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A linear-space geometric theory of intersymbol interference s tntro-
duced tn this paper. An equivalence between the structure of intersymbol
interference and a wide-sense stationary discrete random process 1is
demonstrated and explotited to demonstrate the equivalence of zero-forcing
(deciston-feedback) equalization to minimum mean-square error linear
interpolation (prediction) of a random process. This equivalence 1s used
to quickly derive the properties of these equalizers and give them additional
geometric interpretation. Results from prediction theory are used to
develop practical computational methods of determining the tap-gains of
the infinite equalizers for both rational and nonrational channel power
spectra. Finally, the theory of reproducing kernel Hilbert spaces ts used
to develop a theory of equalization for nonstationary channels with non-
stattonary notse.

I. INTRODUCTION

The analysis of digital communication systems from a geometrical
viewpoint—the viewing of waveforms as points in a signal space and
the identification of cross-correlation with the formation of an inner
product—is by now well established. To a large extent, this approach
has been popularized by the book of Wozencraft and Jacobs.! However,
when it comes to analyzing systems with intersymbol interference,
frequency-domain techniques have almost exclusively been relied upon.
The purpose of this paper is to consider pulse-amplitude modulation
(PAM) systems with intersymbol interference from a geometric
standpoint, and more specifically to develop a geometric theory of
equalization.
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Consideration of the geometric structure of intersymbol inter-
ference leads immediately to the observation of a striking correspond-
ence to the theory of minimum mean-square error (MMSE) linear
estimation of a wide-sense stationary discrete-parameter random
process. The fact that the latter subject is almost exclusively treated
by geometric methods?? is further impetus for this approach to
equalization.

The theories of linear zero-foreing equalization and decision-feedback
equalization are well established. The properties of linear equalization
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Fig. 1—(a) Communication system model. (b) Matched-filter receiver. (c) Zero-
forcing equalizer. (d) Decision-feedback equalizer.
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are summarized by Lucky, et al.,* while the present state of knowledge
of decision-feedback equalization is summarized by Monsen® and
Price.® The primary analysis tools which have been used are the cal-
culus of variations in the case of linear equalization and Toeplitz forms
in the case of decision-feedback equalization.

In this paper, the geometric approach enables us to treat the two
types of equalization simultaneously using the same mathematical
framework, in which the relationship between them becomes very clear
and many of their known properties are given an additional geometric
interpretation. Many of the results follow directly from the theory of
MMSE estimation. In addition to the unification and reinterpretation
of previously known results, the geometric approach leads to exten-
sions of the theory in several directions. Among these are the deriva-
tion of an orthogonal expansion in Section 2.4 which is useful in many
problems involving intersymbol interference, the development of
practical iterative techniques for determining equalizer tap-gains
(the infinite case) in Section 3.4, the extension of the theory of equali-
zation to nonstationary noise and a time-varying channel in Section
IV, and numerous results on the minimum distance problem associated
with the performance analysis of the Viterbi algorithm maximum
likelihood detector in a companion paper.?

This paper together with a companion one’ expand upon an earlier
talk.® Readers desiring a limited and short treatment of this subject
may wish to refer there. The geometrical approach to intersymbol

interference was also employed to a limited extent in the author’s
thesis.?

1.1 Problem Statement

We will consider the detection of a sequence of digital data digits,
By, each assuming one of a finite and predetermined number of levels,
from the reception

Ng
rt) = kEM Bih(t — ET) + n(t) (1)
as determined from the communication system model of Fig. la. It
will be assumed initially that n(¢) is white Gaussian noise (this assump-
tion will be relaxed in Section IV).T A simple matched-filter receiver
for the reception of r(t) is shown in Fig. 1b. In the first of two equiv-
alent formulations of this receiver, the reception is cross-correlated

T The assumption of Gaussian noise is not necessary for the majority of results to
follow, and in particular those which involve only second-order statistics of the noise.
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with A(¢t — kT) and the decision on B, made by applying a series of
thresholds to the result; in the second formulation the cross-correlator
is realized as a filter with impulse response A(—¢) (commonly called a
matched filter) whose output is sampled at ¢ = kT. The matched-
filter receiver is optimum when there is no intersymbol interference,
but in the presence of intersymbol interference the matched filter will
respond to more than a single data digit and the performance of the
receiver will be degraded.

When there is intersymbol interference, a common approach is to
build a linear filter, called a zero-forcing equalizer (ZFE), which re-
sponds to only a single time-translate of 2(¢) (this can only be approxi-
mated in practice). The most common form of this equalizer, shown
in Fig. 1c, is a matched filter followed by transversal filter (MFTF).
As N — = the tap-gains of the transversal filter can be chosen such
that the threshold input is a function of only a single data digit. It is
important to note for future reference that the MFTF can also be
modeled in the manner of Fig. 1b as a cross-correlation of r(¢) with a
linear sum of time translates of A (%),

f: anh(t — mT).

m=—N

The decision-feedback equalizer (DFE) embodies a slightly different
philosophy in which the DFE forward filter is allowed to respond to
past (but not future) translates at h(¢); the residual interference from
past data digits is then subtracted out prior to the decision threshold
using past decisions. A realization of the DFE using again the MFTF
approach is shown in Fig. 1d. The tap coefficients are now chosen to
null the response to future data digits; this can be accomplished as
N — o,

The shortcoming of both the ZFE and DFE is that their linear
filters remove intersymbol interference without regard to the effect
on the noise; the result is that in eliminating the intersymbol inter-
ference (or a portion thereof) they necessarily enhance the noise.t It
seems clear intuitively that since the DFE eliminates interference
from only future data digits, it has more degrees of freedom than the
ZFE and should therefore be capable of less noise enhancement. A
proof that this is always the case has been given by Price ;¢ his method
was to determine an explicit formula for the DFE S/N ratio using

T In addition, the DFE is susceptible to decision errors. The effect of errors will
not receive consideration here.
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Toeplitz form theory and compare it with the known S/N ratio of the
ZFE.* Additional interpretation of this result will be given in Section
3.1.

A review of some requisite material on linear spaces and MMSE
linear estimation is given in Sections 2.1 and 2.2. Readers familiar
with this material are nevertheless urged to scan these sections for
notation to be employed in the remainder of the paper. The ZFE and
DFE are reformulated in Section 2.3. In Section 2.4 the relationship
between intersymbol interference and MMSE estimation is discussed,
and a useful orthogonal expansion arising out of this relationship is
derived in Section 2.5.

Section III develops a geometric theory of the ZFE and DFE.
Conditions necessary and sufficient for the existence of these equalizers
are given in Section 3.1, their performance is discussed in Section 3.2,
a useful property of the DFE with regard to its output noise sequence
is interpreted in Section 3.3, methods of calculating the tap-gains are
derived in Section 3.4, and the relationship between finite and infinite
transversal filter equalizers receives consideration in Section 3.5.

Sections II and III are concerned with additive white noise ex-
clusively. Section IV extends the theory to colored Gaussian noise,
nonstationary Gaussian noise, and a time-varying channel using the
theory of reproducing kernel Hilbert spaces (RKHS).

II. AN EQUIVALENCE TO DISCRETE RANDOM PROCESSES

The structure of the intersymbol interference in (1) will now be
shown to have an equivalence to a wide-sense stationary random
process. The starting point will be a quick review of linear spaces and
of linear mean-square error (MMSE) estimation of a random process.

2.1 Hulbert Space N otation®®

An inner product space £ consists of a linear space together with a
defined inner product {z, y) between two elements z and y. All spaces
in this paper are Hilbert spaces, which consist of an inner product
space satisfying an additional closure property (specifically, the limits
of Cauchy sequences must be in the space). The inner product induces
a norm, or ‘“length’” of a vector,

llzll £ (z2) 2

and the notion of the distance between two vectors, ||z — y|. The
geometrical interpretation of these quantities is illustrated in Fig. 2.
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Fig. 2—Interpretation of inner product, norm, and distance.

A subspace of £ is any set of vectors which itself constitutes a linear
space. If zx, k € I is a countable or finite sequence of vectors, then
we denote by M (ax, k € I) the closure of the subspace consisting of
all finite linear combinations of elements of the set {z\, k &€ I} and
call this the subspace spanned by the z;’s. It is convenient to think
of elements of M (x, k & I) as convergent (possibly) infinite sums
of the form

2 Ty

Pray ¢
even though in some obscure cases not all elements can be expressed
in this way.

In many minimization problems it is desired to find the element
of some closed subspace M which is closest to a vector y; the resulting
element is called the projection of y on M, is denoted by P(y; M),
and satisfies the orthogonality property

y — Ply; M), z) =0 3)

for all x € M. The geometric interpretation of (3) is shown in Fig. 3
for a one-dimensional subspace spanned by z; for this case the pro-
jection must be a scalar times z and the validity of (3) is apparent.

2.2 Review of Linear Mean-Square Interpolation and Prediction?:?

We will now quickly review the theory of linear mean-square
estimation of a random variable.

The set of random variables with zero mean and finite variance is a
linear space, since the sum of any two such random variables itself
has these properties. This set is also a Hilbert space with inner product

(X,Y) = E(XY), (4)

T When, as in (3), a vector is orthogonal to every vector in M, it is said to be
orthogonal to M.
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Fig. 3—Projection on subspace spanned by z.

where E(-) denotes expected value. It is standard to suppress the
sample space dependence of a random variable as has been done in (4)
because the geometric properties (inner product and norm) are deter-
mined by the value of the random variable on the whole sample space ;
that is, by its statistics in their entirety.

Consider now the following interpolation problem: Suppose that a
sequence of zero-mean random variables X5, —® <k < «, with
finite variances are given and it is desired to estimate X, based on the
observation of X, k = 0. If the estimate is further stipulated to be
linear, it is the same as requiring that it be an element of M (X, k 5= 0).
Suppose that the estimate X, is to be chosen in such a way that the
mean-square error between X, and the estimate is minimized :

min E(Xo — Xo)z. (5)

R0EM (Xa,k %0)
From (4) and the previous section, the MMSE linear interpolator is
X0= P[Xo, M(Xk,k?fO)], (6)

the projection of Xoon M (X, k # 0).

A second estimation problem which will be of interest is the pre-
diction of X based only on X, k > 0 (an anticausal prediction). The
MMSE linear predictor is the projection of X, on the subspace
spanned by X, k =1, 2, -- -, denoted by P[Xo, M (X, k£ > 0)1.

2.3 Zero-Forcing and Decision-Feedback Equalization

We are now prepared to restate the problem of determining the ZFE
and DFE filters in a linear space context. It will be assumed that the
basic pulse k(¢) in (1) has finite energy (i.e., is square integrable),

/w RA()dt < - )

—00

The set of waveforms which satisfies (7) is a linear space, which we
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denote by L. L. is also a Hilbert space with inner product

@) = [ =y ®)

for any two L. waveforms z(t) and y(¢). For the same reason that the
sample space dependence of a random variable was suppressed in (4),
the time dependence of the waveforms z(f) and y(f) has been sup-
pressed on the left side of (8): it is the entire time waveform which
determines the geometric properties.

