naively decode
samples Y without sign-thresholding by taking X̂ = A†Y . Using similar arugments, we can
show that if δ = o (1/m), then ‖X̂ − X‖ ≤ mδ‖X‖, where X is the matrix whose j-th
column is the j-th sparse coefficient x(j). It turns out that this method of decoding can be
used to prove slightly sharper guarantees than those in Theorem 5.1.3. Nevertheless, the
fact that the naive decoding (wihout sign-thresholding) foregoes sign thresholding may risk
greater sensitivity to noise, and so we stick with the more robust decoding scheme given by
Algorithm 6.

5.1.7 Analysis of the Inversion Algorithm

Given decodings of label samples, we use the following algorithm to recover the non-negative
dictionary B∗:

Algorithm 7: InvertSample((Y, X̂))

Data: Approximately Decoded Pair (Y, X̂) ∈ Rn×p × Rm×p
Average: Set ȳ ← 1

p

∑p
i=1 Yi and x̄← 1

pX̂i.

Subtract Means: Set U = Y − ȳ1T and Ŵ = X̂ − x̄1T .
Inverset: B →WÛ †

Threshold: For i ∈ [m], Bi → ProjRn
≥0

(Bi)

The analysis of this subroutine is as follows:

Theorem 5.1.8. Suppose that we are given N samples x(1), . . . , x(N) with approximate
decoding x̂(1), . . . , x̂(N) for which maxj ‖x(j) − x̂(j)‖ ≤ η. Let Ŵ is the matrix whose j-th

column is x̂(j)− 1
N

∑N
r=1 x̂

(r), and U be the matrix whose j-th column is y(j)− 1
N

∑N
r=1 y

(r)).

Then, if η = o (k/m), N = Ω̃(m), and all the eigenvalues of the population covariance
matrix Σ∗ := E[(x− E[x])(x− E[x])T are Θ(k/m), then with high probability

‖B̃∗ − UŴ †‖F . η
√
m/k‖B∗‖F (1.20)

where B̃∗ is obtained by rescaling the columns of B∗ by the diagonal matrix D := diag(‖Projv̂B
∗‖),

where v̂ is as defined as in Algorithm 5. Recall from Theorem 5.1.4 that the spectrum of D
is Θ(1) with high probability

Proof. First, define the sample average µ = 1
N

∑
j x

(j) is the sample average of the hidden

samples, the empirical covariance matrix Σ̃ = 1
N

∑
j(x

(j) − µ)(x(j) − µ)T . The following

lemma establishes that Σ̃ is well-conditioned

Lemma 5.1.9. Suppose that Σ∗ is well conditioned, in the sense that there are constants
0 < c1 ≤ c2

c1k

m
I � Σ∗ � c2k

m
I (1.21)

3This remark was added after the May 4th draft
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Then, if N = Ω̃ (m), Σ̃ is also well conditioned, in the sense that

c′1k

m
I � Σ̃ � c′2k

m
I (1.22)

for possibly different constants 0 < c′1 ≤ c′2
The proof relies on a matrix concentration bound from Vershynin (2010), and we defer

the proof to the appendix. Now let W be the matrix whose j-th column is (x(j)−µ)/
√
N . It

is easy to verify that if ‖x(j)− x̂(j)‖ ≤ η, then ‖Wj−Ŵj‖ ≤ 2η/
√
N , so that ‖W −Ŵ‖ ≤ 2η.

Next, note that WW T is precisely Σ. Hence, given N = Ω̃ samples, it follows that
σmin(W ) and σmax(W ) are both Θ(k/m). Hence, as long as η = o (σmin(‖W‖)) = o (k/m),
we have by the perturbation analysis from Lemma 2.7.1 in Golub and Van Loan (2012)
yields

‖B̂ − B̃∗‖F = ‖U(Ŵ † − Ŵ †)‖F
= ‖Ŵ † − (Ŵ )†‖2‖U‖F
. ‖W‖−2‖W − Ŵ‖2‖B̃∗W‖F
≤ ‖W‖−1‖W − Ŵ‖2‖B̃∗‖F
≤ ‖W‖−1η‖B̃∗‖F
. η

√
m/k‖B∗‖F

To conclude, we note that B̃∗ lies in the convex set of nonnegative real matrices, and
hence ‖Proj{Rn×m

≥0 }B̂ − B̃∗‖F ≤ ProjB̂‖B̂ − B̃∗‖F since the Frobenius norm is a Euclidean

distance.

5.2 Semi-Nonnegative Dictionary Learning

In this section, we present a projection based algorithm for learning δ-S-NDL, and a com-
plementary intialization algorithm. In what follows, we assume that our samples will be
drawn from a (C, k, ρ)-favorable oracle O.

Before continuing, we note that the S-NDL learning problem is sign-sensitive, and so an
S−NDL algorithm will need to learn the signs of A∗i correctly. Our approach will be first to
learn an estimate of A∗ which is δ-close to A∗i , and then to use the algorithms in section 5.2.4
to get an estimate which is A∗-signed-δ-close. To simplify the exposition, the projection
algorithms in section 5.2.3 and initialization scheme in section 5.2.5 will establish δ-closeness
results (rather than signed closeness), and with therefore assume that the columns of A∗i
are permuted and sign-flipped in such away that ‖Ai − A∗i ‖ ≤ δ. Section 5.2.2 and 5.2.4
will be more precise in stating results in terms of the signs of ATi A

∗
i.

We are nwo ready to state the main convergence result for algorithm 8

Theorem 5.2.1 (Convergence for Algorithm 8). Suppose that A is δ-near to A∗, where
δ = O* (1/ρλi), and that A∗ is o

(
ρ−1λ−2

i

√
n
)
-incoherent, where λi is the parameter defined

in Equation 2.30. Then, Algorithm 8 with sample parameter p = Ω̃
(
k2
)

and step-size
ηi = Θ∗(1) satisfies

‖Asi −A∗i ‖2 ≤ (1− ν)s‖A0
i −A∗‖2i + n−ω(1) (2.23)
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for some ν ∈ (0, 1/2), and for any s = 1, 2, . . . , T , using Ω̃ (mk) total samples at each
step. In particular, A∗ converges geometrically to an arbitrary inverse polynomial er-
ror. Furthermore, after the sign correction step, A(T ) is δ(T )-signed-close to A∗, where
δ(T ) ≤ (1− ν)T/2‖A0

i − A∗‖i. For arbitrary (C, k, ρ)-favorable distributions, it suffices that
δ = O* (1/ρk) and A∗ is o

(
ρ−1k−2√n

)
-incoherent. For uniformly (C, k, ρ)-favorable dis-

tributions, it suffices that δ = O*
(

1/ρ
√
k
)

and A∗ is o
(
ρ−1k−1n

)
.

We defer of the proof of the the theorem to section B.4. The specification in the second para-
graph of the theorem comes from the following lemma, which follows from straightforward
computations in the same vein as the example given in section 5.2.1:

Lemma 5.2.2 (Bounds on λ). For any (C, k)-favorable distribution, then λi = O(k). If
the distribution is (C, k)-uniformly favorable, then λi = O(

√
k).

We remark that, for uniformly (C, k)-favorable distributions, the radius of convergence and
incoherence requirements for A∗ are essentially the same as those in Theorem 4.1.1, up to
an extra factor of ρ−1.

The main technical obstacle is that the sparse coefficients x are nonnegative, and
E[xixj ] > 0. As explained in Section 5.2.1, even taking differences between samples will
yield a non-trivial covariance structure. As a compromise, use samples consists of the differ-
ences between two samples which share a common entry in their support. This observation
lies at the heart of the S-NDL Projection Descent Algorithm

Algorithm 8: SNDL Projection Descent Algorithm (M)

Input: Initial estimate A0, step size η, Number of Iterations T , Lower Bound C,
Sample Sizes p, (C, k, ρ)-favorable oracle O
for s = 1, 2, . . . , T do

Get Samples:
Initialize array of samples Yi, support estimates Si, and sample counts pj = 1,
for i ∈ [m].
while pj ≤ 2p for some i ∈ [m] do

Sample y ∼ O and set Ŝ ← {i ∈ [m] : |ATi y(1)| > τ} for i ∈ Ŝ for which
pj < 2p do

Yi[pj ]← y and Si[pj ]← Ŝ, and pj ← pj + 1

Update: As+1
i = Asi − ηĝsi where

ĝsi =
1

p

p∑
j=1

Mprj
i (S(j,i), A)z(j,i) sign((Asi )

T z(j,i)) (2.24)

and z(j,i) = Yi[2j − 1]− Yi[2j], S(j,i) = Si[2j − 1]− Si[2j]
return CorrectSigns(A

(T )
i ,O, C) or CorrectSigns2(A

(T )
i ,O, C)

We also complement Algorithm 8 with a sketch of an initialization algorithm, described
in section 5.2.5 and whose analysis is given by Theorem 5.2.13. The algorithm is a sim-
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ple modification of the ideas in Arora et al. (2014). Combining this initialization with
Theorem 5.2.1 gives the following theorem:

Theorem 5.2.3 (Polynomial Time Algorithm for S-NDL under Suitable Conditions).
Given samples y = A∗x, where x come from a (C, k, ρ)-favorable for which λ′i = O (k/m)
distribution, k = O*

(
m2/5

)
, and A∗ ∈ Rn×n is κ

√
n-incoherent, where

κ = o
(
ρ−1λ−2

i

)
and κ = O*

(
k2 + k log2 n

)
(2.25)

Then, there is a two-stage polynomial time algorithm, using only Ω̃
(
m2/k2

)
samples up-

front, and then Ω̃ (mk) samples at each successive iterations, which converges at a geometric
rate to A∗ up to arbitrarily small inverse polynomial error. In particular, such an algorithm
exists in the setting where the samples x are uniformly-(C, k, ρ)-favorable, k = O*

(
m2/5

)
,

and A∗ ∈ Rm/n is κ
√
n-incoherent, where κ-satisfies Equation 2.25.

Proof. It is easy to verify that, under the conditions of this theorem, Assumption 6 and
δ = O* (1/λi) since λi = O(k). Hence, the result follows from combining Theorem 5.2.1
and Theorem 5.2.13. When

5.2.1 Challenges for Non-Negative Data

The algorithms presented in Chapters 1-4 required that the entries of the latent samples
x are symmetrically distributed about zero, k-sparse and independent conditioned on their
support. On the other hand, S-NDL presents us with samples y = A∗x which are entrywise
nonnegative. If we use samples samples z := y(1) − y(2), then we can write z = A∗w, where
w := x(1)− x(2) is no more 2k sparse and symmetrically distributed. However, the columns
of w are correlated. Indeed, suppose that the latent vectors xi are binary, and lets compute
E[wiwj for i 6= j ∈ [m]. We have

E[wiwj ] = E[x
(1)
i x

(1)
j + x

(2)
i x

(2)
j − (x

(1)
i x

(2)
j + x

(2)
i x

(1)
j )]

= E[x
(1)
i x

(1)
j ]− E[x

(1)
i x

(1)
j

∣∣supp(w) = S]

= Pr(i, j ∈ supp(x(1)))− Pr(i ∈ supp(x(1)), j ∈ supp(x(2))) = qi,j − qiqj

where qi,j and qi and qj are as defined in the statement of Assumption 2. In general, we do
not assume that qi,j − qiqj , and even if the supports are drawn uniformly over supports of

size k, we have |qi,j − qiqj | = | k(k−1)
m(m−1) −

k2

m2 | ≤ −km2 6= 0. Through similar computations, one
can also verify that wi and wj are still correlated, even after conditioning on the support of
w!

One way to avoid correlations would be to only use samples z = y(1) − y(2) for which
the coefficient vectors x(1) and x(2) share the exact same support. Unfortunately, a sample
with a given support S may occur exponentially infrequently: in the uniform case, such
samples occur with probability

(
m
k

)
≈ mk. As a compromise, we consider looking at samples

z[i] = y(1) − y(2) for which x(1) and x(2) both share the entry i.
To recap, our notation is as follows: z := y(1) − y(2) = A∗w, where w := x(1) −

x(2), supp(w) = supp(x1) ∪ supp(x2), and z[i] and w[i] have the distribution of z and w
conditioned on the event that i ∈ supp(x1) ∩ supp(x2). If Assumption 3 holds, then we
immediately verify that:
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Claim 5.2.4. w[i]i is independent of w[i]j for all j 6= i, even after conditioning on supp(w[i]).

5.2.2 Sign Thresholding

Before analyzing the projection algorithm, we establish that sign thresholding is effective
with high probability on the nonnegative samples. The key technical result is that

Lemma 5.2.5. Suppose that A∗ is κ
√
n incoherent, then with high probability it holds that

A∗Ti y = sign(ATi A
∗
i )1(i ∈ supp(x)±O(kκ)

= sign(ATi A
∗
i )C1(I ∈ supp(x))±O((k + log n)κ)

(2.26)

Moreover, for any v ∈ Rn, it holds with high probability that

vT y ≤ O(‖v‖(
√
k + log n)) (2.27)

which we prove in Section B.5 in the appendix. As a consequence, we have

Lemma 5.2.6. If A∗ is O∗(
√
n/(k +

√
k log n))-incoherent and A is O∗(1/

√
k + log n/k)-

close to A, then with high probability, |ATi y| ≥ C/2 precisely when i ∈ S. Furthermore,
when we distinguish between the signs of Ai and A∗i, then signC/2(ATi y) = sign(ATi A

∗
i ).

