EECS 225A Spring 2005

Homework 8 solutions

1. In class we showed that if the transfer function for the n —1 order lattice filter
A,1(z) is minimum phase, and |I",| <1 then A (z) is also minimum phase.

a. Loosen the assumption and assume that only m zeros of A, ,(z) fall

inside the unit circle, and none are on the unit circle (this may happen if
one or more of the previous reflection coefficients were chosen to be
larger than unity in magnitude, which of course cannot happen if they are

chosen for the optimum linear predictor). For the two cases |Fn| <1 and
.| >1, how many zeros of A (z) fall inside the unit circle (ignore the
case |I,|=1)?

b. Assume that the 3", 6", and 9" reflection coefficients are greater than

unity in magnitude, but all the remaining are less than unity in magnitude.
How many zeros of A, (z) fall interior to the unit circle?

Solution

a. Recall the basic lattice update equation, written in terms of only positive powers of z:
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Rewriting this equation replacing numerator and denominator with a count of the number
of roots interior to the unit circle for the corresponding polynomial,
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= When |1"n| <1 there are no encirclements of z=0, and we get k =m+1 (the

number of zeros interior to the unit circle increases by one). It is as if all the zeros
previously interior the unit circle stayed there (but of course changed location),
and the new zero is also interior to the unit circle.

=  When |1"n| >1 the number of encirclements of both rational polynomials must be

equal, and thus the number of zeros in the numerators must be equal, or
k=(n—1)—m=n-(m+1). The number of zeros outside the unit circle is now

n—k=m+1. Thatis, itis as if all the zeros previously exterior to the unit circle
moved inside, and all the zeros previous interior (plus the added zero) moved
outside.

b. We can fill in the following table:



Order Reflection Interior to unit Exterior to unit
coefficient outside circle circle
unit circle?
1 1 0
2 2 0
3 yes 0 3
4 1 3
5 2 3
6 yes 3 3
7 4 3
8 5 3
9 yes 3 6
10 4 6

So we end up with 4 zeros interior to the unit circle, out of 10 total.

2.

(a)

(b}

{d)

Hayes problem 9.3

Solution
Evaluating the gradient vector we have
VE(n) = 2E{e(n)Ve(n)} = —2E{e(n)x(n)} = ~2rg + 2R.wa
Thus,
W4l = Wy — glu-ﬂ';l [szwn - 2rdz]
and we have

Wrpt = W — prwg + pw = (1 - phw, 4 pw
Thus, the Newton algorithon is stable for 0 < g < 2.

The convergence is the fastest when p = 1. Note, in fact, that when p = 1, the Newton iteration converges
N one step o w.

The gradient approximation is
Tel(n) = —2e(nix(n)
Therefore the LMS-type slgorithm is
Wai1 =W + pe(n)R7 x(n)

Comparing this to the LMS algorithm we see that the step direction is changed from x(n) to R ™ x(n).
From (c) we see that

Wna1 = Wa + Rz x(n)d(n) ~ kR x(n)x” (nyw
Assuming that x{n} is uncorrelated with the filter tap weight vector, w,, then

E{wa41} = B{wa} + uR7 re; — pRI 'R E{w,}

which hecomes
E{wani1} = {1 — @} E{wa}+ pw