The class of filters’ which will be considered will be limited to those
which can be modeled as an inner product (or cross-correlation) of the
reception r(f) with some L, waveform. A ZFE is a filter corresponding
to a waveform ¢,(#) which does not respond to any translate of 2(f)
except h(t — kT,

/ "Rt = mTp®dt =0, m=k, (9

but does respond to A(t — kT),

/_ " h(t — kT)gu(t)dt = 0, (10)

in order that there be a signal on which to base the decision. It is
evident that if go(f) satisfies (9) and (10) for k = 0, then they are also
satisfied by ¢x(t) = go(t — kT) for k = 0. Written in inner produect
notation, (9) and (10) become

<hk7 gﬂ) = 0) k = 07 (11)
<h0) gO) #= 07 (12)

where we have written h; for A(¢ — kT). The analogous condition for a
DFE forward filter is

(hk, go\ = 0, k> 0, (13)

The forms of the ZFE and DFE in this symbolic notation are shown
in Figs. 4a and b. The output of the linear filter is a function of By
(a single data digit) for a ZFE and Bj_n, m > 0 (all past data digits)
for a DFE. The tap-gains of the feedback transversal filter storing
past decisions for the DFE are equal to the responses of go to previous
pulses, (go, h—m), m > 1.

¥ In the case of the DFE, we refer only to the forward filter.
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Fig. 4—Symbolic representations of the two equalizers: (a) zero-forcing equalizer;
(b) decision-feedback equalizer.

2.4 A Congruence Relationship

Two Hilbert spaces which display an identical geometrical structure
are said to be congruent® or unitarily equivalent.’® Specifically, in
order for two Hilbert spaces to be congruent, there must exist between
them a one-to-one and onto linear mapping which preserves norms
and inner products. Although the elements of two such spaces may be
quite different entities, when considered as elements of their respective
Hilbert spaces they have the same geometrical structure.

Define the autocorrelation function of the pulse sequence,

Ri = (hmy hmir). (15)
It follows from the inequality
2

N N
= 2 z amaﬂka—kn

m=0n=0

N
Z amhkrn

m=0

=

that {R:} is a nonnegative definite function. Therefore, there exists
a second-order discrete random process {X} which has autocorrela-
tion Ry,
(Xmy Xmsr) = E(Xmy Xnrs)
= R,. (16)
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For the random process defined in (16), M (hy, k € I) and M (X, k € 1)
are congruent through the obvious mapping

N N

¢ [ Z amhkm:l = Z a,,.ka (17)
m=1 m=1

which is a unitary linear transformation. To verify this, observe that

the mapping is linear, preserves norms,

N
o o)

2 2

]

N
Z "‘ka

m

a
=1
N N
= Z Z amaan,,,—k,.
m=1n=1

N 2
2 amhi,|| (18)

m=1

and preserves inner products by an equally simple derivation.

The mapping of (17) is only defined for finite sums. When [ is an
infinite set, ¢ can be extended to all of M (h, k¥ € I) by taking limits
in the mean. For any f € M (hi, k € I) there exists a sequence { fi},
each consisting of a finite sum of the form of (17), such that f, — f.
Since ¢(fx) is a Cauchy sequence from (18) ,we define ¢(f) as the
limit of ¢(fx), which is in M (X, k & I) by completeness.

There is an additional congruence which is useful. From the defini-
tion of Ry in (15), we see that

Bi= o [ 1H @) presrra

1 T .
= g0 [ RO (19)
where
) 2
Rw) 2 3 H(w-i-mg;—:)
=T 3 RyeineT, (20)

where B () is an equivalent power spectrum of the channel. From (16),
R(w)/T is the power spectrum of the random process {X.}. Let
Ly(—=/T, =/T; R) denote the Hilbert space of all complex-valued
Lebesque measurable functions f(w) with domain |w| < =/T which
satisfy
1 /T
@l =g [ 1@ R @ < = (21)
T J—=x/T
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with the obvious definition of the inner product. A frequently invoked
congruence is between M (X, — © <k < ©)and Lo(—=/T,n/T; R).2
By implication, Le(—=/T, n/T; R) and M (h, — % < k < =) are
also congruent through the mapping

N N ]
1//( > amhkm) = Y apeduknT (22)
m=1 m=1

as is readily verified.

In the remainder of this paper, the congruence demonstrated in this
section will be exploited to demonstrate that many available results
on MMSE interpolation and prediction theory are directly applicable
to the equalization problems posed in Section 2.3.

2.5 An Orthogonal Expansion

The congruence relation of Section 2.4 will be used in this section to
establish an orthogonal expansion in M (hsy, — = < k < =) which
will be particularly useful in the sequel.

Define the element

& £ hy — Plhi, M(hnym > )] (23)

which is the difference between a translate of h(¢), ki, and its pro-
jection on the subspace of translates to its right. It will be shown later
that this element is of particular significance to the DFE. For the
moment, however, note that e;f is equivalent to the MMSE prediction
error of X based on X,,, m > k, since the projection is the optimum
linear predictor. It is well known? that the successive prediction errors
of a random process are uncorrelated random variables. The equiv-
alent statement relating to ef is that

(e, ) = lled|m.s e

and it is an orthogonal sequence. T This is readily demonstrated directly
by noting that e} is orthogonal to M (k:, k = m), which contains e
for n > m. Hence, (24) follows for n > m and by symmetry forn < m
also.
From (24) it follows that as long as
e >0 (25)
the sequence
wn = ef/llefll, — o <n< =, (26)

is an orthonormal set in L.. The significance of (25) is that the equiv-

T The norm of ¢} is independent of k since e}t is a time translate of €.



1494 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973

alent random process must not be linearly predictable with vanishing
mean-square error (in the language of Ref. 3, p. 564, X, must be
“regular,” or “nondeterministic’).

Expanding A, in a Fourier series in w.,

ho = Un + s
un = Z men+m
Cm é <wn+m; hn> = <wm; hO\
Wy W) =0, — 0 <n <o, — oo Im<< ®, (27)

where v, is the remainder. Equation (27) can be simplified by observing
that
{Wm, ho)y = 0, m < 0,

since hy € M (hr, k = 0) and w,, is orthogonal to M (Ax, £ = m + 1),
which contains M (hg, k¥ = 0) when m < 0. In addition, it can be shown
(Ref. 3, pp. 571-575) that v, = 0, since the spectrum under consider-
ation here is absolutely continuous.™ Thus, (27) reduces to

]
hn = Z men-’—m

m=0
Cm = {(No, Wm). (28)

The expansion of (28), which is used in the theory of linear prediction,?-?
is similar in spirit to a straightforward Gram-Schmidt orthogonaliza-
tion process, but is much more useful in that the coefficients of the
expansion are independent of n. The main shortcoming of the expan-
sion (28) is requirement (25).

The formula for ¢, given in (27) is not very useful in explicitly
evaluating the coefficients of (28). A more useful method of evaluation
is to observe that it is a spectral factorization problem. Defining the
bilateral z-transform? of the autocorrelation,

R*G) = S RnZm™, (29)
we claim that
R*G) = 3 caZ® 3 el (30)
n=( n=0

T This is by virtue of the fact that integral (21) is in terms of R(w)dw; ie., the
underlying measure is presumed to be absolutely continuous with respect to Lebesque
measure,

* Note that we define the z-transform in positive powers of z.
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where the ¢, are given by (28). To show (30), first calculate B; from
(15),

R; = (ho, hj)
=2 CnCn{Wmy Witn)
m=0n=0
Z_:Ocncn+j; jz0 (31)

Z CnCntj) .7 < 0.

n=—j

Similarly, the right side of (30) can be manipulated,

Y cpendnm = ZO ZO Calrtml™ + 3 D CnCr—mZ™™, (32)
n=0 m=0 m=0 n= m=1 n=—-m
and comparing (31) and (32), (30) is established. The representation
of (30) is not unique. However, Doob (Ref. 3, p. 160) shows that
the coefficients of (27) uniquely satisfy (30) when the additional
conditions

Y eZr %0,  |Z] <1, (33)
n=0

Ms

¢l < (34)

0

n

are required.? The necessity of (34) is obvious from (27), while the
reason why (33) is needed is that otherwise (30) could be satisfied
on the unit circle by another sequence with a larger zeroth term,
contradicting the fact that

co = |leg | (35)
Equation (35) follows from the observation that M (h:, k 2 n) =

M (wi, k = n) and therefore P[hn, M (hi,k = n 4+ 1)] = T 2_) CaWpim
or

el = cqwn. (36)

A simple example will serve to illustrate (30). Suppose h(f) has an
exponential autocorrelation with

Ry =AM,  0<A<1. (37)

T Of course, condition (25) is also required.
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Direct calculation of (29) reveals that

1 — A?
(1 —AZ2)1 — 4/2)

which is in the form of (30) with
€= V1 — A2 A~ (39)

The validity of (39) can be demonstrated directly for this simple
example by noting that

R*(z) = (38)

6;*- = hk - Ahk.H (40)

(as can be verified by showing that e is orthogonal to h,, m = k + 1)
and thus

w. — hm — Ahmys
" ”hm - Ahm+l”
hm — Almis
By (4D
From (28),
Cm = <h07 wﬂ)
=1 — A2Am (42)

agreeing with (39).

