EECS 225A Spring 2005

Homework 4 solutions

1. Asshown below, a random variable X is the input to a cascade of two systems
with random variable outputsY,andY,. You are given the joint PDF

Pxyv, (X Y1, Y,) and told that it satisfies p, x v (Y, | X, Y1) = Py, (V2 | Y1) -

a. Give an intuitive argument as to why this latter condition specifies that
there are no 'hidden’ information channels from X toY,, other than the path
viay;.

b. Suppose the MMSE optimum non-linear estimates of X based onY,andY,
are, respectively, f (y,)andg(y,) . In terms of the given PDF (or
conditional PDF's derived from it) write down formulas for the
functions f (-)and g(') .

c. Show thatg(y,)= E[f Y)Y, = yz]. Interpret this equation verbally, and
give an intuitive argument for it.

d. Show that E|X —g(Y,)|" = E|X — f (Y,)]" + E|f (Y,)— g(Y,)[ - Interpret this
equation verbally, and give an intuitive argument for it. Note that this
relationship attributes the total MMSE to a contribution from each of the
cascaded systems.

e. Use the result of d. to attribute the total MMSE determined in Problem #4

of Homework #3 to the A/D converter and to the BSC. Use Matlab to plot
the total and constituent MSE's as a function of crossover probability p for

a Gaussian RV and interpret the result.

Solution

a. The condition specifies that conditional on knowledge of Y, =y,, X andY,are
statistically independent. Thus, if we knowY, there is no additional statistical relationship
to X that can be exploited.

b. £ (y,) = [x-pyepy (x]¥1)-dx and g(y,) = [x- Py, (x| ¥,)-dx

c. First, we can show that (pardon the shorthand notation):



) — p(X, Y1, yz) — p(yz | X, yl)' p(x, yl) — p(x, yl)
P(Y1:Y2) P(Y2 Y1) P(Y:) p(y:)
Then we can rewrite g(y,) in terms of this density,

9(y,) = [ [ %+ pOXIys,¥2) POY: 1Y) - dyy o= [ [x pOxly,) Py, | y,) - dy, - dx
or performing the x-integral,
9(Y) = [ F(y2)- P(y 1Y) -dy, =E[F(Y))|Y, = ]
The MMSE estimate of Y, can be formed from Y, alone, ignoring X . It is formed not by
taking the conditional mean of Y,, but rather the conditional mean of the MMSE

estimator of X based on Y, . Thus, that conditional mean is able to stand in as a proxy for

X in calculating the new estimate.
d. We know from class that

E[X - f(Y,)|" = E[X|" —E|f (V,)]

E|X —g(Y,)] =E[X[ ~Elg(¥,)[
Further, we can conclude that since g(y,) = E[f Y)Y, = yz] is the MMSE estimator of
random variable f (Y,) based on observation of Y,,

EJf (V) - g(Y,)] =E[f(Y,)] —Elg(Y.)"-
Combining these three equations leads to the desired result. This says if the intermediate
RVY, is replaced by the MMSE estimate of X based on Y,, then the error in through the
first and second systems are orthogonal and the MMSE of the cascaded systems is the
sum of the MMSE's of the constituent systems. Without this replacement, the errors are
in general correlated and thus we can't conclude anything in general about their
individual contributions to the cascaded error.
e. Define the output of the A/D as Y, and the output of the BSC as Y, . In class we showed

that the MMSE estimator at the A/D output assumes values
, Y, =0
f (Yl) — {ILJO 1

p(xlylvyz :p(xlyl)

my, V=1
where
a 1 o 1 0
o= [, POX)-dx, gty =— " xp(x)-dx and gy =[x p(x)-dlx
a po * (1_ po) ¢
Define a notation for the two values of the MMSE estimator at the BSC output,
7o Y, =0
g(Y;) _{a, v, -1

These are the conditional means of f (Y,), conditioned on knowledge of Y, . Calculating
these conditional means,
do = Po(L—p)+@-py)P
T, = E[f (Yl) |Y2 — 0] — Ho po(l_ p);‘ /ul(l_ po) p
0