Proof of Lemma 5.2.5. Write ATi y = A∗Ti y − (A∗i − Ai)T y, and apply the following Claim
noting that ‖A∗i −Ai‖ = O∗(1/

√
k + log n/k)

As a corollary, we have

Corollary. Given samples z = y(1)− y(2), we can estimate the support Ŝ of w = x(1)−x(2)

with high probability by setting

Ŝ = {i ∈ [m] : |ATi y(1)| > C/2 or |ATi y(1)| > C/2} (2.28)

5.2.3 A Projection Algorithm for S-NDL

To ease notation, we drop the dependence on the iteration. Following section 5.2.1, let
z = y(1)−y(2) and y(r) = A∗x(r) for r = 1, 2, and let z[i] ∼ z

∣∣i ∈ S := supp(x(1)∩supp(x(2)).
The main theorem of this subsection is that the expectation the gradients under correctly
support recovery given by

Gi := Ei[Mprj
i (S)z[i]sign(ATi zi)] (2.29)

are are (Θ(1), 0, δ)-true after rescaling, as are the gradients ĝis from Algorithm 8:

Proposition 5.2.7. Suppose that A is δ-near to A∗, where δ = O* (1/ρλi), and that A∗

is κ
√
n-incoherent, where κρλ2

i = o(1). If Gi is defined as in Equation 2.29, then qiGi is
(Θ(1), δ, n−ω(1))-true. Furthermore, if Algorithm 8 uses p = nO(1), then qigi := qiE[ĝsi ] is
(Θ(1), δ, n−ω(1))-true as well.
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In the interest of brevity, we do not state an infinite sample version of theorem 5.2.1,
and defer the proof of the finite sample result from the beginning of Section 5.2 to the
appendix. Following the proof strategy for the projection rule for mean-zero distributions,
we differentiate between a signal component G1,i := E[Mprj

i A∗ixisignτ (ATi y)] and the noise

G2,i := E[Mprj
i y−isignτ (ATi y)]. First, we need to quantify the degree of support indepen-

dence by the following parameter:

λi :=
√

ES:i∈S‖EU(i)[wUw
T
U‖l1 (2.30)

where, for a set S ⊂ [m], let U(i) denote the set U := S − {i}, and let EU(i)[·] := E[·
∣∣S =

U∪{i}]. We remark that λi = Ω(
√
k). We also use the notation z−i = A∗UwU , similar to the

convention for y−i in the previous chapters, and Ei[·
∣∣] to denote that i ∈ supp(x1)∩supp(x2).

The following controls E[|ATi z−i|] in terms of λ

Lemma 5.2.8. If A∗ is κ
√
nincoherent and A is δ-close to A∗, then

Ei[|ATi z−i|] ≤
√
E[|ATi A∗UwU |2] . ‖Ai −A∗‖+ κλ (2.31)

Proof. By Jensens inequality and the fact that (a+ b)2 ≤ 2a2 + 2b2, we have

Ei[|ATi A∗UwU |] ≤
√
E[|ATi A∗UwU |2]

≤ 2Ei[|(Ai −A∗)TA∗UwU |2] + 2Ei[|A∗TA∗UwU |2]

Next,

Ei[|(Ai −A∗)TA∗UwU |2] = Ei[(Ai −A∗)TA∗UwUwTUA∗U (Ai −A∗)]
≤ ‖Ai −A∗i‖2‖A∗i‖2‖Ei[wUwTU ]‖
. ‖Ai −A∗i‖2O

by noting that ‖A∗‖ = O(1) in the under complete setting, and that the the diagonals of
‖wUwTU‖ are no more than O(k/m), and the off diagonals no more than O(k2/m2), so that

‖Ei[wUwTU ]‖ = O(k2/m) = O(1). To control Ei‖Mprj
i (U)A∗UwU‖2, we can write

Ei‖ATi A∗UwU‖2 = ES:i∈SE‖ATi A∗UwU
∣∣U = S − {i}‖2

= ES:i∈SE[‖ATi A∗UwU
∣∣U = S − {i}‖2]

= ES:i∈SE[‖
∑
i

ATi A
∗
rwU

∣∣U = S − {i}‖2]

≤ τ2ES:i∈S‖E[wUw
T
U

∣∣U = S − {i}]‖l1
= τ2λ2

i

The first major consequence of the above lemma is that
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Lemma 5.2.9. If A∗ is κ
√
nincoherent and A is δ-close to A∗, and ρ(δ + κλ) = O* (1).

Then ai := E[wisign(ATi y)] is Θ (1).

Proof. One the one hand, we have E[wisignτ (ATi y)] ≤ E[|wi|]. For the other direction, note

that wi = x
(1)
i − x

(2)
i is ρ-smooth, and sine A∗Ti Ai = 1 − O(1), ATi A

∗
iwi = (1 + o(1))ρ

smooth

E[wisignτ (ATi y)] = E[|wi|]− E[(sign(ATi A
∗
iwi)− sign(Azi y))wi]

≥ E[|wi|]− E[|sign(ATi A
∗
iwi)− sign(ATi z)| · |wi|]

≥ E[|wi|]− ρ(1 + o(1))E[|ATi z−i| · |wi|]
≥ E[|wi|]− ρ(1 + o(1))E[w2

i ] · E[|ATi z−i|2]

≥ E[|wi|]−O (ρδ + ρκλ)

The lemma now follows from the stated assumptions.

Hence, we have the following analogue of Proposition 4.1.3

Corollary. If δ = O*
(

1/
√
k
)

, then

Ei[Mprj
i A∗iwisign(ATi z)] = ai(A

∗
i −Ai) + o(‖A∗i −Ai‖) + γ (2.32)

where again ai := Θ(1).

Note that we do not threshold in the sign-estimate step, since thresholding was already
taken care of in the sample collection step. We can also use Lemma 5.2.8 to control the
“noise term”:

Proposition 5.2.10.

‖Ei[Mprj
i (S)A∗UwU ]‖ . ‖Ai −A∗‖ρδλ+ ρδκλ2 (2.33)

Proof. By Cauchy Schwartz, we have

‖Ei[Mprj
i (S)A∗UwU ]‖ ≤ Ei[‖Mprj

i (U)A∗UwU‖
∣∣1(sign(ATi A

∗
iwi)− sign(ATi y)

∣∣]
. ρEi[‖Mprj

i (U)A∗UwU‖|ATi A∗UwU |]

≤ ρ

√
Ei[‖Mprj

i (U)A∗UwU‖2]E[|ATi A∗UwU |2]

To control Ei‖Mprj
i (U)A∗UwU‖2, we can write

Ei‖Mprj
i (U)A∗UwU‖2 = ES:i∈SE‖Mprj

i (U)A∗UwU
∣∣U = S − {i}‖2

Conditioned on U , the vectors Mprj
i (U)A∗j for j ∈ U are deterministic and bounded in

norm by δ. Hence, Claim D.2.1 yields:

Ei[‖Mprj
i (U)A∗UwU

∣∣U‖2] ≤ δ‖wUwTUE[
∣∣U ]‖l1 = δλ (2.34)

Consequently,

‖Ei[Mprj
i (S)A∗UwU ]‖ ≤ ‖Ai −A∗‖ρδλ+ ρκλ2 (2.35)
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Putting together Proposition 5.2.3 and Proposition 5.2.10 helps us demonstrate that E[ĝis]
is (Θ(1), δ, n−ω(1)-true after a rescaling:

Proof of Proposition 5.2.7. Let z̃(j) be the distribution of the j−th sample selected for the
update rule ĝis in Algorithm 2.2.1, and let E(j) be the event that the the samples z(j)

were just taken from the first 2j samples y = A∗x for which i ∈ supp(x). Let z[i] ∼
z
∣∣i ∈ supp(x(1)) ∩ supp(x(2)). Since E(j) occurs with high probability, and z̃(j)1(E(j)) and

z[i]1(E(j)) have the same distribution. Hence,

E[ĝi] = E[Mprj
i z̃sign(ATi z̃)]

= E[Mprj
i z̃sign(ATi z̃)1(E(j)] + γ

= E[Mprj
i z[i]sign(ATi z[i])1(E(j)] + γ

= E[Mprj
i z[i]sign(ATi z[i])] + γ

= Ei[Mprj
i zsign(ATi z)] + γ

= Gi + γ

(2.36)

Noting that λ = Ω(
√
k), and that ρ = Ω(1), the bound on Gi follows from Proposition 5.2.3

and Proposition 5.2.10

5.2.4 Correcting the Signs From the Projection Algorithm

Note that coordinate descent only learns A which whose columns are within δ of the columns
of A∗, up to permutations and sign flips. However, the reduction in Algorithm 4 requires
that A be δ-signed-close to A. However, this is not hard to do, given an estimate of A with

is δ = o
(

1/k + 1/
√
k log n

)
close to A∗:

Proposition 5.2.11. Suppose that A∗ is O∗(
√
n/(k +

√
k log n))-incoherent. Then, given

an estimate an estimate A∗ of A with is δ-close to A∗ for δ = o
(

1/k + 1/
√
k log n

)
, Algo-

rithm 9 returns a dictionary which is δ-signed-close to A∗ using at most Ω̃ (m/k) samples.

Proof. Let Σ be the diagonal matrix of signs such that AΣ is δ-signed-close to A∗. By the
sign thresholding analysis in Lemma 5.2.6 it holds with signτ (ATi y) = sign(ATi A

∗) = Σii

with high probability. Hence, each sign flip corrects the sign of the the i-th columns of A.
To view a sample from every column, we need only Ω̃ (m/k) samples.

In the case where A∗ is not as incoherent, we can use a slightly more complictated algo-
rithm, which calls Algorithm 6 as a subroutine: Algorithm 10 matches the performance to
Algorithm 9, and we prove the following proposition by adapting many of the same ideas:

Proposition 5.2.12. Given an estimate an estimate A∗ of A shi h is δ-close to A∗ for

δ = o
(

1/k + 1/
√
k log n

)
, Algorithm 10 returns a dictionary which is δ-signed-close to A∗

using at most Ω̃ (m/k) samples.
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Algorithm 9: CorrectSigns(A,O, C)

Data: Dictionary A which is δ-close to A∗

Data: Dictionary A which is δ-signed-close to
Initialize S = [m] while S is not empty do

Query sample y
for i = 1, . . . ,m do

If signi := signC/2(ATi y) > 0, flip Ai ← signiAi and remove i from S.

return A

Algorithm 10: CorrectSigns2(A,O, C)

Data: Dictionary A which is δ-close to A∗, (C, k)-favorable sample oracle O for A∗

Data: Dictionary A which is δ-signed-close to
Initialize S = [m] while S is not empty do

(yS , x̂S) = Decode(A,O, C, 1) for i = 1, . . . ,m do
If x̂i 6= 0, flip Ai ← sign(xi)Ai and remove i from S.

return A

5.2.5 Sketch of an Initialization Algorithm

In the interest of brevity, we only sketch the initialization algorithm; the ideas are not
new, and can be adapted mostly from the OverlappingCluster and OverlappingAverage
algorithms in Arora et al. (2014) under the following assumptions:

Assumption 6. Suppose that k ≤ O*
(
m2/5

)
, that is A∗ is µ-incoherent, with µ/

√
n ≤

O∗(1/(k2 + k log2 n), and the sparse coefficient vectors are (C, k)-favorable, and that λ′i :=
σmax(E[w−iw

T
−i
∣∣i ∈ S]) = O(k/m). We remark that λ′i = O(k/m) when x come from a

uniformly-(C, k, ρ)-favorable distribution.

Under these conditions, we have

Theorem 5.2.13. Under Asssumption 6, there is a polynomial is a time algorithm, which,
when given p = Ω̃

(
m2 log2m/k2

)
samples, returns an estimate of A which is O(k/m) close

to A∗.

We devote the rest of the section to a sketch of the above theorem’s proof. The only
modification to the techniques in Arora et al. (2014) are that the sparse coefficients are
nonnegative, and we need to learn A∗i with the correct sign. First, we need to show that we
can detect overlapping entries with high probability

Lemma 5.2.14 (Detecting Common Entries). If A∗ is µ-incoherent, with µ/
√
n ≤ O∗(1/(k2+

k log2 n), then given two samples y(1) = A∗x(1), y(2) = A∗x(2), it holds with high probability
that 〈y(1), y(2)〉 ≥ C2/2 precisely when supp(x(1)) ∩ supp(x(2)) 6= ∅

Proof. The proof is immediate from summing up the first display in Lemma 5.2.5.

With these thresholding bounds, we apply OverlappingCluster algorithm in Arora et al.
(2014), which has the following guarantees
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Lemma 5.2.15. If k = O*
(
n2/5

)
, then given p = Ω̃

(
m2 log2m/k2

)
samples y(j) = A∗x(j),

there is a polynomial time algorithm which can recover the sets S1, . . . , Sm, where Si = {j :
i ∈ supp(x(j))} with high probability

Finally, we have an SVD initialization based on the the “Overlapping Average” algorithm
in Arora et al. (2014):

Lemma 5.2.16 (SVD Initialization). Let Λ(i) be the matrix E[w−iw
T
−i
∣∣i ∈ S]. Suppose

that ‖Q(i)‖ = O(k/m), and for all {i, j, r} ∈
(

[m]
3

)
, Ei,r[xr]Ei,j [xj ] = Ei,j,r[xjxr]. Let z(j)[i]

have the distribution of z(j)
∣∣i ∈ S. Then the top singular vector of

Mi :=
1

p

n∑
j

(z[i](j))(z[i](j))T (2.37)

satisfies ‖v −±A∗i‖ = O(k/m) as long as p = Ω̃ (m/k).

Sketch. For ease of notation, let z(j) have the distribution of z(j)[i] and w(j) the distribution
of w(j)

∣∣i ∈ S. Then

Mi :=
1

p

p∑
i=1

z(j))((j))T =
1

p

p∑
i=1

A∗wwTA∗T

= AiA
T
i

1

p

∑
j

w2
i +A∗−iE[w−iw

T
−i]A

∗
−i

+ A∗−i(
1

n

p∑
i=1

w−iw
T
−i − E[w−iw

T
−i])(A

∗
−i)

T

By standard subgaussian arguments, we see that AiA
T
i

1
p

∑
j w

2
i = Ω(AiA

T
i ). Furthermore,

by assumption, A∗E[w−iw
T
−i]A

∗ = O(‖A∗‖2k/m) = O (k/m). Using a bound like the one

in C.1.1, with p = Ω̃(m2/k2), the random error is controlled by o (k/m). Finally, by Wedins
Theorem (see Stewart (1998)), it holds that the top singular vector of Mi is distance O(k/m)
from A∗i . The proof for vi is similar, using Bernstein’s inequality.

Proof of Theorem 5.2.13. To prove the theorem, take p = Ω̃
(
m2/k2

)
samples, detecting

pairwise support overlaps using the strategy in Lemma 5.2.14, and feed them to Overlap-
pingCluster based algorithm. Next, we run the SVD initialization to get estimates of Ai of
A∗i which are within O(k/m), up to a choice of signs. Standard high probability arguments
show that if z[i] satisfy the concentration in 5.2.16, then so will the clustered samples.

Page 61 of 99



Conclusion

In the present work, we applied a very simple anti-concentration assumption to substantially
generalize the scope of models in which efficient gradient descent algorithms can be shown to
learn incoherent dictionaries. By utilizing more sophisticated forms of anti-concentration,
we wonder if we can answer even more difficult questions that arise in the context of sparse
coding. For example, we would like to investigate if anti-concentration might be the correct
lens through which to help explain the mystery that sparse coding algorithms seem to
converge when initializated with random samples.