The procedure for higher-order rational spectra is equally simple.
From (29) and the fact that R, is real and even (R_, = R,), it
follows that

R*(z) = R* (-17;) (43)
Thus, for every zero a; and pole b; of R*(z), a;! and b;7! are also a
zero and a pole respectively. Thus, R*(z) can be written in the form

ﬁ (1 — a:z) (1—%)

R*(z) = K** 7 (44)
fi oo (1- %)
lai], [b:] <1
so that from (30)
- f (1 — az)
Cz) = X cZn= VKo (45)
n=0 .Zl (1 — biz)

where (33) has been insured by the choice of zeros in (45).
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When R*(z) is not rational, a more general method of determining
the coefficients of (28) is required. For this purpose, we use the equiv-
alent power spectrum of (20). The first form in (20) is the one re-
quired for analytically determining C(z), whereas the second form is
the one which would usually be used in numerical calculations. The
relationship of R(w) to B*(2) is, of course,

E(w) = TE*(e™7), (46)

the evaluation of R*(2) on the unit circle. The equivalent of (30) for
R(w) is
R(w) ’ ol

Z Ch erkT
T =0

(47)

Intuitively, (47) requires the expansion of VR (w)/T, with an arbitrary
phase characteristic, in a complex Fourier series with only positive
frequencies. Following Doob (Ref. 3, p. 161), expand log VR(w)/T
in a Fourier series,

! 1og R(w)

Z e ok T . (48)
This is always possible because, as will be demonstrated later, in order

for (25) to be satisfied, it is necessary and sufficient that log R (w) be
integrable. Define

g(2) = ro+ 2 kZ_l T2k (49)

and note that
Re g(e*7) = L log @- (50)

We claim that
C(z) = 9@ (51)

satisfles (47), since

[C(e#T)] = exp[Reg (e#T)] = /Ii(;_)

Equation (33) is also satisfied since g(z) is analytic for |z| < 1.
Equation (51) is an analytic solution to the problem initially posed,
but a practical means of applying it numerically is required. It is
shown in Appendix A that the Fourier coefficients of (48) can be
calculated efficiently and accurately using the fast Fourier transform
(FFT) algorithm. The second difficulty is in determining C(z) from
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g(2) in (51). This is easily resolved by noting that

1 dm
- >
n = i dm ~0 mz0
1 dm
™m =g aam (z) m =1 (52)
Co = €™

and applying Leibniz’s differentiation rule
a» n n\ dv™u d™
i =z (m) G o

") = a2 (eam %@)

to the product

dz n dzn1

_ "Z—l n— 1\ dmg(z) d"C(z)
meo m dzm—m dzm™
and, setting z = 0,

Cn =

S

n—1
X (n = mM)emlm, n =1 (53)
m =0

Equations (52)—(53) give us a practical recursive method of determining
the coefficients of (28) when the channel spectrum is not rational.

III. GEOMETRIC THEORY OF THE ZERO-FORCING AND DECISION-FEEDBACK
EQUALIZERS

The zero-forcing equalizer (ZFE) and decision-feedback equalizer
(DFE) have been introduced in Sections 1.1 and 2.3. In this section,
we will describe fully the characteristics of these equalizers in the
context of the geometric structure developed in Section II.

3.1 Conditions for the Existence of the ZFE and DFE

The existence of a ZFE and DFE will now be related to the inter-
polation and prediction of the equivalent random process defined in
Section 2.2. This relationship will then be used to obtain directly the
known conditions for their existence.

The first observation is that the subspaces M (hi, k = 0) and
M (X, k # 0) are identical, as are the subspaces M (hi, k > 0) and
M (X4, k > 0). The element

€y = ho — P[ho, M(hk, k= 0)] (54)
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is the same as the interpolation error vector defined in Section 2.2,
(X — Xo), while the prediction error vector is the same as

e = ho — P[ho, M (hs, k > 0)]. (35)

These two vectors are likely candidates for a ZFE and a DFE because
they are orthogonal to the subspaces M (hi, k = 0) and M (hy, £ > 0)
respectively [see Section 2.1 and eq. (3)]. Hence, they satisfy (11)
and (13) respectively. To verify that they are indeed a ZFE and a DFE,
conditions (12) and (14) must be checked. Noting that e, is orthogonal
to M (hs, k == 0), we have

<€0, h0> = <€0, hO - P[:hO) M(hk) k #= O):|>

= [leal® (56)
by definition (54). Similarly, it follows that
(e, ho) = [leg||% (57)

Thus, we see that a necessary and sufficient condition for ¢, (¢) to be a
ZFE (DFE) is that ||eo]] > 0 (|leg]] > 0). By definition, the projection
of ko on a subspace is the element of that subspace which is at a mini-
mum distance from ho, and hence |¢o|| and |lef]l are the minimum
distances between ho and M (hy, k& # 0) and M (hy, k& > 0) respectively.
Since |leo] can only vanish if ko & M(hs, k # 0), and similarly
for |lef|l, it follows that e, (e) is a ZFE (DFE) if and only if
ho & M (hi, k #= 0) [ho € M (hi, k > 0)]. Physically, these conditions
mean that h(f) must not be representable as an infinite weighted sum
of a subset of its own translates. Geometrically, it is evident in Fig. 5
that, as long as |leo] > 0 (or {leg]| > 0), eo (or ¢g) will have a com-
ponent in the direction of hy and the equalizer will have a response
to the desired signal.

0 eg OReg+
Plhg. M (hy k#01) M (h,, k #0)
OR - OR
P{hg.M (h,. k>0)) M ih,, k>0)

Fig. 5—Geometric interpretation of the zero-forcing equalizer and decision-feed-
back equalizer.
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The weighting functions (54)-(55) can, under reasonable conditions, '
be written in the form of a convergent linear sum of translates of ko,

€y = ho — );()akhk (58)
e = ho — kgb aithy (59)

for some coefficients a;f. This demonstrates that these two elements
are just the matched filter followed by transversal filter (MFTF)
discussed in Section 1.1. It will be shown in the next section that the
MFTF has particular significance, in that it maximizes the S/N ratio.

In general, there will be many ZFE’s and DFE’s other than (58)—(59).
An example of a different ZFE is the element

ho — P[hg, M (h, k = 0)]
for any h, such that
(hoy ko) #= 0
ho & M (hs, k& = 0).

An interesting question that arises is, then, whether there ever exists
a ZFE and DFE when their corresponding MFTF’s do not exist. To
see that the answer is no for the ZFE (the proof for the DFE is
identical), note that if ko & M (hi, k 5 0), then any g, orthogonal to
M (he, k # 0) is also necessarily orthogonal to kg% Thus, we have
proven the following theorem :

Theorem 1: The following five statements are equivalent:

1. ho & M(hs, k 5= 0) [ho & M (he, k > 0)].

2. Jleol > 0 [l > 0.

8. There exists a ZFE [DFE].

4. There exists a ZFE [DFE] of the form of eq. (54) [eq. (65)], the
MFTF.

8. The random process defined in (16) cannot be linearly interpolated
[ predicted] with vanishing mean-square error.

The fifth condition of Theorem 1 follows from our earlier identification
of ey and e as the interpolation and prediction errors, respectively,
of the equivalent random process. This observation also enables us to
pull from the literature formulas for the norms of e, and e;t. The follow-

¥ This will be discussed fully in Section 3.5. o .
1 We also make use of the trivial observation that any go satisfying (11) is orthog-
onal to M (hy, k # 0).
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ing corollary follows directly from the known formulas for the inter-
polation and prediction errors of a random process,??

e = | g2 [ B@an]” (60)
les e = goxo| 5 [ 1og R()do | (61)

Corollary 1: A ZFE [DFET] exists if and only if R~(w) [log R(w)] is
integrable.

Both conditions relate to the fashion in which R(w) vanishes. In
particular, both require that R(w) vanish on at most a set of measure
zero. The relationship of (60) and (61) will be discussed more fully
in the sequel.

It should be noted also that (61) follows directly from the orthog-
onal expansion of Section 2.5. From (35) we know that ||ef||? equals
c3, while (52) gives a relation for ¢o. When the Fourier series of (48)
is inverted and r, is substituted into (52), (61) results.

3.2 Performance of the Equalizers

It will now be shown that the MEFTF among all ZFE’s and DFE’s
maximizes the S/N ratio and minimizes the error probability in white
Gaussian noise. The derivation will be a simple application of the
Schwarz inequality.

Assume that the additive noise in (1) is white and Gaussian. Then
the decision axis which is applied to a threshold is, for the ZFE,

(g0, 7> = Bo(go, ko) + (g0, ), (62)

where {go, n) = mo is a Gaussian random variable with mean zero and
variance

B = 20 g (63)

and No/2 is the two-sided spectral density of the noise. The minimum
probability of error decision strategy is then to apply (go, 7) to a series
of M — 1 thresholds, with the specific thresholds depending on the
probability law on B;. For any such law and series of thresholds the
probability of error will be a monotone decreasing function of the
S/N ratio, which is proportional to

<go; ho)2
S/N « , 64
R P E (64)
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since {go, n) is a zero-mean Gaussian random variable with variance
proportional to [go|[>. Noting from (11) that g, is orthogonal to
Plho, M (s, & # 0)] whenever g is a ZFE, (64) can be rewritten

S/N & On ol e (65)
llgol®

by the Schwarz inequality, with equality if and only if g, equals e,
(the MFTF) within a multiplicative constant. Thus, the MFTF,
among all ZFE’s, maximizes the S/N ratio. By the same method an
identical result can be demonstrated for the DFE, if it is assumed
that the decision-feedback mechanism correctly cancels the tails of
earlier pulses.

The preceding derivation, which is a generalization of the Schwarz
inequality derivation of the matched filter, has the geometric interpre-
tation of Fig. 6. In writing (65), the maximization of (64) is restricted to
those go which lie in the hyperplane orthogonal to P[he, M (hs, k 5= 0)].
Since every ZFE is also orthogonal to this vector, it follows that the
hyperplane so described contains the set of all ZFE’s. However, the
maximization over elements of the hyperplane does not guarantee a
result which is a ZFE. The vector in the hyperplane which has the
greatest component in the direction of ho per unit length is evidently
the one which lines up with e, as verified by (65). Fortunately, this
vector also turns out to be a ZFE, so that the maximization is complete.

An additional observation relative to (65) is that the maximum
S/N ratio is proportional to el for the ZFE and |eg"||? for the DFE.
The maximum S/N ratio is therefore directly proportional to the mean-
square interpolation and prediction errors of the equivalent random
process. Thus, the maximum S/N ratios of the ZFE and DFE are
given by (60) and (61) respectively, while the factor by which the

M (h, . k#0)
N
\

\
PLANE ORTHOGONAL
TO Plhg. Mih,  k #0)}

Fig. 6—S/N ratio maximized by the MFTF.
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D|ST\ANCE TO x - AXIS

Fig. 7—Geometric interpretation of eq. (66).

S/N ratio is reduced relative to an isolated pulse with matched fiiter
detection is obtained by dividing by R, the isolated pulse energy.

Price® derived (61) by a different method and used the geometric
mean inequality for integrals to show from (60) and (61) that

lleoll < [leg"l|*- (66)

This important result implies that (¢) the S/N ratio of the DFE MFTF
always exceeds that of the ZFE MFTF,' and (¢2) a DFE exists when-
ever a ZFE exists [the contrary is not true, as demonstrated by the
important example of algebraic zeros in R(w)®]. Using the geometric
method we have developed, two interpretations of (66) can be given.
First, it is intuitively apparent that the mean-square interpolation
error of a random process will be smaller than the mean-square pre-
diction error, because an interpolation is based on more information;
similarly, there will be some processes for which interpolation, but not
prediction, with zero mean-square error is possible. Second, since
M (hy, k 5 0) contains M (hx, k > 0), the distance between h, and
M (hi, k& = 0) (equal to ||eo||2) must be smaller than the distance be-
tween hyo and M (h, k > 0) (equal to [eg|?). This second interpreta-
tion is a rigorous way of establishing (66) by a method more direct
than the integral inequality. It has the geometric interpretation of
Fig. 7, where the distance between a vector o and the larger subspace
(the z-y plane) is less than between h, and the subspace it contains
(the z axis).

