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Homework 5 solutions 
 

 
1. In the following, )()()( kIjkRkZ ⋅+= is a zero-mean Gaussian random process 

(meaning and are zero-mean jointly Gaussian for all k and ) and 
wide-sense stationary with autocorrelation function . 
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a. In the real-valued case, we know that the statistics of a WSS random 
process are fully determined by the autocorrelation function. Investigate 
this in the complex case by trying to find the autocorrelation functions of 

and and their cross-correlation function in terms of . In 
particular, show that the joint statistics of and  are not uniquely 
determined by . 

)(kR )(kI )(kRZ

)(kR )(kI
)(mRZ

b. Define the complementary autocorrelation function 
as . Show that  and  together 
uniquely determine the joint statistics of and , and write down a 
set of equations that define that relationship. 
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c. is said to be circularly symmetric if  for all m . What does )(kZ 0)(~
=mRZ

0)0(~ =ZR  say about the joint distribution of and  (for the same 
)? 
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d. What conditions guarantee that and )(kR )( mkI −  are statistically 
independent for all when the process is circular symmetric? m

e. Show that if a circularly symmetric process is applied to a linear time-
invariant system, then circular symmetry is preserved at the output. 

 
Solution 

a.  gives us two functions (its real and imaginary parts), whereas it takes three 
functions to fully specify the joint statistics of and  (two autocorrelation 
functions and one cross-correlation function). So clearly the latter could not be uniquely 
specified by the former. 
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b.  
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The real and imaginary parts have the same variance )0()0( ir RR = and since 
2)0( ZERZ =  must be real-valued, { } 0)0(Im)0(2 =−=⋅ Zri RR . Thus, the real and 

imaginary parts are identically distributed and statistically independent—the joint 
distribution is circularly symmetric. Also, the real and imaginary parts have identical 
autocorrelation functions, although their cross-correlation is not necessarily zero for non-
zero lags. 
d. We must have that ; that is, is real-valued. This does not imply that  { } 0)(Im =kRZ )(kRZ

)(kZ is real-valued ( ). In fact, cannot be real-valued and circularly 
symmetric at the same time, since

0)( ≡kRi )(kZ
)()( kRkR ir = . 

e. Let . Then )()()( mkhmZkV
m

−⋅= ∑

⎥
⎦

⎤
⎢
⎣

⎡
−⋅−⋅=⋅ ∑∑

im

nihiZmkhmZEnVkVE )()()()()]()([  

0)()()]()([)]()([ =−−⋅⋅=⋅ ∑∑
m i

nihmkhiZmZEnVkVE  

 
2. This example is drawn from digital communications. A received signal 

(represented as a vector in signal space) { }∞<<−∞↔ ttxX ),(  is known to have 
finite energy, and to have embedded in it a signal of the form 
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where { ∞<<−∞−↔ tkTthHk ),( } is the time displacement (by ) of a basic 

complex-valued waveform 

kT

0H  . The scalars (called data symbols) are drawn 
from a finite alphabet of complex values and convey a stream of information bits. 
This is called quadrature amplitude modulation (QAM), and is commonly used in 
data modems. 
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a. Our receiver design strategy is to consider all possible signals 
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ˆ (for all possible combinations of { }10,ˆ −≤≤ nkbk ) and choose 

the one with minimum distance from X . Formulate this as a minimum-
distance problem in Hilbert space. 

b. Show that the minimum-distance problem can be reformulated as 
minimizing distance in a new finite-dimensional Hilbert space. What is the 
appropriate inner product measure for this new space? HINT: You will 
want to ‘complete the square’. A simple example of completing the square 

is 
42
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c. Explore the implications of a minimum-phase factorization of the pulse 
autocorrelation function, as in . Express the minimum 
distance in terms of instead of and show that the problem can be 
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reformulated as finding the minimum distance in a new countably infinite-
dimensional Hilbert space. HINT: Following the approach described in 
class, define nd , where is the 
output of the sampled matched filter. Now express the minimum distance 
in terms of and . Again, you will want to 'complete the square'. 
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Solution 
 a.  
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At first glance this looks like a projection problem; however, it is not, because the scalar 
coefficients are constrained to be valid data symbols chosen from a finite alphabet. Thus, 
the projection might be a reasonable first approximation, but is very unlikely to align 
with valid data symbols. Rather than applying the orthogonality principle, we should 
continue to work directly with the norm. 
 
b. Writing this as 
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Defining 
kk HXy =  (sampled output of a matched filter) 

nmh HHnmr =− )(  (pulse autocorrelation function) 

this becomes 
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The formulation suggests completing the square. Writing (for some yet-to-be-determined 

) kc

( ) ( ) ∑ ∑∑∑∑∑∑
−

=

−

=

−

=

−

=

−

=

−

=

−

= ⎭
⎬
⎫

⎩
⎨
⎧

⋅⋅−⋅−⋅+⋅−⋅=−⋅−⋅−
1

0

1

0

**
1

0

1

0

*
1

0

1

0

*1

0

ˆRe2)(ˆ)(ˆˆ)(ˆ
n

k

n

k
kki

n

i
hk

n

k
i

n

i
hk

n

k
ii

n

i
hkk ybcikrcbikrbcbikrcb

where 

i

n

i
hk ckiry ⋅−= ∑

−

=

)(
1

0

 

and matching terms, we get 
 

( ) ( ) ∑∑∑∑
−

=

−

=

−

=

−

=

⋅−⋅−−⋅−⋅−+=
1

0

*
1

0

1

0

*1

0

2
)(ˆ)(ˆ

n

k
i

n

i
hk

n

k
ii

n

i
hkk cikrccbikrcbXD  

We recognize the second and third terms as Hermitian norms (as defined in lecture) over 
‚n of the form  since the 'kernal' matrix*TRxx R is Hermitian (these are Hermitian forms). 



The first and third terms are not functions of the data symbols, and thus can be ignored. 
Thus, the data symbols can be determined by minimizing a Hermitian norm over ‚n. 
Unfortunately, there is no obvious way to avoid calculating this norm for all possible 
sequences of data symbols and choosing the sequence with the smallest norm. (In 
particular, the projection theorem is not helpful since the optimization is so constrained.) 
Before we do that, the 's must be determined by inverting the pulse autocorrelation 
matrix (or equivalently solving a set of linear equations). 
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c. Note that the 'isolated pulse' response to the matched filter followed by sampler is 

)()( 0 krHHks hk −== . Since has all the 'right' properties (Hermitian, positive-

definite), cleaner results are obtained by performing a spectral factorization for , 
rather than as suggested in the problem statement. (Note that if we had used this 
revised definition in lecture for the 'whitened matched filter' we would have gotten a 

discrete-time whitening filter
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Per the problem hints: 
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Returning to the problem formulation of a., we can attack the first term: 
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And the second term: 
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Combining these results, clearly the original minimization is equivalent to minimizing 
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This solution is illustrated in the figure below. Note that this approach reduces the 
problem of finding minimum-distance data symbols to a discrete-time norm without the 
complication of the Hermitian kernel. 
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