7, =E[f(Y)]Y, =1]= Ho Po p+/t;_l(1 Po)d-p)
—o
This is the same answer we calculated (using a more direct but cumbersome approach) in
Homework #3.
To calculate the MMSE, all we need to know is the second moments,

ELF*(Y)]=t5 - Po + 44 - (1= Py)

E[gz(Yz)] = Toz Qo +712 “(1-1,)
See M-file hmwk04.m. The MMSE is plotted below for a zero-mean unit-variance
Gaussian and threshold « =0.5. The blue line is the MMSE of the A/D, which is not
dependent on p . The green line is the MMSE attributable to the BSC, which of course is

zero at the end points and maximum at p = 0.5. The red line is the total MMSE, which
goes to unity (the input variance) at p = 0.5 since in this case the output of the BSC is
statistically independent of the input to the A/D.
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2. Hayes Problem 3.3

Solution
(a) Since z(n) is the cutput of an all-pole filter driven by white noise, z{n) is an AR(p) process with a power
spectrum
P ejw O'fu
)= Taeeyp
where

»

APy =1- "ak)e ™

k=1



{b} The process z{n) is a sum of two random processes
z{n) = z(n) + v{n)

Since z(n) is a linear combination of values of w(n),

T

z(n) = Z h{kYw(n — k)

R — ol

where h(n) is the unit sample response of the filter generating x(n), and since v{n) is uncorrelated with
w(n), then v(n) is uncorrelated with x(n}, and we have

o (8) = ra ) + 7o ()

Therefore, _ _
Pi(e’) = Po(e’) + Pu(e™)
and ) . ,
ey |2
Pole™y = oy 2 __ Ty +Jv!A(8} )l
S = Tt = T ey
3. Hayes Problem 3.4
Solution
{a) The power spectrum of z(n) is
Plz) = 3/4

(1~ %z—l)ﬂl ~5z)

and the power spectrum of y(n) is

3/4
(1=3271)1 - 3z2)

Pyz) = H(z)H(z"")Pe(2) =



(b} The autocorrelation sequence for y(n) may be easily found using the z-transform pair

1&| 1-a’
@ A o YA = aF)
Since 8/9
Ikl
G = AT ya=— 19

then
| ry(k) = B3
(¢) The cross-correlation rzy(k) between z(n} and y{n) is
ray(k) = ra(k) + R{~k)
This may be easily computed using z-transforms as follows,

3/4 s 3z
(1-4:-101-32) 1-4%z

Pey(2) = Pm(z}H(z—l) =

3/4
{1—%z-1(1-12)

Writing this in terms of 27! and performing & partial fraction expansion gives

2t g/ 3/10
(I=3z1(zt=5) 1=2271 271-1%

Prylz} =3

Inverse z-transforming gives
ray(k) = f5 (1) ulk) + £ Ful-k - 1)
(d} The cross-power spectral demsity, Fry (2}, 28 computed in part (a), is

3/4
(1 - 3274132

Pry{z) =

(e} The cross-correlation, 7., {k), between z{n) and y(n) may found by computing the inverse z-transform of
the cross-power spectral density, ‘

-1 0 3
» L &
P zl = 3 = i0 + 10
=(#) =3 (1—-gz=2)(z~t = 3 1= 2=t g=leg

Inverse transforming gives

4. Hayes Problem 3.6

Solution



(a) Expanding P.{e’) in terms of complex exponentials,
Po(e?) =3+ 2cosw =34 e ¥ £ ®

it follows that r-(0) = 3 and rz(1) = rp (1) = L.
(b} Recall the DTFT pair

¥ s 1--a? _ 1—a®

{1~ ce=i)(1 — @ei*) ~ {1 +a?) —2acosw
Since . 13

Po{e?™) = = 2

™) 3+ dcosw 1+%cosw
it follows that
ro (k) = L(- 1)
(c) With :
—22% 4 5z=2 ~2745—2"" —2z 45— 2271
Prlz) = = =

L
322+102+3 7 B3+2)@+271) T V(1 + L1+ i)

using the pair

wiom

Lk
(=3) {_}EI+§3J[Z+%z“)

it follows that
re(k) = (=3 (o IyRtl o 20 ik
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