The performance of the ZFE and DFE can be evaluated for any
particular channel spectrum using (60)-(61). In particular, (60)—(61)
can be evaluated in closed form for rational spectra. A different ap-
proach, which allows us to evaluate the tap-gains of the equalizers
as well, will be pursued in Section 3.4.

T This result neglects the effect of decision errors on the DFE.
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3.3 On the DFE White Output Noise Property

As observed by Price,® the DFE forward filter is identical to the
“whitened matched filter’’ employed by Forney!? as the first element
of his maximum likelihood detector. The property of this filter which
is essential to Forney’s application is that the noise sequence at the
filter output is uncorrelated. As with the other properties of this filter,
this one has a simple explanation in terms of the relationship to linear
prediction.

Identifying e as et (¢ — kT, the noise sequence at the DFE for-
ward filter output is {¢f, n). Since n(¢) is white noise, this sequence
will be uncorrelated if and only if

{et,ef) =0, m # n. (67)

The validity of (67) and an interpretation of this result in terms of
the uncorrelated nature of the successive prediction errors of a random
process has already been given in Section 2.5.

3.4 Determination of Tap-Gains

In this section, we will use the orthogonal expansion of Section 2.5
to derive methods of determining the tap-gains of the forward and
feedback filters of the MFTF DFE. For comparison purposes the
well-known relation for the tap-gains of the ZFE will also be briefly
developed.

If we write the weighting response of the MFTF ZFE as

Aoy = k; akhk, (68)
where the tap-gains of the transversal filter are ax, — © <k < =,
condition (11)-(12) becomes

(€0, hm) = |l€ql|*8m.0
1
= =3 arRms- (69)
Qo k

Taking the bilateral z-transform of (69),
adllea* = A (2)R*(2), (70)
where A (2) is the z-transform of the tap-gains

A(z) & % axz®. (71)
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Thus, from (70),
- 110”7'0“2_
A(Z) - R*(Z) (72)
This filter is illustrated in Fig. 8a. When h(?) is applied to the input
of a matched filter and the output sampled at a rate of 1/T, the output
has z-transform R*(z). The transversal filter weighting response has a
z-transform proportional to R*(z)~!, so that the output is consistent
with (69).
The S/N ratio of the ZFE, given by (60), is readily derived from
(72). Writing the relation for tap-gain zero,

1 A(z) . aolleol? dz
e = 27]}{ : =25 P Ry (73)

and solving for [[eo]|?, we immediately get (60) using (46).
As an example, for the exponential autocorrelation of (37), (72)
becomes

A 14 42 A
A(z) = aolled|? [— Ty R ey R A2z] (74)

from which we get

1 — A2
2 =~
HeOH 1+ A?
acd (75)
Ia=G= Ty
ap =0, k| > 1,

a result derived by Tufts®® by another method. This example points
out that it is not ever necessary to actually evaluate (60) when the
channel spectrum is rational, but rather the performance can be
obtained by equating the zero-order tap-gains of (72) in the manner
of (73).

The situation with the DFE is only slightly more complicated. In
this case the DFE filter is

ao+60 = Z a;,h;,, (76)
k=0

where only taps on one side are involved. Substituting from (28) and
(36),

o o
ad cawo 2 G Y CoWkim
k=0 m=0

It

i W i aE Conry (77)
£=0

m=0
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kT
* i
H-D 43%/ R Zllegl agllegl28

MATCHED TRANSVERSAL
FILTER (a) FILTER
KT r
* CoClz)
b ni-u o)fc%R 2! Co 0 THRESHOLD
H* (w) Cil/z)
MATCHED FORWARD TRANSVERSAL
FILTER FILTER ColClz}~Co)

FEEDBACK
(b) FILTER

Fig. 8—Spectral representations of the MFTF zero-forcing equalizer (a) and
decision-feedback equalizer (b).

and equating coeflicients,
ag co, m=0
atCm i = (78)
0, m > 0.

Ms

k=0

From (78) we get a recursion relation for the tap coefficients which is
useful for nonrational spectra,

1 m—=1

a;n*— = - Z a,?—Cm.‘]; 1 (79)
Co k=0

and a z-transform relation which is useful for rational spectra,

ag Co
+(z) = U0
A = 32, (80)
where A+ (2) is the z-transform of the tap-gains of (76). Performing
(80) again for the autocorrelation of (37),

At(z) = af (1 — A2)
leg | = c§ = 1 — 4

which is consistent with (40) and is larger than ||eo||? by a factor of
(1 + A?). As with the ZFE, the performance of the DFE can be
determined for rational spectra without the explicit evaluation of (61).

The comparison of (80) with (72) is interesting, in that they are
identical except for the fact that in (80) C(2) is substituted for B*(z)

(81)
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in (72). The annulus of convergence of A(z) will always include the
unit circle, since R*(z) converges in an annulus containing the unit
circle. Similarly, C(z) is analytic and nonzero in a region containing
the unit disk, and hence A+(z) will have only positive powers of z
and converge in a region containing the unit disk. Note that these
properties of A*+(2) are critically dependent on (33) being satisfied.

The spectral factorization method of determining the tap-gains of
the DFE was given by Monsen?® for rational spectra. Price® gave a
formula valid for arbitrary spectra, but it is difficult to evaluate
numerically. Since (79) is valid for arbitrary spectra, the method
presented here represents a synthesis of the appeal and computational
simplicity of the spectra factorization method with the generality of
Price’s Toeplitz form result.

We also need the tap-gains of the feedback filter for the DFE.
From Fig. 4, the required feedback tap-gains are given by (e, h_.),
1< n < «. From (36) and (28),

b" = <361—; h—") = Co i Cm<w0, wm—n>

m=0
= g Cq. (82)
Thus, the frequency response of the feedback filter is given by

2 buz™ = c[Ce) — ol (83)
The z-transform representation of the DFE just derived is illustrated
in Fig. 8b. When an isolated pulse h(¢) is applied to the matched filter,
the sampled output has z-transform R*(z). The transversal filter
multiplies by At(1/2) = ¢o/C(1/2), as can be verified from (76).T The
z-transform of the forward transversal filter output is ¢,C(z) because
of (30), which verifies the causal response which is characteristic of
the DFE. The output of the feedback filter of (83) is then subtracted,
to yield (hopefully) a delta function response c3. The reader can verify
that when the threshold is replaced by a gain of 1/¢§ (the noise-free
case) the response is as represented.

3.5 Finite Transversal Filter Equalizers
The previous sections have considered the rather idealized case of
infinite transversal filter equalizers. Since only finite equalizers can

¥ This is because (76) is not in the form of a convolution sum. This distinction was
not relevant to the ZFE due to the symmetry of that filter.
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actually be implemented, the important question arises as to when
and in what sense the infinite equalizer can be approximated by a
finite one.

We have already seen in the example of the exponential autocor-
relation that the infinite equalizer can degenerate into a finite trans-
versal filter for some channel spectra. This will happen whenever A (2)
and A+t (z) are finite polynomials in z. From (72) and (80) we see that
this will occur whenever R*(z) is a rational function which has no
zeros (only poles). When the spectrum is not rational, or is rational
with zeros, it will be necessary to approximate the infinite MFTF.

It is straightforward to generalize the results of Sections 3.1 and
3.2 to subspaces spanned by a finite number of translates of hy. In
particular, if we replace the criteria of (11) and (13) by

for the ZFE and
(hr, goy = 0 1=k£N (85)

for the DFE, we are left with the consideration of the finite dimen-
sional subspaces M (hy, —N < k S N,k # 0) and M(h;, 1 £ k £ N),
which we will write as My and M respectively. Then the MFTF
equalizers which satisfy (84) and (85) are similar to (54) and (55),

eo(N) ho — P(ho; MN) (86)
e (N) 2 ho — P(ho, M%). (87)

112

It is straightforward to see that Theorem 1 can be replaced by the
following version :

Theorem 2: The following four statements are equivalent:

1. ho & My [ho & M%)

2. lleo(N)|| > 0 [lleg (N)|| > 0]

3. There exists a ZFE [DFE] in the restricted sense of (84) [(85)].
4. There exists an MFTF ZFE [ DFE] in this restricted sense.

The question of when it can be asserted that [le,(N)|] > 0 and
lle (N)|| > 0 deserves consideration. The condition that k¢ € MF re-
quires that coefficients {am, 1 £ m £ N} exist which satisfy

N

ho = Z P (88)

m=1

This occurrence will be precluded if the set {hm, — © <m < =} is



GEOMETRIC THEORY OF INTERSYMBOL INTERFERENCE, 1 1509

linearly independent. Similarly, linear independence is sufficient for
a ZFE to exist in the sense of (84). The following lemma, which is
proven in Appendix B, establishes sufficient conditions for the linear
independence of {hm, — © <m < «}:

Lemma 1: The following two conditions are suffictent for the linear in-
dependence of (Amy, — © <m < o}

1. |led]] > 0 or |leg]| > 0.
2. There exists an interval [a,b], a < b, such that R(w) > 0,w € [a, b].

The first condition of Lemma 1 satisfies our intuition that if an infinite
MFTF ZFE or DFE exists then the finite MFTF version should also
exist. The second condition assures us that the finite equalizers also
exist under much weaker conditions.

The following theorem establishes a relationship between the finite
and infinite equalizers, and is proven in Appendix B:

Theorem 3: As N — oo, |leo(N)|* 78 monotonically decreasing and
approaches ||eo)|?, and likewise for eg (N). Furthermore, |leo(N) — eol|2— 0
and |leff (N) — e[| — 0.

The primary conclusion of Theorem 3 is that the infinite equalizer
can be approximated with arbitrary accuracy (in the sense of L,
convergence) by a finite equalizer. In addition, it asserts that the
S/N ratio of this finite equalizer is greater than that of the infinite
equalizer ; however, this desirable property may be entirely or partially
offset by any residual intersymbol interference.

Each member of the sequence of equalizers guaranteed by Theorem
3 has different tap-gains, because the projection on a different sub-
space is being taken with each N. A more aesthetically pleasing ap-
proximation results when (58) and (59) are valid, for then

N
ho — 2. aphr — e

’ -0, (89)
F=——N
N
‘ho—Z‘,ai*hk—eaF —0, (90)
k=1

by the definition of convergence of the infinite sums in (58)—(59).
Each succeeding equalizer defined by (89)—(90) is obtained by adding
an additional tap, without changing the other tap-gains. As observed
by Doob (Ref. 3, p. 564), a convergernt sum of the form of (58)—(59)
does not always exist ; the following theorem gives sufficient conditions
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for the validity of (58)—(59) which are generally satisfied in practical
problems:

Theorem 4T: If there exist constants K, and K, 0 < K; £ K,, such
that K; £ R(w) £ K, |w| < «/T, then convergent expansions of eq and
egd of the form of (58)~(69) exist. Furthermore, the coefficients of the
eTPAnsions are unique.