More generally, recent work Hazan et al. (2015) has shown that certain non-convex
functions can be optimized by effectively “smoothing out” the objective using techniques
that resemble zeroth-order convex optimization. Though optimisitic, we hope that the tools
from anti-concentration might one day demonstrate similar “smoothing-out” phenomena
when learning broader classes of non-convex objectives under suitably anti-concentrated
generative models.
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Appendix A

Support Results for Gradient
Descent

A.1 Update Rule Computations

A.1.1 Meta-Algorithm Generalizes Neural Rule

Given a sample y = A∗x where x is C-lower bounded, the neural update rule estimates
the support Ŝ = {i ∈ [m] : |(As)Ti y|} ≥ C/2. The algorithm then computes an empirical
average in order to approximate

gsi = E[(y −Asx̂)sign(x̂)] = E[(y −Asx̂)sign(x̂)
∣∣i ∈ S]Pr(i ∈ S) (1.1)

where x̂ = ThresC/2((As)T y). Hence sign(x̂) = signC/2((Asi )
T y) and

Asx̂ =
∑
r∈Ŝ

Asr(A
s
r)
T y = As

Ŝ
(As

Ŝ
)T (1.2)

Thus, we have that

1

Pr(i ∈ S)
gsi = E[(I −As

Ŝ
(As

Ŝ
)T )signC/2((Asi )

T y)] (1.3)

which shows that, up to a rescaling by Pr(i ∈ S) (which is handled by the choice of the step
size η), the Neural Update Rule is an instantiation of our Meta-Algorithm.

A.1.2 Proofs for Automated Analysis and Sign-Thresholding

Proof of Theorem 3.1.3. We prove the first part of the proposition in the more general case
where gs are (αsi , δ

s + es, ε)-true, where again

e2
s ≤ (1− αminη0/4)sδ2

0 + 64ζ2/α2
min (1.4)

The high probability analogue and the statement with δs closeness instead of (δs, 2)-nearness
will follow from similar arguments.

First, we need to show that the invariant ‖As − A∗‖ ≤ 2 is preserved at each iteration.
This is immediate from an induction on the following claim, whose proof we to the end of
the section
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Claim A.1.1. Suppose that g is α-nearness-well-conditioned and A is (δ, 2) to A∗. Then,
if the step sizes ηi > 0 are chosen so that 0 < maxi 1 − ηiPr(i ∈ S) ≤ 1 − Ω(1). Then if
A′ = A− gdiag(ηi), it holds that

‖A∗ −A′‖ ≤ 2‖A∗‖ (1.5)

Now, lets consider the transformed step sizes η̃si = qiη
s
i and transformed gradient g̃i = q−1

i gi,
we see that the update rule can be expressed as As+1 = As − g̃sdiag(η̃si ). Next, if As is
(δ2, 2) near to A∗, then by assumption gis is (αi, δ

s + es, ζ)-true, then we can write

g̃si = αi(A
∗
i −Ai) + v where ‖v‖ ≤ O* (αi‖A∗i −Ai‖) + es + δs (1.6)

Hence, we can establish that g̃si is

(αsi/4, 1/25αsi , 8
(
ζ2 + o((δs + es)2)

)
/αi)− correlated with A∗i

by Lemma 2.1.4 together with the inequality (a + b)2 ≤ 2a2 + 2b2. Following the remark
after Definition 2.1.2, we can substitute in the lower bounds αmin/4 ≤ αsi/4 and 1/25αmax ≤
/25αsi to establish that g̃si is(

αmin/4, 1/25αmax, 8
(
ζ2 + o((δs + es)2)

)
/αmin

)
− correlated with A∗i

Define α = αmin/4, η0 = mini,s and let

εs := 8ζ2/αmin + o((δs + es)2/αmin)) and ε0 = 16ζ2/αmin

We now proceed by induction, where the invariant we wish to preserve is that, for all
columns i,

‖Asi −A∗‖2 ≤ (δs)2 ≤ (1− αη0)s‖z0 − zs‖2 + ε0/α = e2
s (1.7)

Indeed, if this holds then since α = αmin/4 = Θ(1), it follows that

εs = ε0/2 + o

(
1− αη2

0 η̃
2
i )
s‖z0 − zs‖
α

+
ε0
α

)
= ε0/2 + o (ε0) + o

((
1− αη2

0

)s ‖z0 − zs‖2
)

≤ ε0 + α · o
(
(1− αη0)s‖z0 − zs‖2

) (1.8)

Hence, by Theorem 2.1.3,

‖As+1
i −A∗‖2 ≤ (1− αη0)s+1‖+ ε0/α (1.9)

for all columns i. Since δs+1 = maxi∈[m] ‖As+1
i − A∗‖, Equation 1.9 both shows that the

invariant in Equation 1.7 is maintained, and gives the desired bound on ‖As+1
i − A∗‖.

Plugging in ε0/α = 64ζ2/α2
min concludes the proof.
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Proof of Claim A.1.1. If g is nearness well conditioned, then

‖A∗ −A′‖ = ‖(A∗ −A)− (A∗ −A) · diag(αiηiqi)−Adiag(ηiβqi)− Ã‖
≤ ‖(A∗ −A)− (A∗ −A) · diag(αiηiqi)‖+ ‖A‖max

i
(βiqiηi) + ‖Ã‖

≤ ‖(A∗ −A)− (A∗ −A) · diag(αiηiqi)‖+ o(‖A‖+ ‖A∗‖)
= ‖(A∗ −A)− (A∗ −A) · diag(αiηiqi)‖+ o(‖A∗‖)
= ‖(A∗ −A) · diag(1− αiηiqi)‖+ o(‖A∗‖)

where we use the fact that ‖A‖ ≤ O(‖A∗‖) by the (δ, 2)-nearness, and that the assumptions
of the Lemma require ηiPr(i ∈ S) = O(1). To wrap up

‖(A∗ −A) · diag(1− αiηiqi)‖ ≤ ‖A∗ −A‖max
i

(1− αiηiqi) ≤ 2‖A∗‖(1− Ω(1))

Combining the two displays proves the lemma.

Proof of Lemma 3.1.4. The result follows easily once we establish the following supporting
claim:

Claim A.1.2. ATi y = xi + O*
(

(δ + µ
√
k/n) log n

)
Proof. The proof of this lemma slightly generalizes and sharpens Lemma 23 in Arora et al.
(2015), and control each separately ATi y = (A∗)T y + (A∗ − Ai)T y. For the first term, we
expand

(A∗)T y = (A∗)TA∗Sx = xi +
∑
j 6=i∈S

A∗i
TA∗jxj (1.10)

Since xj are O(1) subgaussian, A∗i
TA∗jxj are O(|A∗i

TA∗j |2) = O(µ2/n) - subgaussian. As

|S| ≤ K and the xj are independent conditioned on S, it holds that
∑

j 6=i∈S A
∗
i
TA∗jxj is

O(kµ2/n)-Subgaussian by Proposition C.1.2. By Proposition C.1.1 and the fact that xj

are all mean zero, it follows that
∑

j 6=i∈S A
∗
i
TA∗jxj = O

(
µ
√
k
√

log(1/δ)/n
)

with prob-

ability δ. Taking δ = cn− logn = n−ω(1) for a suitably small constance c shows that∑
j 6=i∈S A

∗
i
TA∗jxj = O*

(
µ
√
k log n/n

)
with probability n−ω(1). For the second quantity,

let ∆ = A∗ − Ai. We have that (A∗ − Ai)
T y =

∑
j∈S ∆TA∗jxj . Hence, (A∗ − Ai)

T y

is
∑

i(∆
TA∗j )

2 = ∆TA∗S∆ ≤ δ2‖A∗S‖- subgaussian. By the Gershgorin circle theorem,

‖A∗S‖ = O(1), so applying Proposition C.1.1, we see that (A∗ −Ai)T y is O* (δ log n) with
high probability.

A.1.3 Auxillary Claims for Decomposable Rules

In this section, we fill in the details of the proofs of Claim A.1.4 and Lemma A.1.5 used in
the proof of Proposition 3.2.10. The ideas are roughly the sames as those presented in the
proof of Proposition 3.2.6, making extensive use of the Anti-Concentration Corollary 3.2.7.
We will assume that the sparse coefficients are xi ρ-smooth, rather than (C, ρ)-smooth. The
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generalization to the (C, ρ)-smooth case follows from a similar argument as presented in the
proof of Proposition 3.2.6.Throughout this subsection, we define Yj := xjsignτ (ATi y) and

1r := 1(r ∈ Ŝ. Before proving our main results, we establish a simple claim that generalizes
the arguments in Proposition 3.2.6:

Claim A.1.3.

|ES [Yj ]| . ρ
∣∣ATi A∗j∣∣ (1.11)

Moreover generally, if f(·) is an even, measurable function, then

|ES [Yjf(xj)]| ≤ ρ
∣∣ATi A∗j∣∣E[|xjf(xj)|] (1.12)

Proof. Let’s prove the more general point first. We begin by decomposing:

ES [Yjf(xj)] = ES [xjf(xj)signτ (ATi y−j)] (1.13)

= ES [xjf(xj)[signτ (ATi y)− signτ (ATi y−j)] + ES [xjf(xj)1(|ATi y−j | > τ)](1.14)

The second term in the last line is 0, since ES [xjf(xj)] = 0 as f is even, and xjf(xj) is
independent of ATi y−j . To control the first term, we apply Corrolary 3.2.7 with random
variables Zr = xr and weights ar = ATi A

∗
r to get

|ES [xjf(xj)[signτ (ATi y)− signτ (ATi y−j)]| ≤ ES [|xjf(xj)| ·
∣∣signτ (ATi y)− signτ (ATi y−j)

∣∣]
.

ρ|ATi A∗j |
|ATi A∗i|

ES [|x2
jf(xj)|]

. ρ|ATi A∗j |ES [|x2
jf(xj)|]

since ATi A
∗
i = 1− o(1).

Claim A.1.4. If S ⊃ {i, j, r}, then

ES [Yj1
c
r] . ρ

(
|ATr A∗j |+ |ATi A∗j |

)
. ρ(δ + µ/

√
n) (1.15)

Proof. First, we break up ES [Yj1
c
r] into easier-to-handle components

ES [Yj1
c
r] = Ei,j,r[xjsign(ATi y)1(|ATr y| ≤ τ)]

= ES [xj
[
sign(ATi y)− signτ (ATi y−j

]
1(|ATr y| ≤ τ)]

+ ES [xjsignτ (ATi y−j
[
1(|ATr y| ≤ τ)− 1(|ATr y−j | ≤ τ)

]
]

+ ES
[
xjsignτ (ATi y−j1(|ATr y−j | ≤ τ)

]
The last line has expectation 0, so it suffices to control the second- and third-to-last terms.
Using a similar line of argument in Claim A.1.3, the the non-correlation Corrolary 3.2.7
yields

|ES [xjsignτ (ATi y−j
[
1(|ATr y| ≤ τ)− 1(|ATr y−j | ≤ τ)

]
]|

≤ ES [|xj |
∣∣1(|ATr y| ≤ τ)− 1(|ATr y−j | ≤ τ)

∣∣]
. ρ|ATr A∗j |
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Intuitively, the factor of ρ captures the degree of smoothness, and the factor of |ATr A∗j |
results from the fact that ATr y and ATr y−j differ by a term of size |ATr A∗jxj |. Similarly,

|ES [xj
[
sign(ATi y)− signτ (ATi y−j

]
1(|ATr y| ≤ τ)]| . ρ|ATi A∗j | (1.16)

Putting these bounds together completes the claim.

The proof of the following lemma is slightly more involved:

Lemma A.1.5. The following two bounds hold

|Ei,j [Yj1j ]| . ρ|ATi A∗j |+ τρ|ATj A∗i|+ ρ2τ2‖A∗‖
√
k

m
+ γ (1.17)

and ∣∣Ei,j [Yj1cj]∣∣ . τρATj A
∗
i + ρ2τ2‖A∗‖

√
k

m
(1.18)

Proof. We prove the first claim; the second will follows from essentially the same argument.
Let S be a set which contains i, j, and set Zi,j = ATi

∑
r∈S−{i,j}A

∗
rxr. Write 1j = 1j1(xj >

2τ) + 1j1(xj ≤ 2τ). Since j ∈ Ŝ when 1(x > 2τ) with probability 1− n−ω(1), we have that
by Claim A.1.3 that

|ES [Yj1j1(|xj | > 2τ)] | ≤ |E [Yj1(|xj | > 2τ)] |+ γ

. ρ|ATi A∗j |ES [|x2
j1(|xj | > 2τ)|]

≤ ρ|ATi A∗j |ES [|x2
j |]

. ρ|ATi A∗j |

The term ES [Yj1j1(|xj | ≤ 2τ)] is controlled by Claim A.1.6 by

|ES [Yj1j1(|xj | ≤ 2τ)]| . τρATj A
∗
i + min(ρ, ρ2τ3)|ATi A∗j |+ ρ2τ2ES [|Zi,j |] (1.19)

Taking the expectation over all sets S ⊃ {i, j} give

|Ei,j [Yj1j1(|xj | ≤ 2τ)]| . τρATj A
∗
i + ρ2τ2

(
τ |ATi A∗jxj |+ ES:S⊃{i,j}[ES [|Zi,j |]

)
]

It now suffices to control the term ES:S⊃{i,j}[ES [|Zi,j |]]. By Jensen’s inequality it holds that

ES:S⊃{i,j}[ES [|Zi,j |]] ≤
√

ES:S⊃{i,j}[ES [|Zi,j |2]]

≤
√
Ei,j [|Zi,j |2]]

≤
√
Ei,j [ATi A∗−{i,j}x−i,jxT−i,j ]A∗

T
−{i,j}Ai

=
√
ATi A

∗−{i,j}Ei,j [x−i,jxT−i,j ]A∗
T
−{i,j}Ai

≤ ‖A∗‖ ·
√
‖Ei,j [x−i,jxT−i,j ]‖

Now, Ei,j [x−i,jxT−i,j ] = diag(Ei,j [x2
r ])r 6=i,j , which has spectral norm . k/m. Hence, the

above expression is bounded by above by
√
‖A∗‖2 · k/m .

