
EECS 225A Spring 2005 

Homework 2 solutions 
 

 
1. Consider a complex signal{ }nkzk ≤≤1, . The goal is to find the best 

approximation to this signal in terms of a complex exponential with some fixed 
frequency ω ; that is, the complex coefficients u and v such that 
{ }nkveu kj ≤≤+⋅ 1,ω is the best approximation to kz  in the sense of minimizing 

the mean-square error ∑
=

−⋅−=Ε
n

k
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2ω . 

a. Find a set of sufficient conditions for a stationary point of E. 
b. Find an expression for the coefficients and resulting error suitable for 

computation. 
c. Compute the resulting coefficients numerically for signal 

{ }nkjyxe kk
jkj ≤≤+++ 1,4/πω  where { }kx  and { }ky  are unit-variance 

real-valued white and independent Gaussian processes generated by a 
random number generator and 1000,12/ == nπω . Interpret the results. 
Repeat the calculation for a larger and smaller variance and interpret how 
they change. 

d. Repeat c. for signal { }nkjyxe kk
jkj ≤≤+++ 1,4/2 πω . Note that there is now 

a mismatch between the signal frequency and the model frequency. 
 

Solution 
 
a. We can differentiate E  w.r.t. *u  and *v  to obtain 

rvtun =⋅+⋅ *  and svnut =⋅+⋅  where 
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b. See M-file hmwk02.m 
c. It is useful to look at the signal+noise for three cases: 
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remains pretty 
accurate; this is 
because of the 
opportunity to 
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accurate within 
about 10-20%, 
but v  becomes 
pretty large (on 
the order of 0.2 to 
0.4 due to the 
poor signal-to-
noise ratio 

 
d. All we have to change is the definition of r . The result is 0≈u  with a widely varying 
angle, reflecting that the model is estimating the signal component at frequency 12/π , 
which is in fact zero. 
 

 
2. Give an example of a rational transfer functions and associated ROC with each of 

the following properties. If no such rational transfer function exists, so state and 
give your reasoning. 

a. Causal real-valued unit-sample response. 
b. Anti-causal real-valued unit-sample response. 
c. Causal imaginary-valued unit-sample response. 
d. Anti-causal imaginary-valued unit-sample response. 
e. Causal unit-sample response that is neither pure real-valued nor pure 

imaginary valued. 
f. Real-valued unit-sample response that is two-sided. 
g. Real-valued on the unit circle, with both positive and negative values. 
h. Imaginary-valued on the unit circle. 
i. Non-negative real-valued on the unit circle. 

 
Solution 

 
a.  

)9.01()9.01()( 14/14/ −−− ⋅−⋅⋅−= zezezH jj ππ  with ROC = 0>z , or 

))9.01()9.01/((1)( 14/14/ −−− ⋅−⋅⋅−= zezezH jj ππ  with ROC = 9.0>z  
These work because the zeros or poles come in complex-conjugate pairs. If we want the 
filter to be stable (nothing was said about this), it is important that the poles in the second 



case be inside the unit circle. Stating the ROC in addition to )(zH  is a key part of 
answering the question! 
b. Again if we demand stability, 

))1.11()1.11/((1)( 14/14/ −−− ⋅−⋅⋅−= zezezH jj ππ  with ROC = 1.1<z , 
with poles outside the unit circle, works. The zeros case can be made anti-causal by 
reversing the exponent of z , 

)9.01()9.01()( 4/4/ zezezH jj ⋅−⋅⋅−= − ππ  with ROC = ∞<z . 
c. Multiply any of the answers in a. by j . 
d. Ditto for b. 
e. Multiply any of the answers in a. by )1( j+ . 
f. If we want stability, then the ROC must include the unit circle. Real valued unit-sample 
response demands conjugate-pair poles and zeros. Examples would include 

)21()21()9.01()9.01()( 14/14/14/14/ −−−−−− ⋅−⋅⋅−⋅⋅−⋅⋅−= zezezezezH jjjj ππππ  
with ROC = ∞<< z0 , or 

))21()21()9.01()9.01/((1)( 14/14/14/14/ −−−−−− ⋅−⋅⋅−⋅⋅−⋅⋅−= zezezezezH jjjj ππππ  
with ROC = 29.0 << z  

g. Such a transfer function must be two-sided, since it requires that )()( * ωω jj eHeH = or 
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)}(Re{2)( ωω jj eGeH ⋅= . Examples include: 
)1()1()( *1 zczczH ⋅−+⋅−= −  
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In both cases the numerator polynomial is the same and evaluates on the unit circle to 
}Re{2211 * ωωω jjj ececec −− ⋅⋅−=⋅−+⋅−  

This is real-valued as expected, but in order for this to change sign, we must have 1>c . 
Thus, finally, we have examples: 

)21()21()( 4/14/ zezezH jj ⋅−+⋅−= −− ππ  with ROC = ∞<< z0 , or 

)21(
1

)21(
1)( 4/14/ zeze

zH jj ⋅−
+

⋅−
= −− ππ  with ROC = 25.0 << z  

h. Multiply any example in g. or i. by j . 
i. Likewise the unit-sample response must be two-sided. An easy choice is 

)1()()( *
*

z
GzGzH ⋅=  since then 0)()(

2
≥= ωω jj eGeH . Examples would include 

)5.01()5.01()( 4/14/ zezezH jj ⋅−⋅⋅−= −− ππ  with ROC = ∞<< z0 , or 

))5.01()5.01/((1)( 4/14/ zezezH jj ⋅−⋅⋅−= −− ππ  with ROC = 25.0 << z   
 
 

 



 
3. Give an intuitive argument for the following statement. If you are feeling 

ambitious, offer a proof. For any rational transfer function that is non-negative 
real-valued on the unit circle, zeros on the unit circle must have even multiplicity 
(two, four, six, etc.). 

Solution 
 
An intuitive argument is that a single zero on the unit circle at angle θ  will cause a phase 
shift of π  as ω  passes thru θ . Thus, unless other factors compensate (and they can't 
since they don't have a zero or pole at θ ), a single zero will cause the overall transfer 
function to shift from positive to negative or vice versa. On the other hand, a zero of 
order n2 will cause a phase shift of n⋅π2 , which will not destroy the non-negative-real 
property. 
 
Another intuitive argument can be had from the observation that poles or zeros off the 
unit circle must come in reflective pairs, giving factors like )1()1( *1 zczc ⋅−⋅⋅− − . If we 
simply let 1=c , then for such a c  we have that */1 cc = and hence the zero-zero pairs on 
the unit circle coincide; that is, they come in multiplicity-two groups. Thus, pairs of zeros 
on the unit circle is a natural extension of the requirement for zero-zero pairs reflected 
through the unit circle. Two such groups gives us a multiplicity-four group, etc. Compare 
the frequency response (Z-transform on the unit circle) of a multiplicity-two group of 
zeros and a single zero on the unit circle: 

{ } )cos(22Re22)1()1( )( θωθωωθωθ −⋅−=⋅−=⋅−⋅⋅− −−− jjjjj eeeee  
)2/)sin((2)1( 2/)( θωθωωθ −⋅⋅=⋅− −−− jjj ejee  

While the first multiplicity-two factor is non-negative real, going to zero at the zero 
location θω = , the single-zero factor is not even real. Clearly what is happening is the 
two zeros in the first factor are canceling their phase shifts, and the sin() is being squared, 
making the resulting frequency response both real and non-negative. Intuitively there is 
no conceivable way that other factors (poles and zeros at other locations) can compensate 
for the non-zero phase shift of a single zero on the unit circle at all frequencies. 