This theorem is proven in Appendix B. The question of uniqueness
of the tap-gains of the DFE is one which was not answered by Price.®

Finally, the white output noise property of the MFTF DFE also
extends to a finite MFTF DFE in the following sense: If the reception
of (1) extends from N; to N, where N; (but not necessarily N,) is
finite, then the DFE defined by

6;}_=hk—P[hk,M(hm,k+1§M§N2)]

will have white output noise samples. This fact is easily verified from
the same containment of subspaces that was used in the proof for the
infinite case.

IV. EXTENSION TO NONSTATIONARY NOISE AND CHANNEL

The previous sections have considered only the case where the
additive noise is white. The extension to colored Gaussian noise can
be handled in a straightforward fashion with the addition of a whiten-
ing filter. In this section we will generalize the ZFE and DFE to the
case of arbitrary nonstationary second-order Gaussian noise (which
includes colored Gaussian noise as a special case) using the techniques
of reproducing kernel Hilbert space (RKHS).!! Although the cases
for which the corresponding RKHS can be characterized explicitly
correspond generally to those cases which can be handled by other
techniques, the RKHS approach does allow us to treat all cases
simultaneously and concisely. In addition, it enables us to generalize
simultaneously to an arbitrary nonstationary channel (to be precise, a
channel which is changing in time in a deterministic and known fashion)
with no additional complications. Perhaps the most interesting out-
come of this effort will be the observation that the DFE white output
noise property (discussed in Section 3.3) remains valid in this general
case. The result is an interesting generalization of Forney’s whitened
matched filter.!?

T Theorem 4 remains valid under the weaker hypothesis that 0 < ess inf R(w)
and ess sup RB(w) < .
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To this end, modify (1) to

" = 3 Buha® + ), (o1)

where, as before, N; and N can be infinite. The noise will be assumed
to be Gaussian with arbitrary autocorrelation

K(t,s) = E[n(t)n(s)]. (92)

The subsecript m on k., (f) indicates that the received pulses need not
be translates of the same elementary waveform. The reception will be
termed channel stationary when

and nozse stationary when
K(@,s) = K@i — s).

We denote by Ls(n) the subspace of the Hilbert space of square
integrable random variables spanned by n(f), — «© <t < «. This
subspace is entirely analogous to M(X;, — » <k < «) defined
earlier, except that the underlying parameter ¢ is continuous. The
following lemma is applicable :1*

Lemma 2: Let H(K) consist of all functions g(-) of the form

g(-) = E[n()U] (93)
for some U & Ly(n). Then H(K) is a Hilbert space with inner product
(9, Puxy = E|U|% (94)

The mapping ¢: L:(n) - H(K} defined by (93) is a congruence
which maps n(f) into K(-, ).

The Hilbert space H(K) defined by Lemma 2 is known as the re-
producing kernel Hilbert space with reproducing kernel K. It is
straightforward to show from (93) and (94) that H(K) has the
properties

K(-,t) € H(K), — o << ™, (95)

G, KC, Oaao = g), g€ H(K). (96)

b 7d

It can be shown that for any symmetric positive-definite kernel K
there exists a unique Hilbert space satisfying (95)—(96).
The inverse of g(-) under ¢ is usually given the suggestive notation

(g, Mua = vU(g) 97)
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even though n ¢ H(K) with probability one and therefore (97) can-
not be given an interpretation as an inner product.

It will be assumed that k.(f) € H(K), since otherwise the detec-
tion problem is singular.'™ In nonstationary noise the space H(K)
takes the place of L, in the earlier white noise problem. Accordingly,
we restrict the class of filters under consideration to H(K) inner
products with elements of H(K). Thus, a filter can be written in the
form

Mme==—

Na
(g, ux = ZNBMQ, hm)ucgy + {9, n)ucky, (98)
1

where the noise term in (98) assumes the special meaning of (97).
Analogously to (15), we define the pulse autocorrelation

R(m,n) = (hm, hn)ucx). (99)

When the reception is noise and channel stationary, B (m, n) is a func-
tion of the difference of its arguments, as in (15). In general, however,
it is an arbitrary symmetric positive definite function defined for
N 1 é m, n é N 2.t

In the white noise case, we saw that the subspace of L, spanned by
translates of h(tf) was congruent to the subspace of second-order
random variables spanned by a wide-sense stationary random process.
In the nonstationary noise case, the subspace of H(K) spanned by
hm, N1 £ m £ N,, is congruent to the subspace of the second-order
random variables spanned by a possibly nonstationary second-order
random process. In the white noise case the theory of minimum mean-
square error estimation of a wide-sense stationary random process was
relevant ; in the present case the random process becomes nonstation-
ary. As before, the ZFE and DFE have interpretations as interpolation
and prediction errors of the corresponding random process with auto-
correlation R (m, n). However, rather than pursue these correspond-
ences further (in view of our results for the white noise case they are
obvious), we will directly pursue the theory of the ZFE and DFE
for the detection of B,,, N1 < m £ N, from 7(¢) in (91).

t A singular detection problem is one in which a decision can be made which is
correct with probability one.
¥ The positive definite property follows from the inequality

N
Y amhi,

m=1

os|

N N
Yoy = mz_:l n;l amanR (km,kn).
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The theory of Section 3.1 remains valid if the subspaces M (h,, m&E1T)
are considered as subspaces of H(K) rather than L,.T As before, the

condition which is necessary and sufficient for the existence of a ZFE
or DFE is that

he & M (hm, m € I).
The analogs of the MFTF versions of the DFE and ZFE are the ele-
ments given by (54) and (55), except that now we must work with e,
and ef instead of e, and ej (e; is no longer necessarily simply a time
translate of e, ete.). A derivation simiiar to that given in Section 3.3
establishes that e, and ef maximize the S/N ratio as before. In par-
ticular, when the filter of (91) is restricted to be a ZFE, (91) becomes

(9, Vrxy = Bilg, hyaxy + (9, M (100)
and the S/N ratio is proportional to
2
SN « @i < (o, 0y, (101)
9, Drw
since the variance of the noise term in (100) is, from (97),
El{g, myuu > = By~ (g) |
= {9, o

through the congruence established in Lemma 2. Equation (101)
demonstrates that the MFTF ZFE maximizes the S/N ratio, and the
same result follows for the DFE by the same method.

A general equation can be given for the projection element required
for the MFTF. This equation is entirely analogous to a result of
Parzen! for stochastic estimation. To this end we require a lemma
which is a restatement of Lemma 2:

Lemma 3: Let H(R) consist of all functions f(m), m & I, of the form
fm) = (hm, F)gaym € 1 (102)
for some F € M (hy, m € I). Then H(R) is the RKHS with reproducing
kernel R(m, n), mn € I, and has inner product
(f; Daw = (F, Flawx- (103)

The mapping ¢: M (hm, m € I) > H(R) defined by (102) is a con-
gruence which maps hn tnto R(-, m).

T We use I as a set of indices to avoid repeating the equations twice. For the ZFE,
I =[Ny k— 13Uk + 1, N2] and for the DFE I = [k + 1, N:]. For the infinite
case, N2 = — N1 = «. The digit B, is being detected.
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The reader might find it instructive to verify from (102)-(103)
that the RKHS properties hold for H(R),

<f(')7R('yn)>H(R) = f(n)y (105)
where f(-) € H(R).
The problem we want to attack is finding the projection P of some

vector @ on M (hn, m € I) (later we will let @ = hi). From (3) we
have

Q— P hm)uxy =0, mel (106)
or

(P, hm)u(xy = po(m), m € I, (107)
where

pa(m) 2 (Q kma, mE L (108)

In (107), pq(m) is a known function and P is to be determined. Assum-
ing for the moment that pe € H(R), from Lemma 3 we see that pg
is the image of P under the congruence ¢, and hence
P = ¢ (PQ); (109)

which is the solution we desire. Using the congruence properties of ¢,
the length of @ — P is
1@ — ¢l = [@llEaw — 2(Q, 67 (0))ux) + 67 (0)

= ”Q”?’i(K) = leellim- (110)

Establishing that in fact po € H(R) is straightforward. Note that
po(m) = (Q, hn)ax)

= (@ — P, ha)ux) + (P, hm)ux)
= P, hn)u(x), (111)

which implies that po & H(R) by Lemma 3 since P & M (hn, m € I).
Replacing @ by 2; in (109), we get the desired projection
Plhy, M (hm,m € )] = ¢ '[R(K, -)] (112)

The ZFE and DFE are obtained by letting I equal the appropriate
set. The 8/N ratios of the receivers are proportional to, from (101)
and (110),

S/N « |[hillrao — 1B, )i (113)
The RKHS approach has reduced the problem to that of finding
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RKHS inner products. In some cases these inner products can be
explicitly characterized, while in all others they can be determined
by convergent iterative techniques.!!

We can also quickly show that the DFE white output noise property
discussed in Section 3.3 generalizes. From (98), the noise samples at
the filter output are

ng = (e, nYu
= y7i(ef) (114)

by definition. From (114) and Lemma 2,

E(nne) = B[y~ (g )y (ef)]
= {¢f", e )n (&)
= 0, J#=k (115)
by the same reasoning as before.
Finally, it is instructive to demonstrate that this RKHS formu-

lation reduces to the whitening filter approach when the reception is
noise and channel stationary. Assume that

K(t,s) = 2% / " i -0N (w)dw , (116)

where N (w) is uniformly bounded and never vanishes. Under these
conditions we claim that H(K) consists of ali integrable ¢(i) with
Fourier transforms G{w) which satisfy

ol = 5= [ 166)1* 375 do- (117)

To verify this, properties (95)—(96) must be checked. Equation (95)
is valid since N (w) is integrable, while (96) follows from

), KC, )Vu&) = %r /_Z G(w)[e—ith(w)]*N%dw

= 2%'_ _: G(w)eit dw
= ¢(t), (118)

where (*) denotes complex conjugation. From (117), the H(K) inner
product consists of a filter with frequency response N~'(w) (which is
the whitening filter) followed by an ordinary L, inner product, and is
therefore consistent with the whitening filter formulation.
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V. CONCLUSIONS

This paper has presented a unified and rather thorough treatment
of the ZFE and DFE. In a companion paper,’ the geometric model of
intersymbol interference developed here will be used to study the
minimum distance problem encountered in the performance analysis
of the maximum likelihood detector'? and in evaluating a lower bound
on the performance of any receiver.* It is shown there that a canonical
relationship exists between the minimum distance and the performance
and tap-gains of the MFTF DFE.