√
k/n, as needed.
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Claim A.1.6. Let Zi,j = ATi
∑

r 6=i,j A
∗
rxr. Then

|ES [Yj1j1(|xj | ≤ 2τ)]| . τρ|ATj A∗i|+ min(ρ, ρ2τ3) · |ATi A∗j |+ ρ2τ2ES [|Zi,j |] (1.20)

Similarly,∣∣ES [Yj1cj]∣∣ . τρ|ATj A∗i|+ min(ρ, ρ2τ3) · |ATi A∗j |+ ρ2τ2 · ES [|Zi,j |]) (1.21)

Proof. We begin by proving Equation 1.20. Recall the definition Yj := xjsignτ (ATi y) and

1j := 1(j ∈ Ŝ) = 1(|ATj y| > τ). Define 1j,i := 1(|ATj y−i| > τ), so that by linearity of
expectations we have

ES [Yj1j1(|xj | ≤ 2τ)] = ES
[
xj1(|xj | ≤ 2τ)signτ (ATi y)1j

]
= E1 + E2 + E3 (1.22)

Where

E1 = ES
[
xj1(|xj | ≤ 2τ)signτ (ATi y) (1j − 1j,i)

]
E2 = ES

[
xj1(|xj | ≤ 2τ)1j,i

(
signτ (ATi y)− signτ (ATi A

∗
ixi)
)]

E3 = ES
[
xj1(|xj | ≤ 2τ)1j,isignτ (ATi A

∗
ixi)
]

E3 is exactly zero, since xj1(|xj | ≤ 2τ)1j,i depend only on the nonzero entries of x other
than xi, while signτ (ATi A

∗
ixi) has mean zero and depends only on xi. To control |E1|, we

have

|ES
[
xj1(|xj | ≤ 2τ)signτ (ATi y)(1j − 1j,i)

]
| ≤ ES

[
|xj1(|xj | ≤ 2τ)signτ (ATi y)(1j − 1j,i)|

]
≤ 2τES [|1j − 1j,i|]

.
τρATj A

∗
i

ATj A
∗
j

� τρATj A
∗
i

To control the E2 term, let Z̃ := ATi y−i. Then signτ (ATi y) = signτ (ATi A
∗
ixi + Z̃), so thatt

|ES
[
xj1(|xj | ≤ 2τ)1j,i

(
signτ (ATi y)− signτ (ATi A

∗
ixi)

)]
|

= |ES
[
xj1(|xj | ≤ 2τ)1j,i · E

[(
signτ ((ATi A

∗
ixi + Z̃)− signτ (ATi A

∗
ixi)
) ∣∣{xr}r 6=i]] |

≤ ES
[
|xj1(|xj | ≤ 2τ)1j,i| · |E

[(
signτ ((ATi A

∗
ixi + Z̃)− signτ (ATi A

∗
ixi)

) ∣∣{xr}r 6=i] |]
= ES

[
|xj1(|xj | ≤ 2τ)1j,i| · |E

[(
signτ ((ATi A

∗
ixi + Z̃)− signτ (ATi A

∗
ixi)

) ∣∣Z̃] |]
.

ρ

A∗i
TAi

E[|Z̃|xj1(|xj | ≤ 2τ)]

. ρES [|Z̃|xj1(|xj | ≤ 2τ)]

where the penultimate step follows from Proposition C.2.2, and last step follows from the
fact that A∗i

TAi = 1±o (1). To conlude, set Zi,j := ATi y−i,j , so that |Z̃| ≤ |ATi A∗jxj |+|Zi,j |.
Using Proposition C.2.3 to bound ES [x2

j1(|xj | ≤ 2τ)] by O(ρτ3), we have

|E2| . |ATi A∗j |ρES [x2
j1(|xj | ≤ 2τ)] + ρES [|Zi,j |xj1(|xj | ≤ 2τ)]

. |ATi A∗j |min(ρ, ρ2τ3) + ρ2τ2ES [|Zi,j |]
= min(ρ, ρ2τ3)τ |ATi A∗j |+ ρ2τ2ES [|Zi,j |]
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Summing up the bounds on |E1| and |E2| yields the first display in the claim. To get the
second claim, note that j ∈ Ŝ with very high probability as long as |xj | ≥ 2τ . Hence, we
have that ∣∣ES [Yj1cj]∣∣ ≤ γ +

∣∣ES [Yj1cj1j(|xj | ≤ 2τ)
]∣∣ (1.23)

The second term on the right can now be controlled is the same fashion as |ES [Yj1j1(|xj | ≤ 2τ)]|
to get the desired bound.

A.2 Sample Complexity Analysis

In this section, we derive the needed sample complexity bounded to prove Theorem 3.2.1,
Theorem 3.2.2], and Theorem 4.1.1. Section A.2.1 establish that empirical the gradients
are concentrated around their mean (possibly after rescaling), and Section A.2.2 shows that
the empirical gradients remain nearness-well-conditioned.

Proof of Theorem 3.2.1 and Theorem 3.2.2. The gradients ĝ are nearness well-conditioned
by Lemma A.2.8 as long as p = Ω̃(mk) samples in the Toy Rule, and p = Ω̃(mk2)-
samples in the neural rule. For the Toy Rule, Theorem 3.2.3 ensures that gssE[ĝsi ] is
(Θ(1), 0, k/n)-true, and so Lemma A.2.1 and the fact that rescalings preserve (α, δ, ζ)-
trueness (see Lemma 3.1.2), it follows that ĝsi = cgsi + o(1/

√
t) is (Θ(1), 0, k/n+ 1/

√
t)-true

with p = Ω̃ (mt) samples. The desired convergences is ensured by Theorem 3.1.3. Theo-
rem 3.2.2 follows similarly.

We now prove Theorem 4.1.1

Proof of Theorem 4.1.1. The proof is similar to the proofs of the toy and neural rules,
exact we don’t care about maintaining nearness, and the gradient concentration follows
from Lemma A.2.2

A.2.1 Concentration of the Gradients

Lemma A.2.1. Suppose that As is (δs, 2)-near to A∗, that Assumptions 1-5 hold, and that
the threshold τ is (δ, C)-suitable. For an arbitrary projector matrix Mi , let ĝsi be as defined
in the Update Step of Algorithm 3, and let gsi = E[ĝsi ] be defined as in Equation 1.7. Then
with M = Xi chosen as in the Toy Rule and p = ˜Omega(mt) samples, then with very high
probability, it holds that

‖ĝsi − cgsi ‖ = o(1/t) (2.24)

where c lies in the interval [1
2 , 2] with high probability. Furthermore, if τ is chosen so that

τ = Õ(µ
√
k/n+ δ), then

1. With Mi = I −
∑

j∈Ŝ njAjA
T
j is chosen as in the Neural Update Rule and with p =

Ω̃(mk2), then with high probability

‖ĝsi − cgsi ‖ = o

(
µ√
n

+ δ

)
(2.25)
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2. With Mi = Mprj
i (Ŝ) as in the Projection rule and with p = Õ(mk3/2t), then with high

probability

‖ĝsi − cgsi ‖ = o

(
δ +

τ

kt
+

√
ρµ3

n3/4t−1/2

)
(2.26)

where c lies in the interval [1
2 , 2] with high probability.

Remark. In fact, we can define c explicitly by c = (pqi)
−1 ·#{ samples for which i ∈ S}.

Proof of Lemma A.2.1. Let W = {j : i ∈ S}, c = |W |
|p| and define

Gsi = Ei[Miy
(j)signτ (ATi y

(j))
∣∣i ∈ S] (2.27)

Then,

ĝ
(s)
i =

1

p

p∑
j=1

Miy
(j)signτ (ATi y

(j))

= c Pr(i ∈ S)
1

|W |
∑
j∈W

Miy
(j)signτ (ATi y

(j))

for the random constant c := |W |
p Pr(i ∈ S)−1. Since p ·Pr(i ∈ S) = Ω̃(1), the Multiplicative

Chernoff Bound in Proposition C.1.6 ensures that we 1
2pPr(i ∈ S) ≤ |W | ≤ 2pPr(i ∈ S)

with very high probability; that is, c ∈ [1/2, 2]. As a consequence,

ĝ
(s)
i − cgi = ĝ

(s)
i − c Pr(i ∈ S)Gsi + γ (2.28)

= ĝ
(s)
i − c Pr(i ∈ S)Gsi + γ (2.29)

= Pr(i ∈ S) · 1

|W |
∑
j∈|W |

(My(j)signτ (ATi y
(j))−Gsi (2.30)

=
Pr(i ∈ S)

|W |
·
∑
j∈|W |

Z(j) −Gsi (2.31)

(2.32)

where Z(j) := My(j)signτ (ATi y
(j)). Since p

2 ≤ |W | ≤ 2p with very high probability,

we should observe at least |W | = Ω̃(pk/m). More precisely, we will assume that l ≥
logC(n)kp′/m for some suitably large constant C, where p′ = mt for the toy rule, mk2 in
the neural rule, and mk3/2t for the projection rule.

Relabel the samples Z(j) for j ∈W by {Z(r)}1≤r≤l, and note that Z(r) iid∼ Mysignτ (yTAi)
∣∣i ∈

S. Hence Gsi = E[Z(r)]. As long as l = poly(n), then the Truncated Bernstein Inequality
(Lemma C.1.5) gives:

‖1

r

l∑
r=1

Z(r) −Gsi‖ = ‖1

l

l∑
r=1

Z(r) − E[Z(r)]‖

≤ Õ

(
R

l
+

√
σ2

l

)
+ γ
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for any R such that ‖Z(r)‖ ≤ R with probability 1 − n−ω(1), and σ2 ≥ E[‖Z(r)‖2]. The
result now follows from substituting in the values of R and σ2 specified in Lemma A.2.3.
For completeness, we walk through the exact substitutions in the case of the neural update
rule. Taking p′ = mk2, gives l = mk3 logC(n) samples for which i ∈ S. Plugging in
Lemma A.2.3

‖gsi −
1

r

l∑
r=1

Z(r)‖ ≤ o

(
µ√
n

+ k−3τ + δ + ρ1/2τ3/2k−1

)
(2.33)

where we can take the exponent C to be large enough to kill off all log factors that would
arise from Bernstein’s inequality. By increasing C if necessary, we can also kill off the log
factors in τ = Õ(µ

√
k/n+ δ) ≤ (µ

√
k/n+ δ) logc(n) to give

‖1

r

l∑
r=1

Z(r)‖ ≤ o

(
µ√
n

+ k−2.5µ/
√
n+ δ + ρ1/2n−3/4k−1/4

)
(2.34)

≤ o

(
µ√
n

+ kδ + µ/
√
n(ρ1/2(kn)−1/4/µ

)
(2.35)

≤ o

(
µ√
n

+ kδ

)
(2.36)

by the scaling assumptions specified in Assumption 5.

Remark. We remark here that the dependence between the complement projector matrix
Mi and the sames increases the sample complexity by a factor of roughly k compaired to
the perfect-thresholding setting with C-lower bounded distributions. Perhaps this factor
can be reduced slightly, but we did not attempt to do so in this work.

Lemma A.2.2. Suppose that As is (δs, 2)-near to A∗, that Assumptions 1-5 hold, and that
τ is (δ, C)-suitable. For an arbitrary projector matrix Mi , let ĝsi be as defined in the Update
Step of Algorithm 3, and let gsi = E[ĝsi ] be defined as in Equation 1.7. Then, if Assumptions
1-5 hold, and there is an oracle which ensure that Ŝ = S with high probability, then

1. With Mi = I −
∑

j∈Ŝ njAjA
T
j is chosen as in the Neural Update Rule, and with

p = Ω̃(mk) samples, then with very high probability

‖ĝsi − cgsi ‖ = o

(
µ√
n

+ δ

)
(2.37)

2. With Mi = Mprj
i (Ŝ) is chosen as in the Neural Update Rule, and with p = Õ(m)

samples, then with very high probability

‖ĝsi − cgsi ‖ = o (δ) (2.38)

where c lies in the interval [1
2 , 2] with high probability.

Proof. The proof follows the same steps as Lemma A.2.1, and we omit it here for the sake
of brevity.
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We now prove the bounds on R and σ2 needed to apply Bernstein’s inequality in the proofs
of Lemmae A.2.1 and A.2.2:

Lemma A.2.3. Suppose that Assumptions 1-5 holds, and let Z ∼ Miysignτ (ATi y)
∣∣i ∈ Ŝ.

Then Z satisfies

‖Z‖ ≤ R with probability 1− n−ω(1) and E[‖Z‖2] ≤ σ2 (2.39)

for the following constants R and σ2 in each of the update rules:

1. In the toy rule, R = Õ(
√
k) and σ = k.

2. Under the neural update rule, R = Õ(µk3/2/
√
n+kδ+k3/2δ2+τ), and σ = O(µk3/2/

√
n+

kδ + k3/2δ2 +
√
kρ1/2τ3/2

3. Under the projection rule, R = Õ(kδ + τ) and σ = O(
√
kρ1/2τ3/2 + kδ)

Furthermore, if Ŝ = S with probability 1− n−ω(1), then we can take

1. R = Õ(µk/
√
n+
√
kδ + kδ2), and σ = O(µk/

√
n+
√
kδ + kδ2) in the Neural Rule

2. R = Õ(
√
kδ), and σ = O(

√
kδ) in the Projection Rule.

Proof. In each of the following, it suffices to control ‖Myi‖ and E[‖Myi‖2]. For the toy
rule, we have that M = I − 1

ni
AiA

T
i , so that

‖M‖ ≤ 1 + ‖Ai‖ ≤ 2 + δ = O(1) (2.40)

and ‖A∗S‖2 ≤ O(1) by the Gershgorin circle theorem. Hence ‖My‖ ≤ ‖MA∗Sx‖ . ‖x‖.
Since x is k-sparse and O(1) subgaussian, we have that E[‖x‖2] = kand ‖x‖ = Õ(

√
k) with

very high probability. For the next two rules, decompose: y = y1 + y2, where

y1 =
∑
j∈S

1(j ∈ Ŝ)A∗jxj and y2 =
∑
j∈S

A∗j1(j /∈ Ŝ)xj (2.41)

Now, let Z1 = Miy1

∣∣i ∈ S and let Z2 = Miy2

∣∣i ∈ S. The proof of the imprecise thresholding
part of the claim now follows by combining Claims A.2.4 and A.2.5, and canceling out terms
of lower order. The proof of the results under very high probability support recoery follows
from Claim A.2.4, whilst noting that if Ŝ = S with very high probability, then ‖Z2‖ = 0
with very high probability, and hence E[‖Z2‖2] = n−ω(1) by Lemma C.1.4.

