
EECS 225A Spring 2005 

Homework 3 solutions 
 

 
1. In lecture the unit-sample response of a second-order allpass filter was illustrated.  

a. This filter has only a single independent parameter, which is the location 
of one of the two poles. Why? 

b. Starting with the M-file used in class, experiment with changing both the 
radius and angle of the allpass filter pole. Explain intuitively the change in 
unit-sample response that you observe. 

 
Solution 

 
a. The filter is allpass, so that the zero locations are predetermined by the pole 

locations (they are reflected through the unit circle). The filter was chosen to have 
a real-valued unit-sample response, so each pole location has a complex conjugate 
pole. 

b. Three cases are shown below. The first figure is the example given in class, 
modulus 0.9 and phase 4/π . Intuitively we expect the frequency of ringing to be 
related to the angle of the pole. We can verify this by changing the angle from 

4/π  to 8/π and verify that the period of oscillation increases from 8 to 16 
samples (second figure below). Intuitively we expect the modulus of the pole to 
be related to the rate of decay. We can verify this by changing the modulus from 
0.9 to 0.95 and observe that the ringing decays more slowly (third figure below). 
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2. You are given a first-order stable and causal allpass filter with transfer function 

1
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zc . 

a. What can you say about pole location c ? 
b. Show that if kg is the input and kh  is the output of this filter, then the 

energy of kg  is more concentrated near zero-delay in the sense that 
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Thus, in this sense an allpass filter is dispersive. HINT: define a third 
signal kf  that is kg  filtered by the pole of the allpass filter only. Relate 
both kg  and kh  to kf . 

c. Repeat b. for the (even simpler) stable and causal allpass filter nz− . 
d. What do b. and c. say about minimum phase filters? 

 



 
Solution 

 
a. 1<c  since the pole is at cz =  and the filter is said to be causal and stable. 
b. Since kf  is the output of a minimum-phase causal and stable filter (trivially minimum 
phase since it has no zeros), the inverse filter is causal and stable. Thus, we can recover 

kg  and kh from kf  by the filters 11 −⋅− zc and 1* −− zc  respectively, or in the time domain 

1−⋅−= kkk fcfg  and 1
*

−−⋅= kkk ffch . 
By straightforward algebra, we find that 
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c. This is even more straightforward, 
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Clearly this is non-negative. 
d. Since a rational non-minimum phase filter can be decomposed as a rational minimum-
phase filter followed by a rational allpass filter, among all rational transfer functions with 
the same magnitude response on the unit circle, the unit-sample response of a minimum-
phase filter is the most concentrated near the origin (in the energy sense). That is, it has 
the least dispersion. 
 

 
3. We are interested in rational transfer functions )(zH that are stable and real-

valued on the unit circle. 
a. Give an example of an )(zH that is real-valued on the unit circle, but 

assumes both positive and negative values.  What does this example teach 
you? Hint: Consider the simplest non-trivial rational )(zH you can think of. 

b. For the remainder of the problem, assume that )(zH has both zeros and 
poles. What can you say about the pole and zero locations such 
that )(zH will be causal? Non-causal? Neither? 

c. What is the form of the lowest-order )(zH  (that is, how many poles and 
zeros does it have, and what constraints are there on location)? 

d. Repeat c. for an H(z) that has a real-valued unit-sample response. 
e. Repeat c. for an H(z) that is not only real-valued but positive real-valued 

on the unit circle. 
Solution 

 
a. We know that )()( * khkh −= is all that required, and the simplest example would be 

11)( −⋅++⋅= zazazH  
for a real valued. As expected, it is real-valued on the unit circle, 