No performance example comparing the DFE and ZFE on a channel
of practical interest has been given in this paper in order that the
maximum likelihood detector may enter into the comparison. In Ref. 7
the performance of three receivers is calculated for a channel whose
loss in dB increases as the square-root of frequency. This channel is
an excellent model of coaxial cable and some types of wire-pairs.
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APPENDIX A

The purpose of this appendix is to derive an approximation to the
Fourier coefficients of (48) in terms of discrete Fourier transform
(DFT), which can be efficiently evaluated using the FFT algorithm.

Define a normalized function

R( 27’5 x)
so that
}
ra = % / e=inmh F(\)d\- (120)
-4

Approximating the integral by a summation,

- 1 NZ—I F <)\0 + E_1 e—in2m Aotk [ N—1)
"= 2N % N 2
— 1 — jn27 (Ao—%) _l =t E — ,1_ —32n (kn/N)
= i e o N kg() F X T+ N 3 e’ s (121)

where the sum on the right is a discrete Fourier transform.
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In order to determine the effect of this approximation, substitute

3F(\) = 2 rpeiizm (122)
k

into the approximation equation (121) to yield

[ 1 N1
Fo= 2 Tmw 2, eim—m2rQotk/N—1)
me==w N ¥=0
= 1ok T emm (1) . (123)

Thus, the approximation of (121) yields the desired Fourier coefficient
plus the sum of alias terms. N must be larger than the number of co-
efficients to be evaluated and large enough that the alias terms r,.ix
are small. In practice, N =2 5,000 can be achieved with modest amounts
of computer time using the FFT algorithm.

APPENDIX B

Proofs of Theorems

Proof of Lemma 1 : Since |jeg |
implies that {hn, — © < m
end, assume that

le o”‘ it suffices to show that |le ]| > 0
} is linearly independent set. To this

2
o

N 2
Z a,,.hkm = 0, ]Cl < ]Cz < --e <L ]CN' (124)
m=1

To show that «; = 0, assume to the contrary that «; # 0 and note
that

0= [a?

i, + ): ——hk,,.

2 Jou|¥leg ]| > 0- (125)

This contradiction establishes that «; = 0. Continuing by induction
in the same fashion, it can be shown that @, = 0, 1 S m < N.

To show that the second condition of Lemma 1 implies linear
independence, we use a proof similar to Tuft’s.®* By the congruence of
(22), (124) is equivalent to

=T

/—r/T

which implies that the integrand is zero almost everywhere on [a, b].
This is impossible unless am = 0, 1 £ m = N, since otherwise

N ) 2
Y ame kT R(w)dw = 0,

m=1

N 2
S aneiint
m=1
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has at most a finite number of algebraic zeros on [e, b] and R(w) is
strictly positive.

Proof of Theorem 3: We will prove the result for the ZFE; the proof
for the DFE is identical. Since for N £ M

M(he, |k| £ N,k 5 0) C M(hs, [k| = M, k5 0) C M(hs, k # 0),

the inequality
lleoll = llea(MN)]| = llea(M)|

follows. Hence |leq(M)||? must approach a limit,

lim fleo@l 2 fleall-

Denote by the shortened notation P the projection of hoon M (hy, k5=0)
(so that e; = he — P). Since P & M(h;, k # 0), there exists a se-
quence v, € M (hy, |k| £ n, k £ 0) such that v, — P and we have

Ao — vall* = lleal® + [IP — vall*

For any ¢ > 0, there exists an N (¢) such that
[ho — vall* = Jleo]l®* + e
for n = N (¢), and since ||es(n)[|2 € ||ho — v4||? we have
lleoll* = lleo(m)[* = lleall* + ¢,
which establishes that |les(n)|| — ||eo]|. The remainder of the proof
follows that of the projection theorem. By the parallelogram law,
lleo(N) — eoll* = 2[lea(N)|* + 2fieal|* — [[ea(N) + eoll?,

but defining P(N) = P[ho, M (hs, |k| £ N, k % 0)]

lleo(N) + el = |lho — P(N) + ho — P|f?

ho_P(N)2+PH2

= 4 2 4fed,

we have
llea(N) — eoll* < 2[|lea(N)||* — |leo]|*] — O.

Proof of Theorem 4: From (22) we have

N 2 1 wT N . 2
‘ 2 Brbra|| = 3 / Bme=#knT| R(w)dw-
m=1 T J—x/T =1

m
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A standard result of Toeplitz theory asserts that

3~

N

21 |6m|2} ess Inf R (w) £

2

N
Zl 6mhk

m=

1( ~
VIl 77 I > Iﬂmlz} ess sup R(w)-
m=1

The conclusions of the theorem then follow from Theorem 5.17.18 of
Ref. 10.
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In a companion paper,t a geometric approach to the study of intersymbol
interference was introduced. In the present paper this approach is applied
to the performance analysis of the Viterbi algorithm mazximum likelihood
detector (MLD) of Forney.* It ¢s shown that a canonical relationship
exists between the minimum distance, which Forney has shown determines
the performance of the M LD, and the performance and tap-gains of the
decision-feedback equalizer (DFE). Upper and lower bounds on the
minimum distance are derived, as s an iteralive technique for computing
it exactly.

The performances of the MLD, DFE, and zero-forcing equalizer (ZFE)
are compared on the Nf channel representative of coaxial cables and some
wire pairs. One important conclusion is that, previous statements not-
withstanding,?* even the M LD experiences a substantial penalty in S/N
ratio relative to the isolated pulse bound on this channel of practical
interest.

I. INTRODUCTION

Forney?+ has detailed the Viterbi algorithm version of the maximum
likelihood detector (MLD) of digital sequences in the presence of
intersymbol interference. He asserts that the probability of bit error
of the MLD in additive white Gaussian noise can be bounded at high
S/N ratios in the form

dmin

dmin
el < <
K0 (%2) spos K 2e), 1

where Kz and K, are constants, € is the Gaussian distribution
1521
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function,

Q) = ‘/% / T gy, )

dmin 18 the minimum distance between any two transmitted signals
(it will be defined more fully in Section 2.2), and ¢? is the noise variance.
For comparison purposes, the probability of error for a matched filter
receiver in the absence of intersymbol interference is

oo ().

where R, is the energy of an isolated pulse [ (1) reduces to (3) in this
case].

Forney also asserts that the lower bound of (1) is also a lower bound
on the error probability of any receiver.* Thus, the MLD achieves,
within the multiplicative constant K,/K;, the minimum probability
of error attainable by any receiver at high S/N ratios, and, in a very
fundamental sense, the quantity

@/ Ro

is a measure of the effective decrease in the S/N ratio (relative to the
detection of an isolated pulse) resulting from intersymbol interference.

The determination of the quantity d%,, (known as the “minimum
distance problem’’) is therefore a very important one for, even if the
implementation of the MLD is not contemplated on a particular
channel, d2,, is a measure of the potential performance which can be
obtained using receivers of arbitrary complexity. Unfortunately, on
channels with severe intersymbol interference, the exact analytical
determination of d%;, does not appear feasible because of the nonlinear
nature of the problem.

The minimum distance can be determined numerically by the
“brute force” technique of calculating a sequence of converging upper
bounds. A shortcoming of this method is that it gives no assurance
‘as “to-whem-eonvergence to the desired aceuracy has occurred. In
addition, it gives no insight into the nature of d2,, and its relationship
to the intersymbol interference or to the performances of other
receivers.

In this paper, we attack the minimum distance problem using a
geometric theory of intersymbol interference developed in companion
papers.l'* A canonical relationship will be shown between d&,, and the
decision-feedback equalizer (DFE). This relationship will be exploited

3)
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to derive simple lower and upper bounds on dZ,, in terms of the tap-
gains of the DFE transversal filter and the S/N ratio performance of
the DFE. In addition, an iterative procedure will be derived for the
calculation of d2,, to any desired accuracy using a sequence of con-
verging upper and lower bounds on d%;,. The lower bounds give us a
measure of the degree of convergence and enable us to terminate the
calculation when the desired accuracy is assured.

After consideration of the minimum distance problem in Section II,
the performance of the zero-forcing equalizer (ZFE), DFE, and MLD
is compared on a channel of practical interest in Section 111,

II. PERFORMANCE OF THE MLD

The minimum distance problem will now receive consideration. The
first step is to briefly review the notation of a companion paper.!

2.1 Notation

The reception from a PAM communication channel takes the form

r(t) = Zkl Bih(t — kT) + n(t), (4)

where each B;, assumes one of a finite number of predetermined values
(the data being transmitted), A(f) is square-integrable (element of
L,),* and n(t) is white Gaussian noise.

When we denote 2(t — kT) as an element of Ly by hy, M (s, k & I)
is the smallest closed linear subspace of L, containing all finite linear
combinations of elements of the set {hi, & € I}. The projection of a
vector x on M (hi, k & I) is denoted by P[z, M(hi, k &€ I)]. The for-
ward matched-filter transversal-filter combination of the DFE cor-
responds to the L. inner produect of the reception r(¢) with the element

e & hy — Plhiy, M (hmym > k)] (5)
and is orthogonal to the subspace M (hn, m > k). The quantity

lleg |2
By’

where
Bi & (hmy hms) (6)

* We denote by L. the space of square integrable waveforms with inner product

(@y) = [ RCCL

and norm |jz|? = (z,z).
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is the effective decrease in S/N ratio relative to an isolated pulse for
the DFE. Thus, |lej||2 plays the same role for the DFE as d%;, plays
for the MLD.

The sequence of vectors {wx £ ¢ /llei ||} is an orthonormal sequence
in L,, and h, has the orthogonal expansion

ha = i CnWmin, (7)

me=(

where the coefficients {C,} can be determined by the method of
Ref. 1 for channels with either a rational or nonrational spectrum.
In particular, we have

Co = |legl. (8

Of course, it is apparent that (7) is valid only as long as [le || > 0,
which is true if and only if a DFE exists.

2.2 Interpretation of the Minimum Distance

The MLD described by Forney? consists of a combination of a
matched filter followed by a causal or anticausal-transversal filter,
the combination of which he calls a ‘“whitened matched filter,”
followed by a dynamie programming algorithm known as the Viterbi
algorithm.? The whitened matched filter forms a sequence of sufficient
statisties for the detection of the data digits and has independent noise
samples at the output. As pointed out by Pricet the anticausal
whitened matched filter is identical to the forward linear filter portion
of the DFE.

The signal at the output of the whitened matched filter (or DFE
forward filter) ist

o= CBy + 3 CoCnBiem + na, 9)

m=l
where n; is a noise sample. The DFE forms the quantity

’

Ty = Tk — i CoCnBi-m (10)
m=]

and applies it to a decision threshold to determine the estimated digit
B.. The MLD detector, on the other hand, assumes that the sum in
(9) is truncated to M terms and determines the sequence {B:} so as
to minimize

m =0

bl [rk -5 COCmBk_m}z- (11)
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Thus, the two receivers perform similar functions on the same sufficient
statistics r,, the major differences being the greater complexity of the
MLD and the susceptibility of the DFE to decision errors. We will
now demonstrate the less obvious conclusion that the performance of
the MLD is closely related to the DFE as well.