We start off by controlling Z1, which captures all of the entries j ∈ supp(x) which are
correctly included in Ŝ.

Claim A.2.4. Let Z1 be as in the proof of Lemma A.2.3. Under the neural update rule,
then

‖Z1‖ ≤
√
k · Õ(µk/

√
n+
√
kδ + kδ2) (2.42)

For the projection rule, ‖Z1‖ . Õ(δ). Moreover,
√

[‖Z1‖2] =
√
k ·O(µk/

√
n+
√
kδ+kδ2) in

the neural update rule and Õ(kδ) in the projection rule. If sign thresholding occurs perfectly,
then we can improve all bounds by removing a factor of

√
k
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Proof. It suffices to control the term Miy = MiA
∗
SxS . The idea is to prove a bound on

‖MA∗Ŝ‖F . If sign thresholding determined all of S accurately with very high probability, we
would haveMA∗ŜxŜ = MiA

∗
SxS with very high probability, and we could control ‖MiA

∗
SxS‖

using the Hanson-Wright inequality stated in Lemma C.1.8.
Unfortunately, the entries of xŜ are not independent in our case, due to correlation that

results from innacurate thresholding. Consequently, we will rely on the more naive bound
‖MiA

∗
Ŝ
xŜ‖ ≤ ‖MiA

∗
Ŝ
‖2‖xŜ‖ ≤ ‖MiA

∗
Ŝ
‖F ‖xŜ‖, which gives bounds of O(

√
k‖MiA

∗
Ŝ
‖F ) and

Õ(
√
k‖MiA

∗
Ŝ
‖F ) in expectation and with high probability, respectively. We could imagine

applying similar techniques as in expectation computations to derive tighter concentration
inequalities and expectation bound for ‖MiA

∗
Ŝ
xŜ‖

2, but for the sake of brevity and clarity,

we do not undertake such efforts here. Indeed, the factor of
√
k lost only effects the sample

complexity of our algorithm, but not the bias.
Under the Neural Rule, a simple modification of Arora et al. (2015) Claim 47 (to account

for the renomralizing by 1
ni

) establishes the bound ‖MA∗Ŝ‖F ≤ µk/
√
n +
√
kδ + kδ2. For

the second point, let Mi = P1 + M1 where P1 is the projection term onto the orthogonal

complement of AŜ , and M1 = AiA
T
i

(
1

‖Ai‖2 −
1
‖Ai‖

)
. Then

‖M1‖F = ‖AiATi ‖2F |n2
i − ni| = |‖Ai‖ − 1| (2.43)

But ‖Ai‖ = ‖A∗i ‖ ± δ = 1± δ, so that ‖M1‖F = O(δ). Hence,

‖M1A
∗
Ŝ
‖F ≤ ‖M1‖F ‖A∗Ŝ‖ = O(δ) (2.44)

where we use the fact that ‖UV ‖F ≤ ‖U‖F ‖V ‖, and that ‖A∗
Ŝ
‖ ≤ 2 by the Gershgorin

circle theorem. On the other hand,

‖P1A
∗
Ŝ
‖F = ‖P1(A∗

Ŝ
−AŜ)‖F ≤ ‖P1‖‖(A∗Ŝ −AŜ)‖F ≤

√∑
i∈Ŝ

‖A∗i −Ai‖2

≤ δ

√
|Ŝ| ≤ δ

√
k

We now control Z2, which captures all of the entries j ∈ supp(x) which we omitted from Ŝ.

Claim A.2.5. Let Z2 be as in the proof of Lemma A.2.3. Then, for the neural update rule,
‖Z2‖ ≤ Õ(τ(1 + δ

√
k), and for the projection rule ‖Z2‖ ≤ Õ(τ).

Proof. Using the same arguments as in Claim A.2.4, we can bound ‖Mi‖ ≤ (1 + δ
√
k). In

the projection rule, we have ‖Mi‖ = O(1). To conclude, we bound ‖y2‖ with the following
subclaim:

Claim A.2.6. Let y2 =
∑

j∈S A
∗
j1(j /∈ Ŝ)xj

∣∣i ∈ Ŝ. Then with very high probability, if

Pr(|xj | ≤ 2τ) ≤ 1/2, then ‖y2‖ ≤ 2τ log2 n.

Proof. It would be tempting to apply a Bernstein inequality to the mean zero random
variables A∗jxj , but we cannot do this. While the xj are independent, 1(j /∈ Ŝ) are not.
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With high probability, j ∈ Ŝ only when |xj | ≤ 2τ . Hence, with high probability,

‖y2‖ = ‖
∑
j∈S

A∗j1(j /∈ Ŝ)xj‖

≤ ‖ sup
w:‖w‖∞≤2τ

∑
j∈S

A∗j1(j /∈ Ŝ)wj‖

= ‖ sup
w:‖w‖∞≤2τ

wTA∗
Ŝ
‖

= ‖ sup
w:‖w‖2≤2τ

√
|Ŝ|
wTA∗

Ŝ
‖

≤ 2τ

√
|Ŝ|‖A∗

Ŝ
‖

. 2τ

√
|Ŝ|

since ‖A∗Ŝ‖ = O(1) by the Gershgorin circle theorem. Now, by the assumption that τ is
(δ, C)-suitable, where C is given by assumption 5, we have that Pr(|xj | ≤ 2τ) ≤ 1/2. Hence,

Pr(Ŝ ≥ t) ≤ γ + Pr(|{j : |xj | ≤ 2τ}| ≥ t) (2.45)

≤
∑
i≥t

(1/2)t = (1/2)t−1 (2.46)

Hence, it holds with probability n− logn that |Ŝ| ≤ log2 n. Thus, with high probability,
‖y2‖ ≤ 2τ log2 n.

Claim A.2.7 (Variance Calculation). We have that

E[‖Z2‖2] . k ·max{1, ρτ3}+ γ (2.47)

for the neural update rule and√
E[‖Z2‖2] . k2δ + k ·max{1, ρτ3}+ γ (2.48)

in the projection based rule.

Proof. Suppose ‖MiA
∗
Ŝ‖2 ≤ R2 with probability 1 − n−ω(1). Since Ŝ ⊂ S with high

probability, we have

E[‖Z2‖2] ≤ E[‖MiA
∗
Ŝ
‖2‖x ˜̂

S
‖2] (2.49)

≤ R2
2E[‖xŜ‖

2] + n−ω(1) (2.50)

= R2
2

∑
j∈[m]

E[x2
j1(j ∈ Ŝ)] + n−ω(1) (2.51)

= R2
2

∑
j∈S

E[x2
j1(j ∈ Ŝ)] + n−ω(1) (2.52)

≤ R2
2

∑
j∈S

E[x2
j1(|xj | ≤ 2τ)] + n−ω(1) (2.53)

. R2
2 max{1, kρτ3}+ n−ω(1) (2.54)
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where the last step follows from Proposition C.2.3. In the case of the projection rule,
R2 = O(1) with high probability, and in the case of the neurall update rule, ‖MiA

∗
S̃‖ ≤

2‖Mi‖ ≤ 2‖diag(ni)AŜ‖ ≤ 2(1+δ)‖AŜ‖
2, which is less than 4(1+δ)‖A∗Ŝ‖

2+4(1+δ)‖A∗Ŝ−
Â‖2 . 1 + kδ2. Hence,

E[‖Z2‖2] . kρτ3 + kδ2E[‖xS̃‖
2] + γ (2.55)

. kρτ3 + k2δ2 + γ (2.56)

in the Neural Update rule, while

E[‖Z‖2] . kρτ3 + γ (2.57)

in the projection based rule.

A.2.2 Maintaining Nearness

Lemma A.2.8. Suppose that As is (δs, 2)-near to A∗. Then, under the toy rule update rule,
it holds with high probability that ĝ is nearness well conditioned, as long as p = Ω̃(mk)-
samples are used. For the neural update rule, the necessary sample sample size jumps to
p = Ω̃(mk2).

Proof. For simplicity, we drop the dependence on s. Let G̃ denote the matrix whose columns
are the toy rule updates Xi y · signτ (ATi y). We can express G̃ in matrix notation as G̃ =
Z1 + Z2, where

Z1 = yvec(signτ (ATi y))T and Z2 := AŜdiag
(
ATi ysignτ (ATi yni)

)
(2.58)

Let’s control each term separately. For Z1,

Claim A.2.9. ‖Z1‖ ≤ Õ(k) with high probability, ‖E[Z1Z
T
1 ]‖ ≤ Õ(k2‖A∗‖2/m), and

‖E[Z1Z
T
1 ]‖ ≤ k3/m

To control Z2, we have

Claim A.2.10. ‖Z2‖ ≤ Õ(1 +
√
kδ) with high probability and

max(‖E[Z2Z
T
2 ]‖, ‖E[Z2Z

T
2 ]‖) ≤ Õ

(
‖A∗‖2k(1 +

√
kδ)2/m

)
= Õ

(
‖A∗‖2k2/m

)
(2.59)

Hence, applying Matrix Bernstein inequality with p = Ω̃ (mk) samples gives

ĝ − g =
1

p

∑
i

G(i) − E[G(i)] = o

(
k

m
‖A∗‖

)
(2.60)

Since g is nearness well conditioned, so is ĝ (see Remark 3.1.2). The result for the neural
rule follows using similar arguments, and we omit here in the interest of brevity. As in the
gradient concentration, the imperfect thresholding forces us to pick up an extra factor of k
in the sample complexity required to ensure ĝ − g = o( km‖A

∗‖), as compared to Lemma 42
in Arora et al. (2015).
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Proof of Claim A.2.9. With high probability, signτ (ATi y) is non zero for at most k entries,
while ‖y‖ = ‖A∗Sx‖ ≤ Õ(

√
k), so that

‖Z1‖ ≤ Õ(k) (2.61)

Furthermore, with high probability vec(signτ (ATi y))Tvec(signτ (ATi y)) = supp(Ŝ) ≤ k, so
that with high probability

yvec(signτ (ATi y))Tvec(signτ (ATi y))yT � kyyT (2.62)

and consequently

‖E[yvec(signτ (ATi y))Tvec(signτ (ATi y))yT ]‖
≤ γ + kE[yyT ] = kA∗E[xxT ]A∗T = ‖A∗‖2O(k2/m) + γ

Moreover, since ‖y‖2 = Õ(k) with high probability,

signτ (ATi y))vec(signτ (ATi y))T � vec(1(i ∈ S))vec(1(i ∈ S))T (2.63)

whenever Ŝ ⊂ S, which also occurs with high probability. Noting that ‖y‖2 ≤ ‖x‖2‖A∗
Ŝ
‖2 =

O(‖x‖2) by the Gershgorin circle theorem, and that ‖x‖2 = Õ(k) by Lemma C.1.7. Hence,
an applying of Lemma D.2.2 gives

‖E[~(signτ (ATi y))T yT yvec(signτ (ATi y))]‖ ≤ Õ(k)‖E[vec(signτ (ATi y))Tvec(signτ (ATi y))]‖+ γ

Let Q := E[vec(signτ (ATi y))Tvec(signτ (ATi y)). The diagonal components of Q are bounded
above by k/m in magnitude, and its off diagonals by k2/m2. Hence ‖Q‖ ≤ k2/m, which

bounds E[~(signτ (ATi y))T yT yvec(signτ (ATi y))] above by k3/m. Note that, in the C-lower
bounded case, we would have the bound ‖Q‖ ≤ k/m+ γ, since signτ (ATi y) and signτ (ATj y)
would be essentially uncorrelated.

Proof of Claim A.2.10. For the term Z2, we have

‖Z2‖ ≤ ‖AŜdiag(ATi ysignτ (ATi y)ni)‖ ≤ ‖AŜ‖‖A
T
i y‖max

i
diag(ni) (2.64)

Reusing the same arguments seen before, we have that ‖AŜ‖ . 1+
√
kδ with high probability,

that ‖ATi y‖ = Õ(1) with high probability, and maxi ni = O(1). Putting these bounds
together shows that ‖Z2‖ = Õ((1 + δ

√
k) with high probability. Next up, we compute

‖E[ZT2 Z2]‖ := E[diag(ATi ysignτ (ATi y)ni)A
T
Ŝ
AT
Ŝ

diag(ATi ysignτ (ATi y)ni)] (2.65)

Since AT
Ŝ
AŜ � ‖AŜ‖

2I � (1 +
√
kδ)2I with high probability, we have

E[ZT2 Z2] � Õ
(

(1 +
√
kδ)2

)
E[diag

(
ATi ynisignτ (ATi y)

)2
] � Õ

(
k

m
(1 +

√
kδ)2

)
+ γ (2.66)
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Hence ‖E[ZT2 Z2]‖ = Õ
(
k2

m

)
. On the other hand, since ATi yni = Õ(1) with high probability,

‖E[Z2Z
T
2 ]‖ = ‖E[AŜdiag

(
ATi ysignτ (ATi y)ni

)2 ‖ (2.67)

= ‖AAT ‖‖E[diag
(
1(i ∈ Ŝ)ATi yn

2
i

)
]‖ (2.68)

≤ ‖A‖2 max
i

E[1(i ∈ Ŝ)ATi yn
2
i ] (2.69)

.
‖A‖2k
m

(2.70)
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Appendix B

Nonnegative Dictionary Learning

B.1 Proof of Proposition B.1.1

In this section, we prove the more precise form of Proposition 5.1.5, Proposition B.1.1.
This version makes explicit the constant factors in Proposition B.1.1, and relates them to
a notion of the “condition number” of a NOID, as laid out in the following definition:

Definition B.1.1 ((κ, τ)-well conditioned). Let B be nonnegative offset incoherent dictio-
nary B with decomposition B = A+vcT , where ‖v‖ = 1, and a ∈ Rm has entries ai = ‖Ai‖.
We say that B is (κ, τ)-well conditioned with respect to the decomposition B = A+ cvT if
there exists some κ ≥ 1 and τ ≥ 1 for which κ−1 ≤ |ci/ai| ≤ κ and

τ−1 ≤
(
‖a‖1
m

)2

,

(
‖c‖1
m

)2

,

(
‖a‖22
m

)
≤ τ (1.1)

We are now ready to state the main proposition:

Proposition B.1.1. Suppose that B is a nonnegative offset incoherent dictionary with
decomposition B = A + vcT and incoherence parameter µ/

√
n, which is also (κ, τ)-well

conditioned. Define

v̂ =
∑
i

Bi and P := Projv̂⊥ (1.2)