)cos(21)( ωω ⋅+= aeH j  

and this value is negative at some frequencies iff 2
1>a . In this case, there are two 

zeros on the unit circle corresponding to a2
1)cos( −=ω . This occurs at two different 

frequencies (in fact, they are conjugate pairs since the unit-sample response is real). 
This teaches us that we can have zeros on the unit circle, and that they do not have to 
have multiplicity two (or more generally an even number). If they do not have even 
multiplicity, the frequency response will not be non-negative, as established on the 
last homework. 
b. The statement that )(zH is real-valued on the unit circle makes it implicit that the 

ROC includes the unit circle. Also it implies that pole’s and zeros come in ⎟
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(reflected through the unit circle) pairs, except perhaps for zeros on the unit circle. 
Since there are assumed to be poles, it follows that there must be poles both interior 
to and exterior to the unit circle, so )(zH is two-sided (neither causal nor anti-causal). 
In the case of zeros, any zero interior to the unit circle must be accompanied to a 
reflected zero outside the unit circle. It is also permissible for zeros to occur on the 
unit circle, and they need not come in pairs. We can also see that the unit-sample 
response must be two-sided in the time domain, since we must have 
that )()( * khkh −= . 
c. We only need one pole inside the unit circle, and it must have a reflection outside 
the unit circle, so in total we have two poles. Similarly, zeros must come in pairs (one 
inside and one outside the unit circle or both on the unit circle). 
d. Poles and zeros must come in ( )*, zz pairs, so there must be a minimum of two poles 
inside the unit circle. Adding the reflections through the unit circle, there will be (at 
minimum) four poles in total. For zeros, we only need two zeros if they are on the 
unit circle at complex-conjugate locations (as illustrated in part a.). 
e. We must have two poles and two zeros. In this case, the two zeros can be in the 

form of a multiplicity-two zero on the unit circle, or alternatively a ⎟
⎠
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zeros. 
 

 
4. A one-bit analog-to-digital (A/D) converter is defined by a single threshold α  

and has two outputs, 0 and 1. Suppose a random variable X with probability 
density function )(⋅xp  is input to this one-bit A/D, and the output is defined asY . 

a. What is the optimum (MMSE) estimator of X  based on the observation of 
Y ? 

b. The output of the A/D, Y , is input to a binary symmetric channel (BSC) 
with binary output Z characterized by the single parameter 10 ≤≤ p  and 
defined by the conditional (transition) probability: 

⎩
⎨
⎧

=−
≠

=
bap
bap

baf YZ ,1
,

)|(| . 



What is the optimum (MMSE) estimator of X  based on the observation of 
Z ? 

c. Interpret the results you got in b. for the special cases 0=p , 1=p , and 
5.0=p . 

 
Solution 

 
a. This was derived in class. Let the MMSE estimator be defined by the two parameters  
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Then 
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Where dxxpp X ⋅= ∫ ∞−
)(0

α
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b. The essential observation is that conditional on the observation ofY , X and Z are 
independent (please excuse the simplified notation): 

)|()|()|,( yzpyxpyzxp ⋅= . 
The justification for this is that once you knowY , the randomness in X is due entirely to 
the input (nothing to do with Z ), and the randomness in Z is due entirely to the BSC 
(nothing to do with X ). 
Aside: This assumption is equivalent to the condition stated in Homework #4 Problem #1, 
as you can see from: 
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Given this assumption, the trick is to write ),,( zyxp in terms of transition probabilities 
that we know: 
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Summing this over y , 
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Recognizing that 
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we can perform the conditional-mean integral, 
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Thus the MMSE estimate corresponding to observation 0=Z  and 1=Z  are, 
respectively, 
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5. Do Hayes computer exercise C3.1. 
 

Solution 
 
See M-file hmwk03.m 

a. If X  is U[0,1], then ⎟
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1logµ  will be exponentially distributed. 

b. µ  and 2µ  
c. From Example 3.2.3 on p. 74, the variance of the sample mean is N/2µ . Letting 

100/µε =  in Tchebycheff inequality on p. 73, we get that 
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This is a bound, not exact, but indicates that one million samples more than suffices. 
c. This is mean 2=µ . 


