EECS 225A Spring 2005

Homework 7 solutions

1. You wish to design a least-squares inverse filter that realizes (or if necessary
approximates) g(k)®h, (k)=d(k), 0<k <M . However, battery power

limitations restrict the value of N (number of FIR inverse filter coefficients) to

N =2. You can assume that Z|g(k)|2 < o0. In the context of your application,
k=0

the accuracy of overall unit-sample response of the cascade of filter plus inverse
filter only matters for 0<k <M .
a. Formulate the equations you would need to solve for M =2.
b. Repeata.for M =3.
c. Use Matlab to numerically calculate the inverse filter and resulting unit-
sample response of the filter cascade for the a. and b. cases. Assume that
g(k) is real-valued and that

1/A+k)?, 0<k<10
g(k) = (L+k) :
0, k >10

Solution

a. Since the numerical example in c. is real-valued, let us assume the LS inverse and
desired signals are real-valued. We then have to solve the linear equations Ah = d where

A=[9(0) 0 } h{hZ(O)]and d{d(o)}
g@ a0 h,(2) d(@)

Ais non-singular iff g(0)=0.

b. In this case,
9(0) O 4(0)
A= 90 g(0) ,h:F;Z(cl))]and d=|d@ |
92 9@ :() 4(2)

A is fortunately always full rank. The system is over-determined, so we rely on the
pseudo-inverse. The equations to be solved become ATAh = A'd where

ATA{92<0)+92<1)+92(2) g(O)g<1)+g(1>g(2)} and
g(0)9@)+9@M)g(2) 9°(0)+9°(D)
ATH = {Q(O)d 0)+g@d@)+9(2)d (2)}
9(0)d@)+9g@d(2)
c. Sorry | forgot to specify d (k) , but let’s make an assumption that the desired signal is



0 0
d :{ } (parta.) d=|1]| (parth.)
1 0
This gives the filter design a delay to work with, and using the same delay in both cases
allows us to see the impact of increasing the modeling interval. See hmwk07.m for the
program. The concatenated filters have the following impulse response in parts a. and b.:

Part a: concatenation of filter and inverse
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Note that the modeling is exact, but of course the filter is far from being a simple delay
because we did not care about the later unit-sample response values.

Part b: concatenation of filter and inverse
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Now the modeling is not exact because we do not have sufficient degrees of freedom.
The solution has decreased the second value in order also bring the third closer to zero.



2. Hayes problem 5.2

Solution

{a) ¥ T3] <lfor j=1,2,...,p— 1 then the zeros of A,—i{z) are inside the unit circle. With |T'p| =1, let
I'p = ¢’®. We then have

Ap(z) = Apr(2) + €27 451 (1/2")
Conjugating and replacing z with 1/z*,
A1) = Apa(1f27) + €72 A1 (2)
.Multiplying both sides of this equation by e/® 277 gives
e TPAL)2") = Apa(z) +elf AL (1/27)
.which is equal to Ap(z). Thus, with
Ap(z) = 2P AL(1/77)

it follows that if A,{z) has a zero at 7 = 2o, then A,(z) must also have a zero at z = 1/z5. Now, recall
that if [T < 1 for j = 1,2,...,p then the zeros of 4,{z) must lie inside the unit circle, no matter how
close |Tp| may be to one. Since the zeros of Ay(z) move continuously as I'y is varied, the zeros of Ay(z),
which lie in reciprocal pairs when [, = 1, must all be on the unit circle.

(b) By definition, we have

&
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Multipiying both sides of the expression for E,, {z) by ', yields
T Ay ) = ThpAp-1(2) + 277 A5 1 (1/2")
Conjugating and replacing z with 1/ this becomes

Lo AL(1/27) = Tp A1 (1/2°) + 2° Ap1(2)

Multiplying both sides by z™# gives
T A1) = 2 P Ay (1/27) -+ Apea (2)
and we see that the right-hand side is equal o Ap(z). Therefore,
Apfz) =Ty ? g;{lfz*}

and it follows that Z;{lf 2"} is equal to zero when Aplz) s equall to zero. In other words, the 2eros ?f
Ag(z) are reflected about the unit circle, so that a zero at z = 2o In Ap{2) becomes a zero at z =1 Jz5 in
Aulz). - )
{¢) As T, increases from Ip = & to Ty = 1, the zeros of Ap(2) move towerds the unit cfrcle. Whefi I‘.,, =1 al
of the zeros lie on the unit circle. As T'p increases beyond 1, the zeros move gutside the unit circle and

approach their mirror image location as ['p = 1/e.

3. Hayes problem 5.3



Solution

{(a) We want to show that, i Ty = (-1}"1"*, then
ap(k) = (-1 ap(k)
or, if we let ;1}, (z) and Ap(z} be the s-transforms of ap(k) and ag(k), respectively, we want to show that

Ay(a) = Ap(—2)

We begin by noting that, for p = 1, we have
A;{z} == -l—l"l,z"l

and N
Ai(z)=1-T127" = Asf—2}
and show that Ep[z) = Ap{—z). From the Levinson

Therefore, let us assume that ﬁp_1(z} = Ap-1{—z}

order update eguation we have
Ap(.z} £ .‘1-'9-—] (z) + sz-pa‘i;_l{lj’z‘}

and
) = Apeile) + Tpz A5 (1/27)
| = Apea(e) + (=1)PTpz P A7 (1/27)
Thus, R
AP{Z} = AF..}‘(—Z) +Tp(—2}—pﬂ;_1{—"].fz-] = Ap(—z}

and we have the desired result.



(b) If Ty = o*T; with |a] = 1, then we may write
i"hk = s"'MI‘k
for some real number #. As in part {a), for p == 1 we have
Ay(z)=1+4T02""

and N .
Ai(z) =1+ 2t = Ay (e702)

Therefore, let us assume that E,P..] _(z) = Ay-1{e™7%z). From the Levinson order update equation we have
Ap(z) = Ap-a(3) + Tpz " AL 1 (1/27)
and
Bz = Ay +Tpr PALL(1/2%)
= Apoi(2) + €Tz P A 1 (1/27)

Thus, N
K2} = Apes(e™2) + 7oz P A5y (675 f27) = Aple™’2)
and we have the desired result, N .
Ap(z) = -49{3"3{'%]

¥ |a| < 1, then the coefficients change in no predictable manner. Consider, for example, the case of a

second-order model,
1
ag = l F1(1 +F3) }
T2

1
az = [ ol {1+ ¢®T'y) ]

T2

1 Ty = a*; and a is real, then

4. Hayes problem 5.5

Solution

Solution -
The reflection coefficients corresponding to the numerator coefficients, b = [1, 0.8, —G‘Q,{LB] is

T = [~46522, 12527, 03]

Since {I| > 1 and {T2 > 1, then the numerator polyaomial is not minimum phase {there is at least one
root ousside the unit cirele). However, since the reflection coefiicients of the denominator polynomial are

[ = [~0.4545, 8.4667, ~0.5] . then the filter is stable.