Then, if z = 3µ√
n

+ 1
m and 6zmax(κ2√τ , 4κτ2) ≤ 1

10 , we have

cos(PBi, PBj) ≤ 10τ2κ2z (1.3)

Moreover,

‖PBi‖2 ≥ (9/10)a2
i (1.4)

Proof of Proposition B.1.1. By Lemma B.1.6, we have

‖PBi‖2 ≥ a2
i

(
1− 6zmax(κ2√τ , 4κτ2)

)
≥
(

1− 1

10

)
a2
i ≥ (9/10)a2

i (1.5)
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and hence, again invoking Lemma B.1.6, we have

cos(PBi, PBj) ≤
〈PBi, PBj〉
‖PBi‖‖PBj‖

≤ 1

.9aiaj
〈PBi, PBj〉

≤ 1

.9aiaj
· 8τ2κ2aiaj ≤ 10τ2κ2

(1.6)

B.1.1 Supporting Result for Proposition B.1.1

Throughout, we assume that B is a nonnegative offset incoherent dictionary with decom-
position B = A + vcT and incoherence parameter µ/

√
n. We let a be the vectors whose

entries are ai = ‖Ai‖, and assume ‖v‖ = 1. We let v̂ = 1
m

∑
iBi, and P = Projv̂⊥ . At

this stage, we do not yet assume that B is (κ, τ) well conditioned; instead, we will establish
more flexible, granular controls on the normalized inner products cos(PAi, PAj), and then
substitute the well conditioning assumptions at the end. Finally, introduce the notation

ā :=
1

m

∑
i

ai c̄ := 1
m

∑
i ci Ca :=

1

m

∑
i

a2
i (1.7)

We have the following Lemma:

Lemma B.1.2. Define

E := ‖v̂‖2 − c2 − Ca/m and Ei := v̂TBi − cic̄−
ai
m

(1.8)

Then,

|E| ≤ (2c̄ā+ ā2) · µ/
√
n and |Ei| ≤

µ(aiā+ aic̄+ ciā)√
n

(1.9)

Proof. For the first point, we have

‖v̂‖2 = c̄2 + 2〈vc̄, 1

m

∑
i

Ai〉+
1

m2

∑
i

‖Ai‖2 +
∑
i 6=j
〈Ai, Aj〉 = c̄2 + E

where E is as given by

E :=
1

m2

∑
i

‖Ai‖2 + 2〈vc̄, 1

m

∑
i

Ai〉+
1

m2

∑
i 6=j
〈Ai, Aj〉

:=
1

m2

∑
i

a2
i + 2

c̄

m

∑
i

ai cos(Ai, v) +
1

m2

∑
i 6=j

aiaj cos(Ai, Aj)

and hence

|E| ≤ Ca/m+
(
2c̄ā+ ā2

)
µ/
√
n
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For the second point,

v̂TBi =
∑
j

〈 1

m
Aj + cjv,Ai + civ〉 = cic̄+ Ei

where

Ei :=
1

m

∑
j

〈Aj , Ai〉+
∑
j

〈cjv,Ai〉+
∑
j

〈Aj , civ〉


:=

1

m

ai∑
j

aj cos(Ai, Aj) + cos(Ai, v)
∑
j

aicj +
∑
j

ajci cos(Aj , v)


and hence

|Ei| ≤
ai
m

+
ai
∑

j 6=i aj

m
· µ√

n
+ c̄

µ√
n

+ ci
µ√
n
≤ µ(aiā+ aic̄+ ciā)√

n
+
ai
m

We now need two other small technical results. Set Q = Projv̂ = 1
‖v̂‖2 v̂v̂

T and Q̃ = 1
c̄2
v̂v̂T .

Note that P = I −Q. We have the following two facts:

Claim B.1.3.
∥∥∥Q̃−Q∥∥∥ ≤ |E|c̄2

Proof. We see that Q̃−Q = (1− ‖v̂‖
2

c̄2
)Q and ‖Q‖ = 1, so ‖Q̃−Q‖ ≤ |E|

c̄2

The triangle inequality gives the last claim:

Claim B.1.4. ‖Bi‖ ≤ ai + ci

Before proving our next lemma, we establish yet more notation:

E′i = Ei +
ai
m

and τi := inf{t : ai +mEi ≤ tai} = inf{t : mE′i ≤ t} (1.10)

and

τ0 := inf{t ≥: E ≤ t(c̄2 + Ca/m)} and τ :=
1

1− τ0
(1.11)

In general τ0 = o(1), since E ≤ O(µ/
√
n), and hence τ ≈ 1. With this new notation, we

can put together Lemma B.1.2 and Lemma B.1.3 to conclude:

Lemma B.1.5.

‖PBi‖2 ≥ a2
i + (1− τ)c2

i − τ
(
τ2
i a

2
i

Cam
+

τiciai√
Cam

)
|〈PBi, PBj〉| ≤ (aiaj + ciai + cjaj)

µ√
n

+

∣∣∣∣∣(ciτjaj + cjτiai) + aiajτiτj
1
mc̄

mc̄

∣∣∣∣∣
+ |E|cicj +

|E| (ciτjai + cjτiaj) /m

c̄
+
τiτjaiaj |E|
m2c̄2
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Proof. Using the fact that P + Q = I and P and Q are orthogonal projections and then
the triangle inequality, we can write

‖PBi‖2 = ‖Bi‖2 − ‖QBi‖2

≥ a2
i + c2

i −
µ√
n
aici −

(cic̄+ aiτi
m )2

c̄2 + Ca/m− E

= a2
i + c2

i −
µ√
n
aici −

c2
i c̄

2 + τiai
m cic̄+ (τ2

i a
2
i /m

2)

c̄2 + Ca/m− E

≥ a2
i + c2

i −
µ√
n
aici − τ

c2
i c̄

2 + τiai
m cic̄+ (τ2

i a
2
i /m

2)

c̄2 + Ca/m

Now, we have

c2
i c̄

2

c̄2 + Ca/m
≤ c2

i and
τ2
i
a2i
m2

c̄2 + Ca/m
≤ τ2

i a
2
i

Cam

Thus, using the indentity a2 + b2 ≥ 2ab, it holds

2(τi (aicic̄/m)

c̄2 + Ca/m
≤ 2aicic̄/m

2
√
Ca
√
mc̄)

=
τiciai√
Cam

(1.12)

Hence, replacing 1
1−τ0 with τ , we have

‖PBi‖2 ≥ a2
i + (1− τ)c2

i − τ
(
τ2
i a

2
i

Cam
+

τiciai√
Cam

)
For the next point, we have

〈PBi, PBj〉 = BT
i P

2Bj = BT
i PBj = BT

i Bj −BT
i QBj

= BT
i Bj −BT

i Q̃Bj +BT
i

(
Q− Q̃

)
BT
j

= BT
i Bj −

1

c̄2
(v̂TBi)(v̂

TBj) +BT
i

(
Q− Q̃

)
BT
j

= BT
i Bj − (ci −

1

c̄
E′j)

(
cj −

1

c̄
Ej

)
+BT

i

(
Q− Q̃

)
BT
j

= BT
i Bj − cicj −

ciE
′
j + cjE

′
i +
(
E′iE

′
j

)
c̄−1

c̄
+BT

i

(
Q− Q̃

)
BT
j

(1.13)

Now, ∣∣BT
i Bj − cicj

∣∣ = |cicj‖v‖2 + (cjAi + ciAj)
T v + 〈Ai, Aj〉 − cicj |

=
∣∣∣(cjAi + ciAj)

T v + aiaj cos (Ai, Aj)
∣∣∣

= (aiaj + ciai + cjaj)

√
µ
√
n

(1.14)
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and finally ∥∥∥BT
i (Q− Q̃)BT

j

∥∥∥ ≤ |E|
c̄2

(ai
m

+ c̄ci + Ei

)(aj
m

+ c̄cj + Ei

)
= |E| cicj +

|E|
(
ci
τjaj
m + cj

τiai
m

)
c̄

+
τiτjaiaj |E|

m2c̄2

(1.15)

Replacing E′i = τiai/m into Equation 1.13 concludes the lemma.

Now we make use of the regularity assumptions in Proposition B.1.1, by applying them to
Lemma B.1.2:

Corollary. Let z = 3µ/
√
n be as given by Proposition B.1.1. Furhtermore, assume that

B is (κ, τ) well conditioned: that is, there is some κ > 0 for which κ−1 ≤ ai ≤ κand
κ−1 ≤ ci ≤ κ, and that Ca, ā

2, c̄2 ∈ [τ−1, τ ]. Then

|E| ≤ τz and |Ei| ≤ aiκ
√
τz (1.16)

Proof. We have

|E| ≤
(
2c̄ā+ ā2

)
· µ/
√
n and |Ei| ≤

µ(aiā+ aic̄+ ciā)√
n

By our assumptions, c̄ā ≤ κ2, so that |E| ≤
(
2c̄ā+ ā2

)
· µ/
√
n ≤ 3τµ/

√
n = τz. On the

other hand, (aiā+ aic̄+ ciā) ≤ ai (ā+ c̄+ (ci/ai)ā) ≤ (2 + κ)
√
τ ≤ 3κ

√
τ . This gives the

second bound.

Putting together Corollary B.1.1 with Lemma B.1.5 yields:

Lemma B.1.6.

‖PBi‖2 ≥ a2
i

(
1− 6zmax(κ2√τ , 4κτ2)

)
and |〈PBi, PBj〉| ≤ 8τ2κ2aiaj (1.17)

Proof of Lemma B.1.6. Let Ei and E be as in Lemma B.1.2. Then

‖PBi‖2 ≥ a2
i − 3κai (|Ei|+ 2|E|aiκτ)

≥ a2
i −

(
3κ2a2

i

√
τ + 2a2

iκτ
2
)

(
3µ√
n

+
1

m
)

≥ a2
i (1− 2 max(3κ2√τ , 2κτ2)z

≥ a2
i

(
1− 6zmax(κ2√τ , 4κτ2)

)
On the other hand,

‖〈PBi, PBj〉‖ ≤ (aiaj + ciaj + cjai)
√
µ
√
n+ |ciEj + cjEi + (EiEj)c̄

−1

c̄
|+ (ai + ci)(aj + cj)|E|

c̄2

≤ 3κ2aiaj
√
µ
√
n+ (aiκEj + ajκEi)

√
τ + τEiEj + (1 + κ)2aiaj

|E|
c̄2

≤ 3κ2aiaj
√
µ
√
n+ 2aiajκ

2τz + z2τ2ai,j + 4κ2aiajτ
2z

≤ κ2aiaj

(
3

√
µ
√
n

+ 7τ2z

)
≤ 8τ2κ2aiaj
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B.2 Proof of Lemma 5.1.9

Proof of Lemma 5.1.9. Let µ∗ = E[x], and let µ =
∑

j x
(j). Then, if we define

Σ :=
1

N

∑
j

(x(j) − µ∗)(x(j) − µ∗)T (2.18)

then we have

Σ̃ = Σ∗ + (Σ− Σ∗) +
1

N

∑
j

(x(j) − µ∗)(µ− µ∗)T

+
1

N

∑
j

(µ− µ∗)(x(j) − µ∗)T + (µ− µ∗)(µ− µ∗)T
(2.19)

First, we see that the singular values of E[Σ] = Σ∗ are all Θ(k/m), it suffices to show that ,
once show that the remaining terms in the above o(k/m) display Equation 2.19 are o(k/m)
in norm.

First, since the vectors x(j) − µ∗ are O(1)-subgaussian, the satisfy ‖x(j) − µ∗‖ ≤ Õ(
√
k

with very high probability, we have by Corollary C.1.1 that

|Σ− Σ∗| ≤ ‖Σ∗‖1/2Õ(

√
k√
N

) +
k

N
(2.20)

Hence, taking N = Ω̃(m), we can ensure that |Σ− E[Σ]| = o(k/m). For the next term, we
have

‖ 1

N

∑
j

(x(j) − µ∗)(µ− µ∗)T ‖ ≤ ‖µ− µ∗‖‖
√
‖Σ∗‖‖ = O(‖µ− µ∗‖‖Σ∗‖) = O(‖µ− µ∗‖ ·

√
k/m)(2.21)

with high probability. The term after that is bounded similarly.
Finally, the last term in Equation 2.19 has norm no more than ‖µ − µ∗‖2. Hence, it

suffices to ensure that µ− µ∗‖ ≤ o(
√
k/m), and we can write

µ− µ∗ =
1

N

∑
j

x(j) − E[x] (2.22)

A routine application of truncated Bernstein bounds shows that for N = Õ(m),
∑

j x
(j) −

E[x] = o(
√
k/m).

B.3 Concentration Results

We establish some concentration results of (C, k)-sparse distributions.

Claim B.3.1. If x is the coefficient vector from a (C, k)-sparse distribution, then ‖x‖ .√
k + k log n with with high probability

Proof. Write x = E[x] + (x − E[x]). The first has has norm O
(√

k
)

, and the second has

norm O(
√
k+

√
log(1/δ) with probability 1− δ by Lemma C.1.7. Taking δ = log2 n proves

the claim.
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As a consequence,

Claim B.3.2. Let Z ∼ Mprj
i ysignτ (ATi y)

∣∣i ∈ S. Then, ‖Z‖ ≤
√
kδ‖x‖ . (k +

√
k log n)δ

with high probability

Proof. Write Z =
∑

j∈SM
prj
i Ajxjsignτ (ATi y). For j ∈ S Let B be the matrix whose

columsn are Mprj
i Aj = O(δ) and let x̃ be the vector whose entries are xjsignτ (ATi y). Then

‖Z‖ = ‖B‖‖x̃‖ ≤
√
kδ‖x̃‖. The claim now follows from Claim B.3.1

B.4 Proof of Theorem 5.2.1

The convergence rate in Theorem 5.2.1 follows from combining the following lemma with,
Theorem 3.1.3, and the fact that (by a multiplicative Chernoff Bound) ˜Omega(mk)-samples
suffice to get p = Ω̃

(
k2
)

samples for the update rule in Algorithm 8. The signed-closeness
follows from the analysis of Algorithm 10 in Proposition 5.2.11

Lemma B.4.1. Suppose that As is (δs, 2)-near to A∗, that z = y(1) − y(2) comes from
a (C, k)-favorable nonnegative, and that the estimated support Ŝ is equal to S with high
probability. Let Mi = Mprj

i , let ĝsi be as defined in the Update Step of Algorithm 8, and let
gsi = E[ĝsi ]. Then, given p = Ω̃

(
k2
)
-samples as chosen in Algorithm 8, it holds that

qiĝ
s
i is (Θ, δ, n−ω(1)) true (4.23)

Proof. Let Z(r) be iid copies of Z ∼ Mprj
i zsignτ (ATi y)

∣∣i ∈ supp(x(1)) ∩ supp(x(2)), and

note that E[Z(r)] = Gi, where Gi := Ei[Mprj
i zsign(ATi z)]. Bounding ‖Z‖ and ‖E[‖Z‖2]‖ by

Õ (kδ) (whp) and Õ
(
k2δ2

)
Claim B.3.2 and a trunctated Bernstein inequality, we have that

1

p
(

p∑
r=1

Z(r) − E[Z(r)]) ≤ o (δ) + n−ω(1) (4.24)

with high probability. Now, let z̃(r) have the distribution of the samples chosen for gi by
Algorithm 8. As Proposition 5.2.7, we define the event E(r) that all samples z̃(r) up to
sample r where chosen from the first 2r samples y = A∗x for which i ∈ supp(x). Since
E(r) occurs with high probability, and Z(r), z̃(r) have the same distribution under E, the
result now follows from the fact that, as show in the proof of Theorem 5.2.7, qiGi is
(Θ(1), δ, n−ω(1))-true.