The minimum distance, d3,, is defined as?

A N 2
dfnln = lnf Z éﬂh" ) (12)
€070 n=0
where the infimum is over all error sequences (e, - -, ex) and all N.*

Each ¢, assumes the value 41, —1, or zero (for simplicity, the binary
case with B, = 1 or 0 is considered). Thus, dn;n is the minimum
distance in L, between two signals in the signal set. It is apparent that

dom £ Ry, (13)

since R, corresponds to e, = 0, n > 0. Thus, dZ;,/R., which is the

S/N ratio penalty, is a number between zero and unity as it should be.
It is apparent in (12) that without loss of generality we can choose

eo = 1 and write

2

@ = inf (14)

N
hO + Z énhn
n=1

The sum in (14) is an element of M (hi, ¥ = 1), and the minimization
in (14) is an attempt to find the element of M (hi, k = 1) with manifold
coefficients (41, —1, 0) which is closest (in £; metric) to ho. We know
that the closest element without the restriction in coeflicients is the
projection of hy on M(hs, k = 1), P[Lhe, M(h, k = 1)]. Thus, in-
tuitively, d2,, is determined by how closely the projection can be
approximated by an element with restricted manifold coefficients. To
formalize this intuition, add and subtract the projection from (14) and
utilize (5),

2

aZ,, = inf

N
e(;" + P[ho, M(hk, k g 1)] + Z—-:l é,.hﬂ

© s

N
et |2 + inf ”P[ho, Mk b 2 DI+ T ke

where the fact that e is orthogonal to M (hx, ¥ > 0) has been used
to eliminate the cross-product in (15). The most immediate conse-
quence of (15) is that

B Z [le [ (16)

*In most cases of interest, the infimum will be achieved for finite N.
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We have thus succeeded in proving formally what should be obvious
from considerations of the relative complexity of the two receivers:
The effective S/N ratio of the MLD always exceeds that of the DFE
(and hence ZFE!).* The second consequence of (15) is the formaliza-
tion of our intuition through the assertion that the amount by which
the S/N ratio of the MLD exceeds that of the DFE is governed by the
coarseness of the best approximation to the projection by the element
with restricted coefficients: The poorer the approximation, the better
the S/N ratio of the MLD.
Writing the projection in the form

Plhoy, M(hiy k > 0)] = — 3 athn, a7

m=1

we note that the g} are the tap-gains of the DFE forward transversal
filter, and rewrite (15) ast

2

rn = {leg”[|* + inf :

(18)

i (en - a;:{—)hn
n=1

Equation (18) shows the fundamental relationship between the
minimum distance, the effective S/N ratio of the DFE (in the form
of [le5"[|?), and the tap-gains of the DFE transversal filter. In particular,
we can assert that d%, = [l¢f|? if and only if the tap-gains are all +1,
—1, or zero.

2.3 Bounds on the Minimum Distance

Equation (18) can be used to derive bounds on d2,, in terms of the
DFE tap-gains. From the identity?

N N ¢, — ar 2
Z(e’ﬂ—a;l’_)hﬂ 2-_—(€k_a’j‘)2 hk+z_'_’_:_hﬂ ’ (19)
n=1 n=]1€ € — Oy
n#
we immediately get the bounds

N »  [la—a)ef]t, k=1

2 (en — aDha)| = (20)

n=1

(e — @l )edf’, k> 1,

*We are tempted to argue that (16) is implied by the assertion in Ref. 2
that the MLD achieves the lowest effective S/N ratio of any receiver. However,
that is not the case, because of the effect of decision errors on the DFE. The effective
S/N ratio of the DFE could be higher than that of the MLD, and yet the DFE could
have at the same time a higher error probability because of error propagation.

T We have taken the liberty of writing u sumi-over infinite-error sequences, where
it is understood that the infimum is only over error sequences with a finite number
of nonzero terms.

In (19) it is assumed that (e — af) 0. When ¢ — af = 0, (20) is trivially
satisfied.
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since
N _of
Z (fn — 7:1_) h
n=1 (ek dk )
n#k

is an element of M (h.,, m # k). In (20), e, is the ZFE filter defined in
Ref. 1,
eo = ho — PLho, M (hi k # 0)]. (21)

In addition, if we define Amin(N) and Apax(N) 4s the minimum and
maximum eigenvalues of the correlation matrix

2 [Rn..] 1 <mn <N,

then we can assert that

N
Mmin(N) 2 (ea — af)? <
n=1

—a,,',*'

N
£ Muax(N) 2 (en — )% (22)
n=1
A standard Toeplitz form result? asserts that*

lim Amia(N) = 2 ess inf B(w)

N-ow T

It

|

Bm Amec(N) = 2 ess sup R (w).

Now T

Applying (18), (20), and (22), we get three lower and one upper bound
on dZ, in terms of the tap coeflicients of the DFE,

leg H2m1n (1 — aif)?

o Z & + Heollzmln (e — @),  k>1

N
%{ess inf R(@)} lim min 3 (en — o)

Nowx e, ++,eN n=1
N
dz, < et + {ess sup B(w)} ]3211 Ip'i.nN 2;,1 (€n — @)™ (23)

In addition, an upper bound ean be obtained by substituting any error
sequence into (18); a reasonable choice is
{+17 qu— < - %

€ =

0, —i<af <t (24)
_1; alj— >%

*For all practical purposes, ‘“‘ess inf”’ and ‘“‘ess sup” can be replaced by “min”’
and ‘“‘max,”” respectively.
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These five bounds can be useful in estimating the penalty in S/N
ratio for the MLD. They all require the existence of a DFE and
require that the projection can be written as the convergent sum of
(17).* The second and third bounds of (23) are an improvement on
(16) only when the increasingly stringent requirements that a ZFE
exist (|leo| > 0) and R(w) be uniformly bounded away from zero
(almost everywhere) are imposed. The requirement of the upper
bound of (23) that R(w) be uniformly upper bounded (almost every-
where) will generally be satisfied in practice. All the bounds require
a pointwise minimization over error sequences, a task much simpler
than minimizing (12) directly.

As a simple application of these bounds, consider the exponential
autocorrelation

R, = A, 0< A< (25)
Then we havel:?
1, 0<A=si
By =
2(1 — A), 1<4<1 26)
lleol? = (1 — A%)/(1 + A?)
[le]]2 =1 — A?
af = — A, af =0, E>1.

The first and third bounds of (23) become
1 — A4 0<4c=s

=

2
dmln

%

@7)
(1 —4)@2+ 42 ~-24), 3<A<1

IIA
wf=

1 —243/(1 + 4), 0<A4
G 2 (28)
2(1 — A)Y(1 4 A%)/(1 + A), <A <1
and the upper bound of (23) becomes

243 1
}rl‘lr‘m, 0<A=3
dmlné

|20 ~-42), 1<d<l

These bounds are plotied in Fig. 1. The upper bound of (24) is equal
to dZ,, and is not plotted.

*If the projection of ho on P(hi, £ = 1) cannot be written in the form of (17),
the bounds of (22) to (24) can be fixed up by considering the projection on P (ks,
1 < k £ N) and taking limits as N — «. ’Fhe tap-gains will then be a function of N,
and the process will be more difficult.

wf=

(29)
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Fig. 1—Bounds on di;, for an exponential autocorreiation.

The bounds just determined have the disadvantages that (¢) they
require calculation of the DFE tap coefficients and (4¢) they do not
give precise results on dZ,;. The exact value of d2,, can be determined
numerically by the direct minimization of (12); by letting N — =
while exhaustively minimizing over error sequences, we get a sequence
of upper bounds on d2,, which approach d2,, monotonically. The
obvious difficulty with this method is that the number of error se-
quences which must be checked grows as 3%, and the computational
effort soon becomes unreasonable. What happens in practice is that
the true minimum is achieved for a finite (and small) N. However,
unless we have some method of determining when the true minimum
is reached, there must always remain a degree of uncertainty as to
whether the true minimum has been reached.

Our approach to this computational problem will be to derive a
sequence of lower bounds on d2,, which also approach d2;, monotoni-
cally. We can then halt the process at a value of N where the upper and
lower bounds are close enough to ensure knowledge of d%,, within the
desired accuracy. To this end, we will utilize the orthogonal expansion
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of (7). Substituting (7) into the sum of (12),

o

> enhn i €n i CoWnim
=0

=0 n=0

0

2. BaWa, (30)

m=0

where

m

Bm = 2 exCms. (31)

k=0

Then, because the {w,} are orthonormal,

©

3 €ahn

n=0

2 «
-5 8 (2

It appears that we may have made life more difficult for ourselves,
because even when we substitute a finite sum on the left of (32) we
must still evaluate an infinite sum on the right. However, note that
since the terms in the sum are positive,

@ 2 N
ZO €ty = ZO Brzn (33)
where the sum on the right is always finite and is in terms of a finite
length error sequence (e, - - -, ex). Hence,
. N
din 2 min ZOB?. (34)
€, 6N N=

«=1

and, furthermore, the right side of (34) approaches the left side
monotonically as N — .

The minimization of (34) is no more or less difficult to perform than
that of the direct minimization of (12). It does require the existence
of a DFE and evaluation of the coefficients {C.}. A reasonable pro-
cedure is, at each stage of N, to minimize the right side of (34) to
obtain a lower bound on d%,, and substitute the minimizing sequence
into (12) to obtain the upper bound* on dZ,,. When the lower and
upper bounds are sufficiently close, the process can be terminated.

*Note that any sequence substituted into (12) yields an upper bound on di;,,
and the one which minimizes (34) is as good as any. On the other hand, only the
sequence which minimizes (34) yields a valid lower bound, so it must be minimized.
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The minimization of (34) can be assisted slightly by dynamic
programming. Defining

Jvonlet, oy o) = min 3 g (35)
we note that o
min 3 8} = min [fx-a(e) + 6] (36)
with a recursion relation for fy_,. (e1, * -, €m_1),
N
In—mii(en, -+, €m—2) = e,.._I;],m-.-I-l,m "=Zm‘.~1572;

I

IM[mlﬁm+m4

&m—1 em- eN =M

min [ fy_m(er- - em1) + Byl 3B7)
Because there is no possibility of using forward dynamie programming
in this case, the savings in computation for this method is not too
spectacular. Each 8, must still be evaluated for 3V error sequences;
the savings is in eliminating the need for summing 82 for most of the
combinations of 3¥ error sequences.

We note in passing that using the FFT algorithm to reduce the
computational effort in the convolutional sum of (31) is a possibility.
However, the 37 sequences for which it must be evaluated becomes a
limiting factor long before the savings of that method becomes
substantial.