B.5 Sign Thresholding

Proof of Lemma 5.2.5. Let S = supp(x)

A∗Ti y ≥ xi1(i ∈ S) +
∑
j 6=i

xj |〈A∗Ti A∗j | (5.25)

≥ xi1(i ∈ S)− τ
∑

j 6=i∈supp(x)

xj (5.26)

≥ xi1(i ∈ S)−O((k +
√
k log n)τ) (5.27)
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with high probability using the subguassian concentration in Lemmas C.1.1 and C.1.2, since∑
j 6=i∈S

x
(2)
j = E[

∑
j 6=i∈S

xj ] +
∑
j 6=i∈S

[xj − E[xj ] (5.28)

. k +
√
k log n (5.29)

(5.30)

with high probability. For the second point, let w = A∗Sv, and note that ‖w‖ ≤ 2‖v‖ by
the Gergorin circle Theorem. Hence,

vT y = wTxS ≤ ‖w‖‖xs‖ . ‖v‖(
√
k + log n) (5.31)

(5.32)

by Lemma B.3.1.
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Appendix C

Concentration and
Anti-Concentration

C.1 Concentration of Measure

Definition C.1.1 (Subgaussian Random Variable). We say that a random variable Z is
σ2-sub-Gaussian with variance proxy σ2 if, for all t ∈ R, it satisfies the following bound on
its generating function:

E[exp(t(Z − E(Z)))] ≤ exp

(
σ2t2

2

)
(1.1)

Proposition C.1.1 (Tail and Moment Bounds for sub-Gaussian Random Variables). Let
Z be a σ2 sub-Gaussian random variable. Then

Pr(Z − E[Z] > σt) ≤ exp(− t
2

2
) and Pr(Z − E[Z] < −σt) ≤ exp(− t

2

2
) (1.2)

Moreover, for any k ∈ N

E[|Z − E[Z]|] ≤ σ (1.3)

In particular, E[|Z − E[Z]|] ≤ 2σ

Proof. The first point is a standard result in concentration; see Chapter 1 in Rigollet (2014)
for an in depth discussion. The second bound follows from the fact that

Proof.

E[|Z − E[Z]|] =

∫ ∞
t=0

tPr(|Z − E[Z]| > t) ≤ 2

∫ ∞
t=0

σte−
t2

2 dt = 2σ (1.4)

The next proposition lists a few additional properties of subgaussian random variables.
Again, we direct the curious reader to Chapter 1 in Rigollet (2014) for further details
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Proposition C.1.2. Let Z1, . . . , Zn be a collection of independent σ2
i random variables.

Then

1.
∑n

i=1 Zi is a
∑

i σ
2
i -subgaussian random variable.

2. Moreover generally,
∑n

i=1 aiZi is a
∑

i a
2
iσ

2
i -subgaussian random variable

3. sup1≤i≤n Zi/σi ≤
√

2 log(n/δ) with probability 1− δ

The next proposition is indispensible when control the deviation of sums of bounded, vector-
valued random variables from their mean:

Proposition C.1.3 (Matrix Bernstein Inequality, Theorem 1.6 in Tropp (2012)). Let
Z1, . . . , Zp be independent m×n matrices such that ‖Zi‖ ≤ R almost surely and max{‖E[ZZT ]‖, ‖E[ZTZ]‖} ≤
σ2. Then, with probability 1− δ, it holds that

‖1

p

p∑
i=1

(Zi − E[Zi])‖ .
R

p
log((n+m)/δ) +

√
σ2 log((n+m)/δ)

p
(1.5)

If Zi are vectors instead of matrices, it suffices to choose σ2 ≥ E[‖Z‖2].

As outlined in Section[Gamma Notation], we shall often need to control the expectations of
the tails of random variables with super-polynomial decay. To this end, we introduce the
following proposition:

Proposition C.1.4 (Tail Expectation Bound). Suppose that Z is a random variable such
that Pr(‖Z‖ ≥ R(log(1/δ))C ] ≤ 1 − δ for some constant c > 0, where R ≤ nC for some
C > 0. Then,

1. Let p ≤ nO(‘′), and consider p iid copies Z1, . . . , Zp of Z. Then, with probability
1− n− log(n), it holds independently for each Zi . R(log n)2C .

2. If R̃ ≥ R log2c(n), then

‖E[Z1(‖Z‖ ≥ R̃)]‖ ≤ E[‖Z‖Ii(‖Z‖ ≥ R̃)] = n−ω(1) (1.6)

3. If A is an event that occurs with probability n−ω(1), then

‖E[Z1A]‖ ≤ E[‖Z‖1A] = n−ω(1) (1.7)

4. More generally, if X1 and X2 are random variables such that ‖X1‖, ‖X2‖ ≤ nC
′

for
some C ′ > 0, then

‖E[Z ·X1]− E[Z ·X2]‖ ≤ n−ω(1) (1.8)

Proof. The first and second point are a more precise statement of Lemma 45 in Arora et al.
(2015). For the third point, set R̃ = R log2c(n). To prove the third point, let

‖E[Z1A]‖ ≤ E[‖Z‖1A] (1.9)

= E[‖Z‖1(‖Z‖ ≤ R̃)1A] + E[‖Z‖(‖Z‖ ≥ R̃)] (1.10)

≤ R̃Pr(1A) + E[‖Z‖1(‖Z‖ ≥ R̃)] (1.11)

= n−ω(1) (1.12)
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The last point follows by letting A denote the event that X1 6= X2, and noting that
‖E[Z(X1 −X2)]‖ ≤ nC′‖E[Z1A]‖ ≤ nC′−ω(1) = n−ω(1).

Lemma C.1.5 (Truncated Berstein Inequality). Let Z1, . . . , Zp be independent m× n ma-
trices such that ‖Zi‖2 ≤ R with high probability and and max{‖E[ZZT ]‖, ‖E[ZTZ]‖} ≤ σ2.
Suppose as well that there is a C > 0 for which Pr(‖Z‖ ≥ R(log(1/δ))C ] ≤ 1 − δ, where
R = nO(1) (say, the entries of Z are O(1)-subgaussian). Then with probability 1− δ,

‖1

p

p∑
i=1

(Zi − E[Zi])‖ .
R

p
log((m+ n)/δ) +

√
σ2 log((m+ n)/δ)

p
+ nω(1) (1.13)

If Zi are vectors instead of matrices, it suffices to choose σ2 ≥ E[‖Z‖2].

Proof. Write

1

p

p∑
i=1

(Zi1(|Zi| ≤ R)− E[Zi1(|Zi| ≤ R)]) +
1

p

p∑
i=1

(E[Zi1(|Zi| ≤ R)]− E[Zi]) (1.14)

Applying Bernstein’s inequality to 1
p

∑p
i=1(Zi1(|Zi| ≤ R)− E[Zi1(|Zi| ≤ R)]) gives

‖1

p

p∑
i=1

(Zi1(|Zi| ≤ R)− E[Zi1(|Zi| ≤ R)])‖ . R

p
log(1/δ) +

√
σ2 log(1/δ)

p
(1.15)

with high probability, while Part 3 of Lemma C.1.4 gives ‖1
p

∑p
i=1(E[Zi1(|Zi| ≤ R)] −

E[Zi])‖ ≤ n−ω(1).

C.1.1 Additional Bounds

To control the frequence of events, we use the following Proposition:

Proposition C.1.6 (Multiplicative Chernoff Bound for Bernoulli Random Variables). Let
Z1, . . . , Zn be independent random variables taking values in {0, 1} for which E[

∑
i Zi] = µ.

Then

Pr(
∑
i

Zi ≥ (1 + δ)µ) ≤ e−δ2µ/2 and Pr(
∑
i

Zi ≤ (1− δ)µ) ≤ e−δ2µ/3 (1.16)

Finally, the following lemma controls the norms of random subgaussian vectors:

Lemma C.1.7 (Theorem 1.15 in Rigollet (2014)). Suppose that Z = (Z1, . . . , Zk) is a
random vector whose entries are iid, have variance σ2 = Θ(1), and are σ-subgaussian.
Then

‖Z‖ ≤ 4σ
√
k + 2σ

√
2 log(1/δ) (1.17)

The previous lemma controls the quadratic form ZT IZ. To control general qudratic forms,
we have the Hanson-Wright inequality.
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Lemma C.1.8 (Hanson-Wright, Theorem 2.1 in Rudelson and Vershynin). Let A be a fixed
m× n matrix, and let Z = (Z1, . . . , Zn) be a random with iid, mean-zero O(1)-subgaussian
entries. Then with high probability,

‖AZ‖2 = Õ (‖A‖F ) (1.18)

For a more precise statement and a proof, see Theorem 2.1 in Rudelson and Vershynin.Finally,
we have the following bound on the difference between random covariance matrices and their
expectations

Lemma C.1.9 (Theorem 5.44 in Vershynin (2010)). Let A be an N ×n matrix whose rows
are independent random vectors in Rn with the common moment matrix Σ = E[AiA

T
i ], and

let R be such that ‖Ai‖2 ≤ R almost surely. Then for every t ≥ 0, the following inequality
holds with probability at least 1− n exp(−ct2):

‖ 1

N
ATA− Σ‖ ≤ max{} (1.19)

where δ = t
√

R
N .

Using the sample truncation trick as in Lemma C.1.5, we have

Corollary. Let A be an N × n matrix whose rows are independent random vectors in Rn
with the common moment matrix Σ = E[AiA

T
i ] and super-polynomial tails (i.e. O(n)-

subgaussian entries). Moreover, R be such that ‖Ai‖2 ≤ R with high probability. Then

‖ 1

N
ATA− Σ‖ = Õ

(
‖Σ‖1/2δ, δ2

)
(1.20)

where δ = t
√

R
N .

C.1.2 Incoherence of Random Matrices

Proposition C.1.10. Suppose that B ∈ Rn×m has entries uniform, iid entries which are
have variance σ2 = Ω(1), and are K2 = O(1)-subgaussian. Then, A := B − E[B] is
σ log(nm)√

n
-incoherent with probability 1− (mn)−ω(1).

Proof. First, let’s bound |ATi Aj/‖Aj‖| with high probability whenenver Aj 6= 0. To this
end, let v be the random variable whose distribution is Aj/‖Aj‖|‖Aj‖ 6= 0. Since v,Aj ⊥ Ai,
it holds that and note that

Pr(|ATi Aj/‖Aj‖ > t|
∣∣‖Aj‖ 6= 0) = Pr(|ATi v|

∣∣v 6= 0) (1.21)

= Ev[Pr(|ATi v| > t
∣∣v)] (1.22)

≤ Ev[exp(− t2

2K2
)] (1.23)

≤ exp(− t2

2K2
) (1.24)

Letting t =
√

2K
√

log(1/δ) whenever Aj 6= 0 with probability 1− δ.
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Now we can wrap up. Using a vector Berstein bound, one can show that ‖Ai‖, ‖Aj‖ ≥√
nσ/2 with probability n−ω(1), and so in fact | cos(Ai, Aj)| ≤

2K
√

log(1/δ)

σ
√
n

with probability

1−δ−n−ω(1). Setting δ = (mn)− log(mn) and taking a union bound over all pairs of columns
concludes the proof.

Remark. By sacrificing log factors in the incoherence, we place weaker assumptions on the
tails of the entries of B. Indeed, we only really require that there is some R = O(1) and
C = O(1) for which Pr(Bi,j ≥ R log(1/δ)C) ≤ δ.

C.2 Anti-Concetration of Measure

In what follows, we show how the ρ-smoothness anti-concentration assumption can be turned
into an “non-correlation” result about quantities which depend on certain ρ-smooth vari-
ables more heavily than others. In what follows, let Z1, . . . , Zn be independent real valued
random variables for which there exists a constant ρ > 0, such that for any set S ⊂ R,
Pr (Zi ∈ S) ≤ ρ · vol(S) for all i ∈ [n]. We will also fix a vector a ∈ Rn, and define the
random variables Yi = aiZi.

Here, the notation vol(S) denotes the Lebesque measure of the set S. For any u ∈ Rn,
we will use the notation S − u = {w ∈ R : w + u ∈ S} and uS = {w · u : w ∈ S}. Note
that vol(S) = vol(S − u) for all u ∈ Rn, and vol(uS) = uvol(S). These insights give the
following Lemma

Lemma C.2.1. Let {Zi}1≤i≤n be independent,real random variables. Then

1. If any Zi is ρi-smoothly distributed, then
∑

i Zi is ρi-smoothly distributed for all i ∈
[n].

2. If each Zi is ρ-smoothly distributed, then each aiZi is ρi/|ai| smoothly distributed.

3. If each Zi is ρ-smoothly distributed, then
∑n

i=1 aiZi is ρi/|ai| for any i ∈ [m]

Proof. For the first point, it suffices to prove that
∑

i Zi is ρ1-smoothly distributed:

Pr(
n∑
i=1

Zi ∈ S) = Pr(Z1 ∈ S −
∑
i≥2

Zi) ≤ ρ1vol(S −
∑
i≥2

Zi)) ≤ ρ1vol(S)

For the second point,

Pr(aiZi ∈ S) = Pr(Zi ∈
1

ai
· S) ≤ ρvol(

1

ai
· S) =

ρ

|ai|

The third point follows by combining the two.

As a consequence, we have our first non-correlation result about the difference between the
sign-threshold of the sum of two ρ-smooth random variables Y1 +Y2, and the sign-threshold
of only Y1 alone:
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Proposition C.2.2. Suppose that Y1, Y2 are two, independent real valued random variables
and that there is a constant ρ such that Pr(Y1 ∈ S) ≤ ρvol(S) for all Borel sets S ⊂ Rn.
Then,

E
[
|signτ (Y1)− signτ (Y1 + Y2)|

∣∣Y2

]
≤ 4ρ|Y2| (2.25)

where the factor of 4 can be replaced with 2 if |Y1| ≤ 2τ almost surely. Similarly,

E
[
|thresτ (Y1)− thresτ (Y1 + Y2)|

∣∣Y2

]
≤ 2ρ|Y2| (2.26)

Proof. We prove the first point; the second follows similarly. The key idea is to define the
sets

U+
τ (t) := [−τ − |t| , τ ] ∪ [τ − |t| , τ ] and U−τ (t) := [−τ,−τ + |t|] ∪ [τ, τ + |t|] (2.27)

We now state the two crucial, though rather self evident properties of U+
τ and U τ−

1. vol(U+
τ (t)) = vol(U−τ (t)) = 2|t|

2. Given two random variables Y1, Y2, it holds that signτ (Y1 +Y2) 6= signτ (Y1) only when
Y2 > 0 ∧ Y1 ∈ U+

τ (Y2) or Y2 < 0 ∧ Y1 ∈ U−τ (Y2).

Stated otherwise, signτ (Y1+Y2) 6= signτ (Y1) only when Y1 lies in a set of volume proportional
to Y2. Indeed, since |signτ (Y1)− signτ (Y1 + Y2)| ≤ 2 (less than 1 if Y1 ≤ 2τ almost surely),
we have that

|signτ (Y1)− signτ (Y1 + Y2)| ≤ 21
(
Y2 > 0 ∨ Y1 ∈ U+

τ (Y2)
∣∣Y2

)
+ 21

(
Y2 < 0 ∨ Y1 ∈ U−τ (Y2)

∣∣Y2

)
Thus

E
[
|signτ (Y1)− signτ (Y1 + Y2)|

∣∣Y2

]
≤ 2Pr

(
Y2 > 0 ∨ Y1 ∈ U+

τ (Y2)
∣∣Y2

)
+ 2Pr

(
Y2 < 0 ∨ Y1 ∈ U−τ (Y2)

∣∣Y2

)
= 21 (Y2 > 0) Pr

(
Y1 ∈ U+(Y2)

∣∣Y2

)
+ 21 (Y2 < 0) Pr

(
Y1 ∈ U−(Y2)

∣∣Y2

)
≤ 2ρ

{
1(Y2 > 0)vol(U+(Y2)) + 1(Y2 < 0)vol(U−(Y2))

}
= 4ρ|Y2|

(2.28)

If Y1 ≤ 2τ almost surely, then |signτ (Y1)− signτ (Y1 + Y2)| ≤ 1 almost surely, which would
yield a factor of 4 instead of 2 in the last line of Equation 2.28

We can state the previous proposition in a slightly easier-to-use form:

Corollary. Let Z1, . . . , Zk be real random variables such that Z1 ⊥ (Z2, . . . , Zk), and Z1

is ρ-smoothly distributed. Then, for any measurable function f(·) and any τ ∈ R, and any
vector a ∈ Rk, it holds that

E

|f(Z1)|

∣∣∣∣∣∣signτ (
n∑
i 6=2

arZr)− signτ (

k∑
i=1

aiZi)

∣∣∣∣∣∣
 ≤ 4ρ

∣∣∣∣a2

a1

∣∣∣∣E [|Z2f(Z2)|] (2.29)

If in addition a1Z1 ≤ 2τ almost surely, or if the signτ functions are replaced with thresτ ,
then the factor of 4 can be replaced by a factor of 2 in the above display.
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Proof. Let v be the random vector (Z3, . . . , Zk). Now, let Y1 = a1Z1 +
∑

i>2 aiZi and
Y2 = a2Z2. Note that, conditioned on v, Y1 = a1Z1 + c(v), where c(v) =

∑
i>2 aiZi is

constant. Hence Y1 is a1ρ-smoothly distributed by Lemma Lemma C.2.1, and Y1, Y2

∣∣v.
Hence,

E
[
|signτ (Y1)− signτ (Y1 + Y2)|

∣∣Z2, Z3, . . . , Zk
]

= E
[
|signτ (Y1)− signτ (Y1 + Y2)|

∣∣v]
≤ 4ρ|Y1|/|a1| = 4ρ|a2/a1||Z2|

∣∣Z2, v =

Hence, taking the expectation over Z2, . . . , Zk gives

E [f(Y2) |signτ (Y1)− signτ (Y1 + Y2)|]
= EZ2,...,Zk

[
|signτ (Y1)− signτ (Y1 + Y2)|

∣∣Z2, Z3, . . . , Zk
]

≤ EZ2,...,Zk
[4ρ|a2/a1||Z2|]

= 4ρ|a2/a1|f(Z2)|Z2|

We conclude this section with a self-evident proposition which controls the expectation of
ρ-smooth quanties over sets of small volumes:

Proposition C.2.3 (Expectation of ρ-Smooth quantities over sets of small volume). Sup-
pose that Z is (C, ρ)-smooth and that τ ≤ C. Then,

|E[f(Z)1(Z ≤ τ)]| ≤ 2τρ max
t∈[−τ,τ ]

|f(Z)| (2.30)

In particular,

E[|Z|k1(Z ≤ τ)] ≤ 2ρτk+1 (2.31)
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Appendix D

Linear Algebra

D.1 Projections onto Span of Incoherent Vectors

In what follows, let A ∈ Rm×n be a µ-incoherent matrix with unit norm columns. For a
subset S ⊂ [m], let AS denote the matrix whose columns are the columns of A indexed by
the elements of S. Let QS denote the projection onto VS , and let PS = I −QS denote the
projection on V⊥S . The following Lemma shows that, if the columns of A are sufficiently
incoherent, then ASA

T
S looks like an orthogonal projection:

Lemma D.1.1. If |S| = k, then(
1− µ(k − 1)√

n

)
QS � ASATS �

(
1 +

µ(k − 1)√
n

)
QS (1.1)

and ∥∥∥A†S∥∥∥2
=
∥∥∥(ATSAS)†∥∥∥ ≤ (1− µ(|S| − 1)√

n

)−1

(1.2)

More generally, if σmin(AS) ≥ c, then QS � c−2ASA
T
S .

Proof. Since |S| = k, we may write ASA
T
S = UΣUT where Σ ∈ Rk×k is diagonal and non-

negative, and U ∈ Rn×k is orthogonal. Then (mini Σii)UU
T � ASA

T
S � (maxi Σii)UU

T .
This proves the more general result when ‖σmin(AS)‖ ≥ c.

For the specific case, we have that the same column space and U is orthogonal, it follows
that UUT = QS . On the other hand, ‖A†S‖2 = ‖(ATSAS)†‖ = (mini Σii)

−1. Hence, both
Equation 1.1 and Eqution 1.2 will follow once we show that the entries of Σ, or equivalently,
the squares of the top k singular values of AS , lie in the interval[

1− µ(k − 1)√
n

, 1 +
µ(k − 1)√

n

]
(1.3)

It suffices to show that the eigenvalues of M := ATSAS lie in the above interval. To this end,
we apply the Gershgorin circle theorem to M . Mii = 〈Ai, Ai〉 = 1, let |Mi,j | = |〈Ai, Aj〉| ≤
µ/
√
n, and thus

∑
j |Mi,j | ≤ (k−1)µ/

√
n. By the Gershgorin Circle Theorem, it holds that

the eigenvalues of ATSAS lie in complex disks of radius no more than (k−1)µ√
n

around ‖Ai‖2

(which is 1 in the simple case, and lie in [c, C] in the general case]. But ATSAS is self adjoint,
so its eigenvalues are real hence each lies in the interval given by Equation 1.3
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Remark. The incoherence assumption in Lemma D.1.1 is absolutely indispensible. Indeed,
consider the matrix

A =

[
1 1
0 ε

]
(1.4)

for some ε > 0. Then A is nonsingular, and consequently ProjA is just the identity. However,
one can check that top singular value of A is at least

√
2, while the bottom singular value

of A is no more than ε. This has an algorithmic implication: unless if a dictionary A is an
estimate of a true dictionary A∗, then it is more numerically stable to use AAT over ProjA
in projection pursuit algorithms.

Next, we establish some elementary properties of the projection matrices PS and QS

Lemma D.1.2. The following hold:

1. If V ⊂ S, then PS commutes with PV and QS commutes with QV

2. If V ⊂ S, then PSPV = PV PS = PS

3. QV −QS = PV (QV −QS)PV

4. ATV PV = 0 and QV PV = 0

Proof. For the first point, V ⊂ S =⇒ VV ⊂ VS , and V⊥S ⊂ V⊥V . The result now follows form
that fact that if V ⊂ W are two subspaces, then ProjV and ProjW commute. The second
point follows from the fact that if V ⊂ W are two subspaces, then ProjVProjW = ProjV ,
and the commutativity established in the first point. From the first result, we may write
PS − PV = QV − QS , while also, PS − PV = PV (PS − PV )PV = PV (QV − QS)PV so that
QV − QS = PV (QV − QS)PV . To show that ATV PV = 0, note that for any x ∈ Rn, Pvx
is perpendicular to all of the columns of AV , and hence ATV PV x =

∑
j∈V 〈Aj , Pvx〉 = 0.

QV PV = QTV PV = 0 for precisely the same reason.

We are now ready to prove Theorem 4.1.5, which we restate here:

Theorem D.1.3 (Restatement of Theorem 4.1.5). If σmin(AS) ≥ c then

QS −QV � c−2PV (AS−VA
T
S−V )PV (1.5)

as long as c > 0.

Proof of 4.1.5. Using Lemma D.1.2 parts 3 and 4, Lemma D.1.1, and then Lemma D.1.2
part 4 again, we have

QS −QV = PV (QS −QV )PV

= PVQSPV

� K · PV (ASA
T
S )PV by Lemma D.1.1

= K · PV (AS−VA
T
S−V +AVA

T
V )PV

= K · PV (AS−VA
T
S−V )PV

(1.6)
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D.2 General Purpose Bounds

Claim D.2.1. Let v1, . . . , vk ∈ Rn be fixed vectors of norm no more than δ, and let u ∈ Rk
be a random vector . Then E[‖

∑
i uivi‖2] ≤ δ2‖E[uuT ]‖l1, where ‖ · ‖l1 is the l1 norm of the

matrix viewed as a vector in Rk2.

Proof. For a matrix S ∈ Rk×k, let ‖ · ‖l∞ denote its l∞-norm viewed as a vector in Rk2 .
By Holders inequality supS:‖S‖l∞≤1

∑
i,j Si,jUi,j = ‖U‖l1 for any U ∈ Rk×k.Now, write

E[‖
∑

i uivi‖2] = E[〈
∑

i uivi,
∑

j ujvj〉] = E[
∑

i,j uiuj〈vi, vj〉] =
∑

i,j E[uiuj ]〈vi, vj〉. Since

|〈vi, vj〉| ≤ ‖vi‖‖vj‖ ≤ δ2, we have

E[‖
∑
i

uivi‖2] ≤ sup
si,j∈[−δ2,δ2]

∑
i,j

si,jE[uiuj ]

= δ2 sup
S∈Rk×k:‖S‖l∞≤1

∑
i,j

Si,jE[uiuj ]

= δ2‖E[uuT ]‖l1

Lemma D.2.2. Let M,N be two symmetric random matrices such that N � 0 and −N �
M � N almost surely. Then, for any unit vector v and random variables Z,Z ′ such that
Z ′ ≥ |Z| almost surely, it holds that

‖E [Z ·Mv]‖ ≤ ‖E [Z ·Mv]‖ ≤
∥∥E [Z ′ ·N]∥∥ (2.7)

More generally, if M,N,Z ′, Z have exponential tails and −N � M � N with probability
1− γ, then

‖E [Z ·Mv]‖ ≤ ‖E [Z ·Mv]‖ ≤
∥∥E [Z ′ ·N]∥∥ (2.8)

Proof. We prove the case when −N �M � N ; the general case follows from an application
of Lemma C.1.4:

‖E[Z ·Mv]‖ ≤ sup
w∈§d−1

‖E [Z ·Mw]‖ (2.9)

≤ sup
w,w1∈§d−1

wT1 E [Z ·M ]w (2.10)

≤ sup
w∈§d−1

∣∣wTE [Z ·M ]w
∣∣ (2.11)

= ‖E [Z ·M ]‖ (2.12)

where the last step follows since E[Z ·M ] is symmetric. Let w∗ be the vector which attains
the supremum in the above equation. By our assumptions on N and M , it holds that

−|Z|N � ZM � |Z|N (2.13)

Hence, (w∗)TE[Z·M ]w∗ = E[Z(w∗)TM(w∗)] lies in the closed interval between E[−|Z|(w∗)TNw∗] =
−E[|Z|(w∗)TNw∗] and E[|Z|(w∗)TNw∗], and so, for any ζ ≥ |Z| almost surely:

‖E[Z ·Mv]‖ ≤
∣∣(w∗)TE[Z ·M ](w∗)

∣∣
≤

∣∣E[|Z|(w∗)TNw∗]
∣∣ = E[|Z|(w∗)TNw∗]

≤ E[Z ′(w∗)TNw∗] = (w∗)TE[Z ′N ]w∗ ≤ ‖E[Z ′N ]‖
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Lemma D.2.3. Let D1, D2 be diagonal matrices where D1 has nonnegative entries and
the entries of D2 are uniformly bounded by d. Then, for any matrix X, XD1D2X

T �
dX1D1X

T .

Lemma D.2.4. Let v and w be orthgonal vectors. Then ‖vwT + wvT ‖ = ‖v‖‖w‖

Proof. Because vwT + wvT is symmetric, we have

‖vwT + wvT ‖ = sup
a:‖a‖=1

aT (vwT + wvT )a (2.14)

Let a = av + aw + a0 be a decomposition of a into the span of v, w, and the orthogonal
complement of the span of v and w respectivly. Then aT (vwT + wvT )a = ‖v‖‖w‖(avaw +
awav) = 2‖v‖‖w‖(avaw). It is easy to see av = aw = 1/

√
2 maximizes this expression under

the ‖a‖ = 1 constraint.
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