In the foregoing discussion, the existence of a DFE has been re-
quired [that is, |leg"|| > 0 or equivalently log R (w) is integrable, where
R (w) is the equivalent power spectrum of the channel'}. When log R (w)
is not integrable (as when it vanishes on an interval), there does not
appear to exist an expansion of the type (31) to (32). What can be
done is to use the Gram-Schmidt expansion of the form

hm = kfo <hm; wk)wk; (38)

where w, is the orthonormal sequence obtained from {A4:} by the usual
Gram-Schmidt orthonogalization procedure. This expansion merely
requires that {#:} be linearly independent, which is guaranteed by the
existence of an interval on which R (w) does not vanish.! From (38), it
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follows that

o

Z 6mhm = i_o €m kio <hm, wk)wk

m=0

= £ s (39)
Be= 3 enllim, wi). (40)

The key point is that the summation in (40) is infinite, so that evalua-
tion of the lower bound of (34) is now necessarily over infinite error
sequences. The finite sum in (31) results from the form of the expan-
sion (7) in which k., is expanded in terms of all future w;’s, and this
expansion is in turn dependent on k. not being an element of
M (he, & > n). Thus, when a DFE does not exist there appears to be
no alternative to evaluating a sequence of upper bounds to dZ;, ob-
tained by a finite sum approximation without the benefit of lower
bounds to measure the degree of convergence.

III. THE PERFORMANCE OF THREE RECEIVERS ON THE \/f CHANNEL

Results of a calculation of the performance of the MLD, DFE, and
ZFE will now be reported for the v f channel, for which the attenuation
in decibels increases as the square root of frequency. The Vf channel
is a good approximation to coaxial cable, as well as to some cables
consisting of wire pairs, and for this reason it is of great practical
interest.

Many present high-speed digital transmission systems use some
form of linear equalization, and their performance will be reasonably
well approximated by that of the ZFE. Thus, the comparison between
the ZFE and the MLD gives us an indication of the size of the gap in
performance between common transmission systems in use today and
what could theoretically be achieved by much more complex receiver
designs.” The comparison with the DFE is much less interesting, be-
cause the susceptibility of the DFE to decision errors is not included
in the present analysis and, as will be shown shortly, is of such a
magnitude on the vV channel as to essentially invalidate the perfor-
mance estimate we calculate.

* This comparison is, of course, very idealized. The only impairment we consider
is additive Gaussian noise.
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Fig. 2—Performance of three receivers on the V¥ channel.

The power spectrum of the Vf channel is given by
[|H(w)|? = 20 K2R 2KVe, (41)

where H(w) is the frequency response of the channel and K is a
parameter proportional to the line length. The usual convention is to
designate the loss at the half-baud rate (w = #/T),

=7 (5)

|H(0)]?

T
K= \/;20 log e (43)

The effective penalties in S/N ratio relative to the isclated pulse
bound can be calculated for the ZFE and DFE using the methods of
Ref. 1, and for the MLD using the methods developed in Section
II. The result is shown in Fig. 2 for the range of v of practical interest.
Most high-speed transmission systems in use today have a y less than

v = — 10log (dB), (42)

in which case




1534 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973

about 65 dB because of limitations in the maximum gain which can
be incorporated into a repeater without excessive coupling of the
output back into the input.

One interesting feature of Fig. 2 is that even the MLD has a sub-
stantial 8/N ratio penalty (15 dB) on the vf channel. Thus, Forney’s
statement?® that on most channels intersymbol interference does not
have to lead to a significant degradation in performance does not apply
to channels with very severe intersymbol interference, such as are
commonly used in high-speed transmission systems.

The value of d2,,, valid for Fig. 2, as well as many other examples
considered by this author and Forney,* is

don = 2(Bo — Ry), (44)

where R is the autocorrelation of the received pulse.” An approxima-
tion to (44) valid for large v is derived in Appendix A and plotted in
Fig. 2 as a dotted line. Approximations to the S/N ratio penalty of
the ZFE and DFE are also derived in Appendix A and plotted in Fig.
2. An intuitive interpretation of eq. (44) is given in Appendix B.

As an illustration of the speed of convergence of (34), the sequence
of upper and lower bounds is illustrated in Fig. 3 for a V7 channel with
v = 60 dB. These bounds are within 1 dB for N = 1 and 0.5 dB for
N = 3. Thus, convergence is very rapid, even for severe intersymbol
interference.

A word of caution is in order with respect to the curve for the DFE
in Fig. 2. This curve does not take into account the effect of decision
errors on the performance of the receiver. The DFE subtracts, prior to
the decision threshold on data digit B:, the quantity

Z=1 mek—m) (45)

where By_,, is the receiver’s previous decision on By and b, is the
tap-gain of the DFE feedback filter. The resulting quantity which is
applied to the threshold is!

boBx + il bm(Biem — Brcm) + na, (46)

where n; is a noise sample. Whenever the b,’s are large with respect
to by, a single decision error will likely cause many more errors. The

* This corresponds to the error sequence (1, —1, 0, 0, - - -) or, in the notation of
Forney, (1 — D).
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Fig. 3—Convergence of lower and upper bounds on dZ;, (V£ channel with y = 60 dB).

coefficients of (46}, given by (9), are tabulated in Table I for several
values of ~.

Needless to say, the situation is hopeless for the large v; the effect
of a single decision error will be major and will last for a long time.
Even for y = 20, the reduction in noise margin resulting from a pre-

TaBLE [ —CorrriciEnTs oF THE DFE FEEDBACK FILTER (b.)

m b
vy =20 vy =40 vy = 60
0 1 1 1
1 0.61 14 2.2
2 0.36 1.3 2.8
3 0.25 1.1 2.9
4 0.18 0.94 2.9
5 0.14 0.80 2.8
10 0.06 0.42 1.9
47 0.006 0.06 0.38
174 0.001 0.009 0.06
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vious decision error will be significant for five or ten subsequent
decisions. We must conclude, then, that Fig. 2 will not be representa-
tive of the true performance of the DFE, and further that the DFE
may not be a suitable receiver for the Vf channel*.

In terms of repeater spacing and baud rate, Fig. 1 can be interpreted
in two ways. If the ZFE is replaced by an MLD, the same level of
performance can be maintained while either increasing the repeater
spacing with a constant baud rate or increasing the baud rate with
the same repeater spacing. To illustrate this, consider the example of a
ZFE operating at a given level of performance on a v channel with
v = 40 dB. Then v can be increased to 60 dB at the same effective
S/N ratio. This corresponds to a 50-percent increase in repeater spac-
ing at a constant baud rate (since v goes up linearly with the repeater
spacing). However, since the repeater spacing has increased, the trans-
mitted power must also be increased by 3.5 dB to maintain a constant
isolated pulse energy at the receiver.t

If the repeater spacing is held constant, an increase in baud rate by a
factor of (1.5)% or 125 percent, will also result in a 50-percent increase
in . Here too, the average (but not peak) transmitted power is in-
creased by 3.5 dB.

The conclusion of these results is that there is a fairly large gap be-
tween the performance of linear equalizers and the theoretical limit
on the Vf channel. It is probably fair to say, however, that practical
constraints on repeater complexity, speed of operation, and gain makes
the attainment of a substantial portion of this potential improvement
on high-speed transmission systems very difficult, at least for the
present. Such is not the case for low-speed applications, such as voice-
band data, where the implementation of the MLD can be contemplated
on the basis of existing technology.

IV. CONCLUSIONS

In this paper, the minimum distance measure has been interpreted
geometrically, related to equalization (the decision-feedback equalizer
in particular), and bounded in several ways. A practical numerical
technique has been developed for calculating the minimum distance
without considering unnecessarily long error sequences.

* Tomlinson® has invented a method of avoiding the error propagation problem by
subtracting out interference from past data digits in the transmitter.

T The received pulse energy is proportional to y~2, so that the peak and average
transmitted power must be increased by 20 log (60/40) = 3.5 dB.
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Numerical results for the v/ channel reveal that the penalty in S/N
ratio relative to the isolated pulse bound for the MLD can be sub-
stantial for this channel, and that the gap in performance between the
MLD and linear equalization is also substantial. The latter suggests
that further attempts at finding receivers without the complexity of
the Viterbi algorithm MLD but which nevertheless improve on the
performance of linear equalization might well be fruitful. The decision-
feedback equalizer does not appear to fit this bill because of its serious
error propagation problem when confronted with intersymbol inter-
ference as severe as that found on the Vf channel.

APPENDIX A

Autocorrelation of the Vf Channel

From (41), the autocorrelation is

1

B = /w | H(w)|? cos (wkT)dw
]
= 4K,;R° /w T exp (— 3—? x) cos (kz?)dz. (47)
0

Integrating by parts with v = exp (— f/—l_’; x) and dv = z cos (kx?)dz,

we get
= %K;’TR; /w exp (~ \/2—_-K_x) sin 22dx
k 0 kT ’

which is given in terms of the Fresnel Integral,®

m= 3t ([~ (Gigne) o= (i)
s ()
Cx) = /;I cos(%yz) dy

S(z) = ﬁ)xsin (7—2ry2> dy .

An accurate approximation to R; valid for large v is easily obtained
from (47) by substituting the first two terms of a Taylor series for

Ry

where
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cos 2%,
0 :1:4
Ri= PR, / z (1 - ) e Padx
o 2
60
where
2K
B = —
NT
Hence
120
2(Ry — Ry) = 5
and
— 10 log %@%3—‘) ~ 40 log v — 56.2. (50)
0

Approximations to [l and [leg {|2 can also be derived by assuming
that H(w) = 0, |w| > «/T, or equivalently that |H(w){? = R(w).
The resulting S/N ratio penalties are

— 10 log |leq||?/Ro =2 v + 25.15 — 30 log v (51)

— 10 log |lef ||2/Ro = 2y + 15.76 — 20 log v . (52)
Equations (50) to (52) are plotted in Fig. 2 as dotted lines.
APPENDIX B

Interpretation of Equation (44)

It is straightforward to show that whenever

R
R = 0.5 (53)
we have
dn < 2(Ro — R1) < Ro. (54)
Noting that

Ry = (ho, ha) = ||hol| ||R]| cos 6
= Ry cos 8,

where 6 is the angle between ho and hy, eq. (53) becomes
9 < 60°. (55)

The geometric interpretation of (55) is shown in Fig. 4, where it is
seen that (54) is satisfied until § = 60°, when the triangles become
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Fig. 4—Geometric interpretation of eq. (44).

equilateral. As long as (55) is satisfied, ho — h; is a shorter vector than
ho.

In the case of the Vf channel, Ri/R, is very close to unity. Thus,
ho — hiis a very short vector. Although it will certainly not always be
the case, a plausible explanation for the fact that longer error sequences
do not yet yield a shorter vector is that the addition of other translates
of hy (such as 4hs) adds further components in other dimensions.
Presuming that it does not reduce the component in the hy — k4 plane,
it can then only increase the length of the total vector.
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